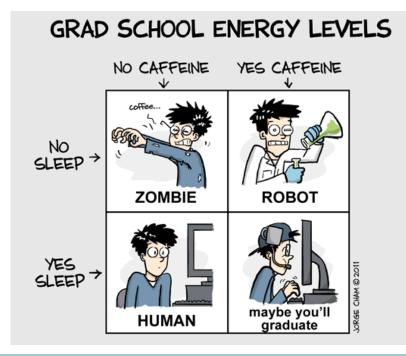
ML4NLP Multiclass Classification



Dan Goldwasser

Purdue University

dgoldwas@purdue.edu

Social NLP

- Last week we discussed the speed-dates paper.
- Interesting perspective on NLP problems-
 - Can we use NLP methods in social science research?
 - Key idea:
 - Find a problem in the real world that you can about.
 - DEFINE THE PROBLEM FORMALLY
 - Identify relevant NLP tools that can measure what you are interested in.
 - Evaluate whether they actually do.
 - Use NLP tools to process large amounts of data and say something meaningful about the world that you couldn't before.

Some (free!) pointers for further reading

- Linguistic Structure Prediction. Noah Smith.
- <u>http://www.morganclaypool.com/doi/abs/10.2200/S003</u> 61ED1V01Y201105HLT013
- Structured Learning and Prediction in Computer Vision. Nowozin and Lampert http://www.nowozin.net/sebastian/papers/nowozin201

<u>1structured-tutorial.pdf</u>

 Speech and Language Processing. Jurafsky and Martin https://web.stanford.edu/~jurafsky/slp3/

Classification

- A fundamental machine learning tool

 Widely applicable in NLP
- Supervised learning: Learner is given a collection of labeled documents

 Emails: Spam/not spam; Reviews: Pos/Neg
- Build a **function** mapping documents to labels
 - Key property: *Generalization*
 - function should work well on new data

Learning as Optimization

- Discriminative Linear classifiers
 - So far we looked perceptron
 - Combines model (linear representation) with algorithm (update rule)
 - Let's try to abstract we want to find a linear function performing best on the data
 - What are good properties of this classifier?
 - Want to explicitly control for error + "simplicity"
 - How can we discuss these terms separately from a specific algorithm?
 - Search space of all possible linear functions
 - Find a specific function that has certain properties..

Classification

- So far:
 - General optimization framework for learning
 - Minimize regularized loss function

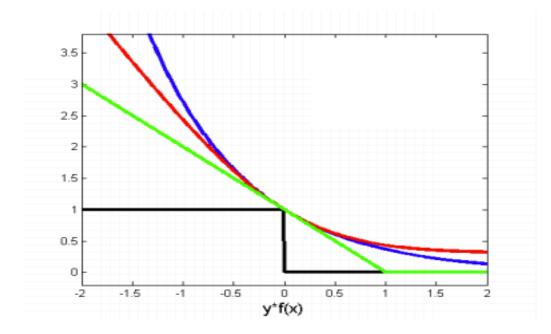
$$\min_{\mathbf{w}} = \sum_{n} loss(y_n, \mathbf{w}_n) + \frac{\lambda}{2} ||\mathbf{w}||^2$$

- Gradient descent is an all purpose tool
 - Computed the gradient of the square loss function

Surrogate Loss functions

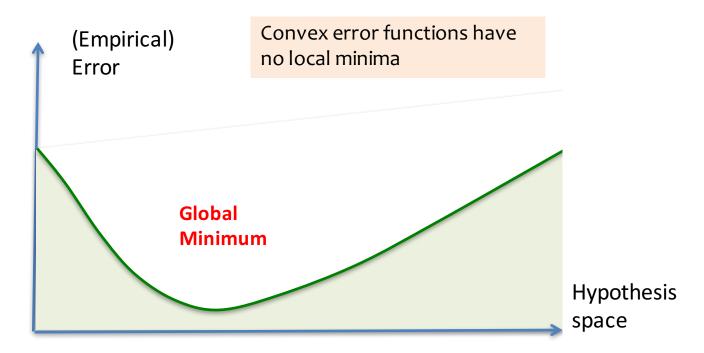
• Surrogate loss function: smooth approximation to the 0-1 loss

– Upper bound to 0-1 loss

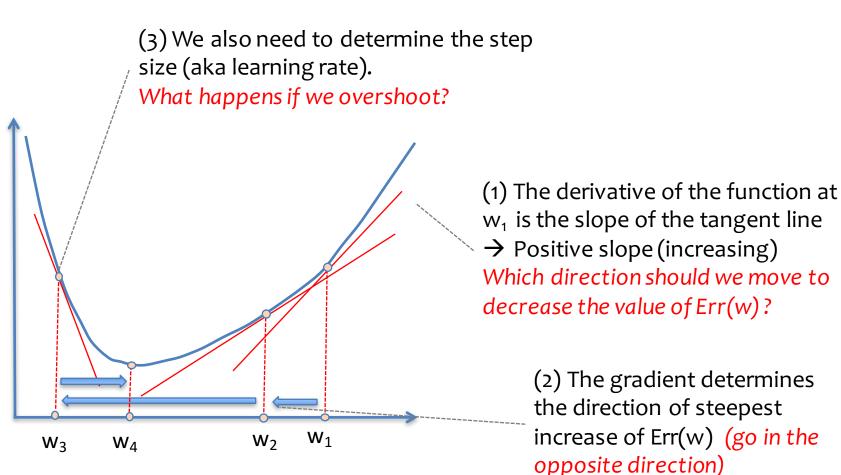


Convex Error Surfaces

- **Convex functions** have a single minimum point
 - Local minimum = global minimum
 - Easier to optimize



Gradient Descent Intuition



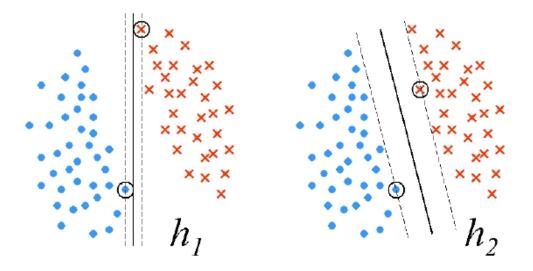
What is the gradient of Error(w) at this point?

Maximal Margin Classification

Motivation for the notion of *maximal margin*

Defined w.r.t. a dataset S :

 $\gamma(S) = \max \min_{(x,y) \in S} y w^T x/||w||$



Some Definitions

• **Margin**: distance of the closest point from a hyperplane

This is known as the *geometric margin*, the **numerator** is known as the *functional margin*

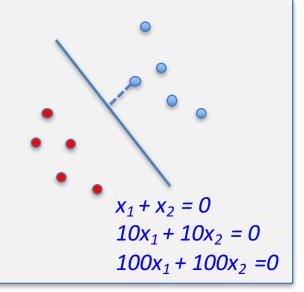
$$\gamma = \min_{x_i, y_i} \frac{y_i(\mathbf{w}^T x_i + b)}{||\mathbf{w}||}$$

Our new objective function
 – Learning is essentially solving:

Maximal Margin

- We want to find $\max_w \gamma$
- **Observation**: we don't care about the magnitude of w!
- Set the functional margin to 1, and minimize **W**
- $\max_{w} \gamma$ is equivalent to $\min_{w} \|w\|$ in this setting
- To make life easy:

let's minimize min_w ||w||²



Hard vs. Soft SVM

Minimize: $\frac{1}{2} ||w||^2$ Subject to: $\forall (x,y) \in S$: $y w^T x \ge 1$

Objective Function for Soft SVM

- The relaxation of the constraint: y_i w_i^Tx_i ≥ 1 can be done by introducing a slack variable ξ (per example) and requiring: y_i w_i^Tx_i ≥ 1 ξ_i; (ξ_i ≥)
- Now, we want to solve: $Min \frac{1}{2} ||w||^2 + c \Sigma \xi_i$ (subject to $\xi_i \ge 0$)
- Which can be written as: $Min \frac{1}{2} ||w||^2 + c \sum max(0, 1 - y_i w^T x_i).$
- What is the interpretation of this?
- This is the Hinge loss function

Generalization into Multiclass problems

Multiclass classification Tasks

- So far, our discussion was limited to binary predictions
 Well, almost (?)
- What happens if our decision is not over binary labels?
 - Many interesting classification problems are not!
 - POS: Noun, verb, determiner,..
 - Document classification: sports, finance, politics
 - Sentiment: Positive, negative, objective

How can we approach these problems?

• Can the problem be reduced into a binary classification problem?

Hint: What is the computer science solution to: "I can solve problem A, but now I have problem B, so…"

Multiclass classification

• We will look into two approaches:

- Combining multiple binary classifiers

- One-vs-All
- All-vs-All
- Training a single classifier
 - Extending SVM to the multiclass case

One-Vs-All

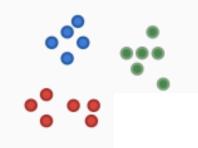
Assumption: Each class can be separated from the rest using a binary classifier

- Learning: Decomposed to learning k independent binary classifiers, one corresponding to each class
 - An example (x,y) is considered positive for class y and negative to all others.
 - Assume m examples, k class labels (assume m/k in each)
 - Classifier f_i: m/k (positive) and (k-1)m/k (negative)
- **Decision**: Winner Takes All:

$$- f(x) = argmax_i f_i(x) = argmax_i (v_i x)$$

Q: Why do we need the assumption above?

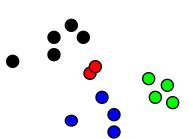
Example: One-vs-All



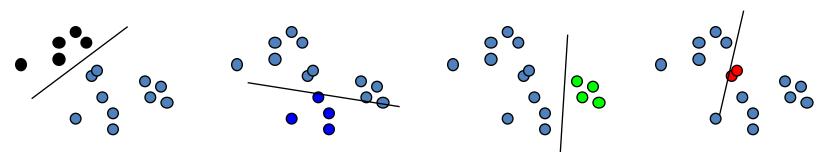
From the full dataset, construct three binary classifiers, one for each class

Solving Multi-Class with binary learning

- Multi-Class classifier
 - Function $f: x \rightarrow \{1, 2, 3, ..., k\}$



• Decompose into binary problems

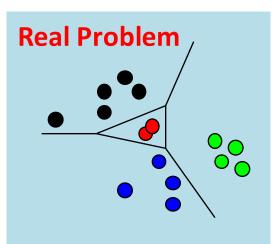


Not always possible to learn

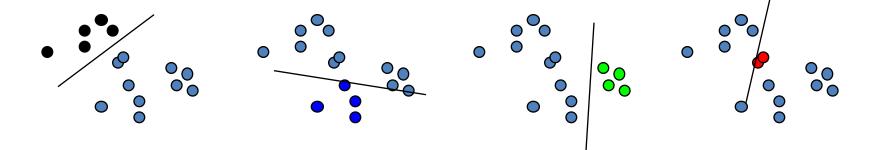
Learning via One-Versus-All

• Find $v_r, v_b, v_g, v_y \in \mathbf{R}^n$ such that

 $\mathbf{H} = \mathbf{R}^{kn}$



• Classification: $f(x) = argmax_i(v_i x)$

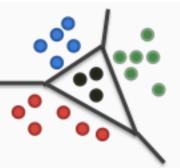


All-vs-All

Assumption: There is a separation between every pair of classes using a binary classifier in the hypothesis space.

- Learning: Decomposed to learning [k choose 2] ~ k² independent binary classifiers, separating between every two classes
 - Assume m examples, k class labels. For simplicity, say, m/k in each.
 - Classifier f_{ij}: m/k (positive) and m/k (negative)
- Decision: Winner Decision procedure is more involved since output of binary classifier may not cohere (transitivity no ensured) :
 - Majority: classify example x to label i if i wins on it more often that j (j=1,...k)
 - Tournament: start with n/2 pairs; continue with winners

All-vs-All



- Every pair of labels is linearly separable here
 - When a pair of labels is considered, all others are ignored

Problems

- 1. O(K²) weight vectors to train and store
- Size of training set for a pair of labels could be very small, leading to overfitting
- 3. Prediction is often ad-hoc and might be unstable Eg: What if two classes get the same number of votes? For a tournament, what is the sequence in which the labels compete?

Multiclass by reduction to Binary

- Decompose the multiclass learning problem into multiple binary learning problems
- **Prediction**: combine binary classifiers
- Learning: optimize local correctness
 - No global view
 - Separation between learning and prediction procedures
- We can train the classifier to meet the REAL objective
 Real objective: final performance, not local metric

Multiclass SVM

• Single classifier optimizing a global objective

- Extend the SVM framework to the multiclass settings

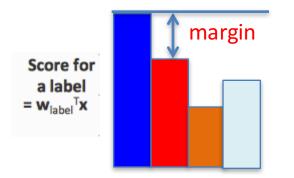
• Binary SVM:

- Minimize ||W|| such that the closest points to the hyperplane have a score of +/- 1
- Multiclass SVM
 - Each label has a *different* weight vector
 - Maximize *multiclass margin*

Margin in the Multiclass case

Revise the definition for the multiclass case:

 The difference between the score of the correct label and the scores of competing labels



Colors indicate different labels

<u>SVM Objective</u>: Minimize total norm of weights s.t. the true label is scored at least 1 more than the second be²⁶st.

Hard Multiclass SVM

Regularization

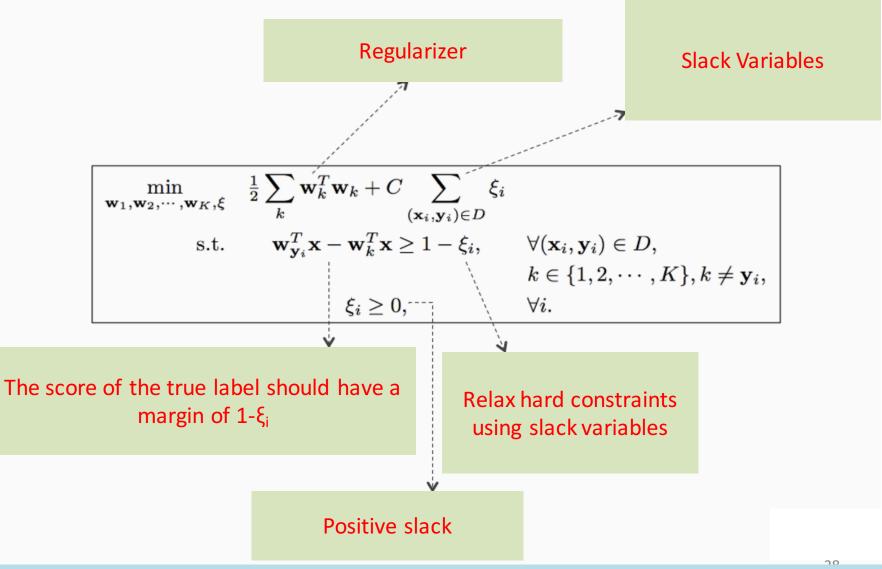
 $\min_{\mathbf{w}_1,\mathbf{w}_2,\cdots,\mathbf{w}_K}$

$$rac{1}{2}\sum_k \mathbf{w}_k^T \mathbf{w}_k$$

s.t.
$$\mathbf{w}_{\mathbf{y}_i}^T \mathbf{x} - \mathbf{w}_k^T \mathbf{x} \ge 1$$

The score of the true label has to be higher than 1, *for any label* $\forall (\mathbf{x}_i, \mathbf{y}_i) \in D,$ $k \in \{1, 2, \cdots, K\}, k \neq \mathbf{y}_i,$

Soft Multiclass SVM



K. Crammer, Y. Singer: "On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines", JMLR, 2001

Alternative Notation

- For examples with label *i* we want: $W_i^T X > W_j^T X$
- Alternative notation: Stack all weight vectors

$$\mathbf{w} = \begin{bmatrix} \mathbf{w}_1 \\ \mathbf{w}_2 \\ \vdots \\ \mathbf{w}_K \end{bmatrix}_{nK \times 1} \qquad \phi(\mathbf{x}, i) = \begin{bmatrix} \mathbf{0}_n \\ \vdots \\ \mathbf{x} \\ \vdots \\ \mathbf{0}_n \end{bmatrix}_{nK \times 1} \qquad \mathbf{x} \text{ in the ith block, zeros everywhere else}$$

• Define features jointly over the input and output

 $\mathbf{w}^T \phi(\mathbf{x}, i) > \mathbf{w}^T \phi(\mathbf{x}, j)$ is equivalent to $\mathbf{w}_i^T \mathbf{x} > \mathbf{w}_j^T \mathbf{x}$

Multiclass classification so far

• Learning:

Solve:
$$\min_{w,\xi} \frac{1}{2} \|w\|^2 + \frac{C}{N} \sum_{n=1}^N \xi^n$$

subject to, for $i = 1, \ldots, n$,

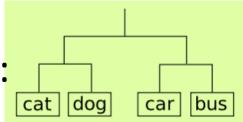
$$\langle w, \phi(x^n, y^n) \rangle - \langle w, \phi(x^n, y) \rangle \ge 1 - \xi^n \text{ for all } y \in \mathcal{Y} \setminus \{y^n\}.$$

Prediction

$$f(x) = \operatorname{argmax}_{y \in \mathcal{Y}} \langle w, \phi(x, y) \rangle$$

• Sometime we are willing to "tolerate" some mistakes more than others

• We can think about it as a hierarchy:



• Define a distance metric:

 $-\Delta(y,y')$ = tree distance between y and y'

We would like to incorporate that into our learning

Solve:
$$\min_{w,\xi} \frac{1}{2} \|w\|^2 + \frac{C}{N} \sum_{n=1}^N \xi^n$$

subject to, for $i=1,\ldots,n$,

 $\langle w, \phi(x^n, y^n) \rangle - \langle w, \phi(x^n, y) \rangle \ge 1 - \xi^n \quad \text{for all } y \in \mathcal{Y} \setminus \{y^n\}.$

dog

car

bus

- We can think about it as a hierarchy:
- Define a distance metric:
 Δ(y,y') = tree distance between y and y'

We would like to incorporate that into our learning model $n = \frac{1}{2}$

$$\begin{array}{ll} \text{Solve:} & \min_{w,\xi} \frac{1}{2} \|w\|^2 + \frac{C}{N} \sum_{n=1}^N \xi^n \\ \\ \text{subject to, for } i = 1, \dots, n, \\ & \langle w, \phi(x^n, y^n) \rangle - \langle w, \phi(x^n, y) \rangle \geq 1 - \xi^n \quad \text{for all } y \in \mathcal{Y} \setminus \{y^n\}. \end{array}$$

Solve:
$$\min_{w,\xi} rac{1}{2} \|w\|^2 + rac{C}{N} \sum_{n=1}^N \xi^n$$

subject to, for $i=1,\ldots,n$,

Solve:

 $\langle w, \phi(x^n, y^n) \rangle - \langle w, \phi(x^n, y) \rangle \geq \Delta(y^n, y) - \xi^n \quad \text{for all } y \in \mathcal{Y} \setminus \{y^n\}.$

Instead we can have an unconstrained version -

Question: What is sub-gradient of this loss function?

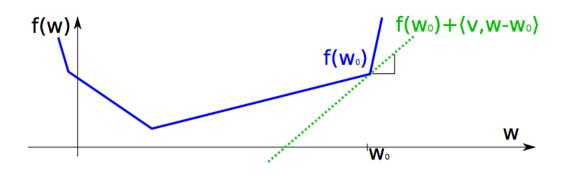
$$l(\mathbf{w};(\mathbf{x}^n, y^n)) = \max_{y' \in Y} \Delta(y, y') - \langle \mathbf{w}, \phi(\mathbf{x}^n, y^n) \rangle + \langle \mathbf{w}, \phi(\mathbf{x}^n, y') \rangle$$

 $\min_{\boldsymbol{w},\boldsymbol{\xi}} \frac{1}{2} \|\boldsymbol{w}\|^2 + \frac{C}{N} \sum_{i=1}^{N} l(\mathbf{w}; (\mathbf{x}^n, y^n))$

Reminder: Subgradient descent

Let $f : \mathbb{R}^D \to \mathbb{R}$ be a convex, not necessarily differentiable, function. A vector $v \in \mathbb{R}^D$ is called a **subgradient** of f at w_0 , if

$$f(w) \ge f(w_0) + \langle v, w - w_0 \rangle$$
 for all w .

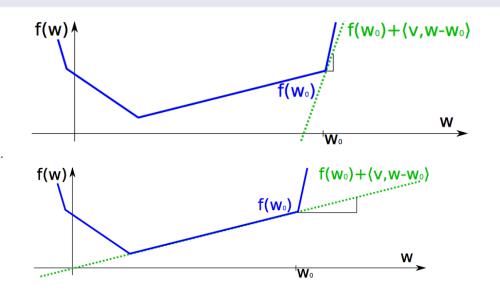


Slides by Sebastian Nowozin and Christoph H. Lampert "structured models in computer vision" tutorial CVPR 2011

Reminder: Subgradient descent

Let $f : \mathbb{R}^D \to \mathbb{R}$ be a convex, not necessarily differentiable, function. A vector $v \in \mathbb{R}^D$ is called a **subgradient** of f at w_0 , if

$$f(w) \ge f(w_0) + \langle v, w - w_0 \rangle$$
 for all w .

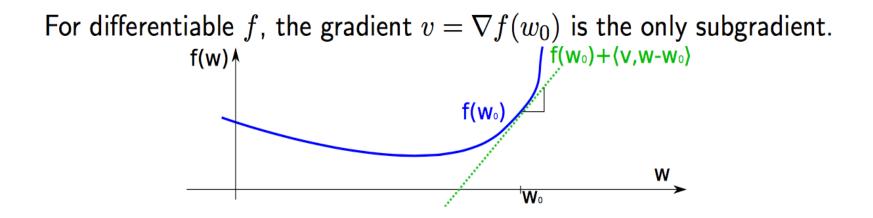


Slides by Sebastian Nowozin and Christoph H. Lampert "structured models in computer vision" tutorial CVPR 2011

Reminder: Subgradient descent

Let $f : \mathbb{R}^D \to \mathbb{R}$ be a convex, not necessarily differentiable, function. A vector $v \in \mathbb{R}^D$ is called a **subgradient** of f at w_0 , if

$$f(w) \ge f(w_0) + \langle v, w - w_0 \rangle$$
 for all w .



Slides by Sebastian Nowozin and Christoph H. Lampert "structured models in computer vision" tutorial CVPR 2011

Reminder: Subgradient descent

Subgradient Descent Minimization – minimize F(w)

- require: tolerance $\epsilon > 0$, stepsizes η_t
- $w_{cur} \leftarrow 0$
- repeat
 - $v \in \nabla^{\mathsf{sub}}_{w} F(w_{\mathit{cur}})$
 - $w_{cur} \leftarrow w_{cur} \eta_t v$
- until F changed less than ϵ
- ▶ return w_{cur}

Converges to global minimum, but rather inefficient if F non-differentiable.

Slides by Sebastian Nowozin and Christoph H. Lampert "structured models in computer vision" tutorial CVPR 2011

Computing a subgradient:

$$\min_{w} \frac{1}{2} \|w\|^2 + \frac{C}{N} \sum_{n=1}^{N} \ell^n(w)$$

with $\ell^n(w) = \max_y \ell^n_y(w)$, and

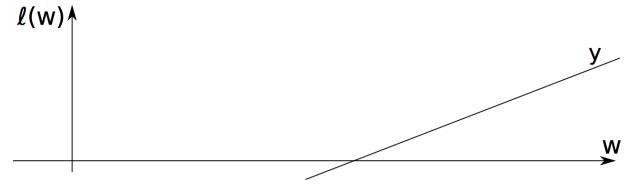
$$\ell_y^n(w) := \Delta(y^n, y) + \langle w, \phi(x^n, y) \rangle - \langle w, \phi(x^n, y^n) \rangle$$

Computing a subgradient:

$$\min_{w} \frac{1}{2} \|w\|^2 + \frac{C}{N} \sum_{n=1}^{N} \ell^n(w)$$

with $\ell^n(w) = \max_y \ell^n_y(w)$, and

$$\ell_y^n(w) := \Delta(y^n, y) + \langle w, \phi(x^n, y) \rangle - \langle w, \phi(x^n, y^n) \rangle$$



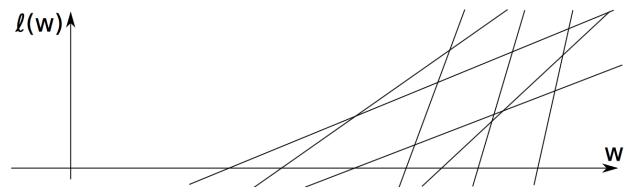
For each $y \in \mathcal{Y}$, $\ell_y(w)$ is a linear function.

Computing a subgradient:

$$\min_{w} \frac{1}{2} \|w\|^2 + \frac{C}{N} \sum_{n=1}^{N} \ell^n(w)$$

with $\ell^n(w) = \max_y \ell^n_y(w)$, and

$$\ell_y^n(w) := \Delta(y^n, y) + \langle w, \phi(x^n, y) \rangle - \langle w, \phi(x^n, y^n) \rangle$$



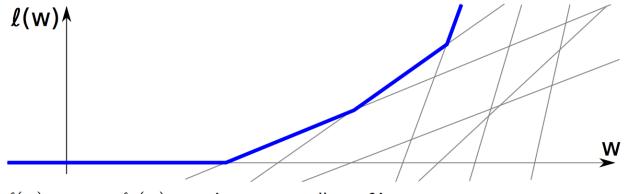
For each $y \in \mathcal{Y}$, $\ell_y(w)$ is a linear function.

Computing a subgradient:

$$\min_{w} \frac{1}{2} \|w\|^2 + \frac{C}{N} \sum_{n=1}^{N} \ell^n(w)$$

with $\ell^n(w) = \max_y \ell_y^n(w)$, and

$$\ell_y^n(w) := \Delta(y^n, y) + \langle w, \phi(x^n, y) \rangle - \langle w, \phi(x^n, y^n) \rangle$$



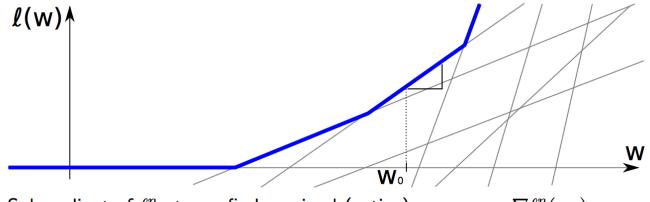
 $\ell(w) = \max_y \ell_y(w)$: maximum over all $y \in \mathcal{Y}$.

Computing a subgradient:

$$\min_{w} \frac{1}{2} \|w\|^2 + \frac{C}{N} \sum_{n=1}^{N} \ell^n(w)$$

with $\ell^n(w) = \max_y \ell_y^n(w)$, and

$$\ell_y^n(w) := \Delta(y^n, y) + \langle w, \phi(x^n, y) \rangle - \langle w, \phi(x^n, y^n) \rangle$$



Subgradient of ℓ^n at w_0 : find maximal (active) y, use $v = \nabla \ell_y^n(w_0)$.

Subgradient descent for the MC case

Subgradient Descent S-SVM Training

input training pairs $\{(x^1, y^1), \ldots, (x^n, y^n)\} \subset \mathcal{X} \times \mathcal{Y}$, input feature map $\phi(x, y)$, loss function $\Delta(y, y')$, regularizer C, input number of iterations T, stepsizes η_t for $t = 1, \ldots, T$

1:
$$w \leftarrow \vec{0}$$

2: for t=1,...,T do
3: for i=1,...,n do
4: $\hat{y} \leftarrow \operatorname{argmax}_{y \in \mathcal{Y}} \Delta(y^n, y) + \langle w, \phi(x^n, y) \rangle - \langle w, \phi(x^n, y^n) \rangle$
5: $v^n \leftarrow \phi(x^n, \hat{y}) - \phi(x^n, y^n)$
6: end for
7: $w \leftarrow w - \eta_t (w - \frac{C}{N} \sum_n v^n)$
8: end for

output prediction function $f(x) = \operatorname{argmax}_{y \in \mathcal{Y}} \langle w, \phi(x, y) \rangle$.

Observation: each update of w needs 1 argmax-prediction per example.

Subgradient descent for the MC case

Stochastic Subgradient Descent S-SVM Training

input training pairs $\{(x^1, y^1), \ldots, (x^n, y^n)\} \subset \mathcal{X} \times \mathcal{Y}$, input feature map $\phi(x, y)$, loss function $\Delta(y, y')$, regularizer C, input number of iterations T, stepsizes η_t for $t = 1, \ldots, T$

1:
$$w \leftarrow \vec{0}$$

2: **for**
$$t=1,...,T$$
 do

- 3: $(x^n, y^n) \leftarrow$ randomly chosen training example pair
- 4: $\hat{y} \leftarrow \operatorname{argmax}_{y \in \mathcal{Y}} \Delta(y^n, y) + \langle w, \phi(x^n, y) \rangle \langle w, \phi(x^n, y^n) \rangle$

5:
$$w \leftarrow w - \eta_t (w - \frac{C}{N} [\phi(x^n, \hat{y}) - \phi(x^n, y^n)])$$

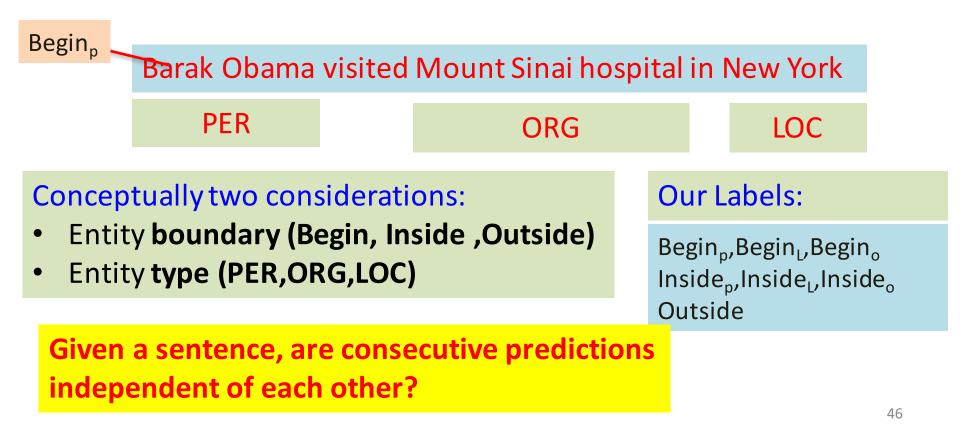
6: end for

output prediction function $f(x) = \operatorname{argmax}_{y \in \mathcal{Y}} \langle w, \phi(x, y) \rangle$.

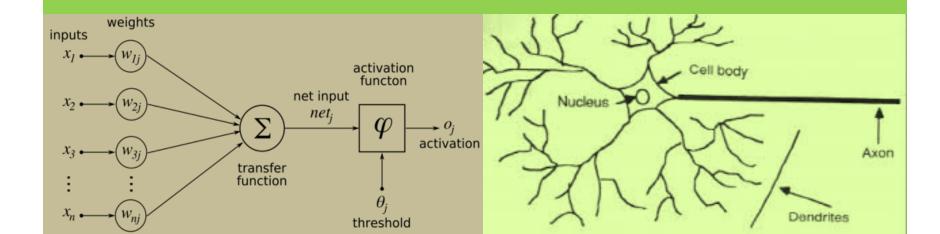
Question: What is the difference between this algorithm and the perceptron variant for multiclass classification?

Can you define NER as a multiclass classification problem?

- Named entity recognition (NER)
 - Identify mentions of named entity in text
 - People (PER), places (LOC) and organizations (ORG)



Introduction to Deep Learning



Deep Learning in NLP

- So far we used **linear models**
 - They work fine, but we made some assumptions
- The problems are linear, or we are willing to work in order to make them linear
- Feature engineering is a form of expressing domain knowledge
- We are fine working with very very high dimensional data
 - It's easy to get there.
 - Everything is mostly linear at that point.
- What could go wrong?

Deep Learning Architectures for NLP

- The key question we follow how can you build complex (compositional?) meaning representation, for larger units than words, to support advanced classification tasks?
- We will look at several popular architectures.
 - We will build on a *"recently introduced model from the 70's"*
 - Maybe even before that..
 - NN made a come-back in the last 5 years.

Neural Networks

- Robust approach for approximating functions
 - Functions can be real-valued, discrete or vector valued
- One of the most effective general purpose learning methods
 - A lot of attention in the 90's, making a comeback!
- Especially useful for complex problems, where the input data is hard to interpret
 - Sensory data (speech, vision, etc)
- Many successful application domains
- Interesting spin: Learning input representation
 - So far we thought about the feature representation as being fixed

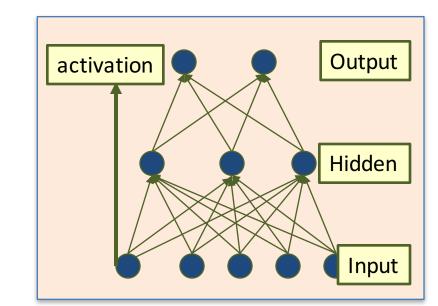
Neural Network

- Simply put, NN's are functions f: X→Y
 - f is a **non-linear** function
 - X is a **vector** of continuous or discrete variables
 - Y is a **vector** of continuous or discrete variables
- Very expressive classifier
 - In fact, NN can be used to represent any function
- The function f is represented using a network of logistic units

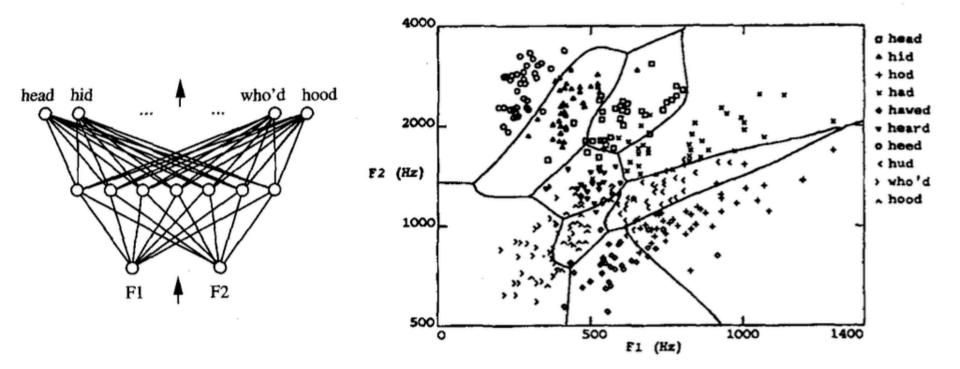
Multi Layer Neural Networks

- Multi-layer network were designed to overcome the computational (expressivity) limitation of a single threshold element.
- The idea is to stack several layers of threshold elements, each layer using the output of the previous layer as input

Multi-layer networks **can represent arbitrary functions**, but building effective learning methods for such network was [thought to be] difficult.



Example: NN for speech vowel recognition



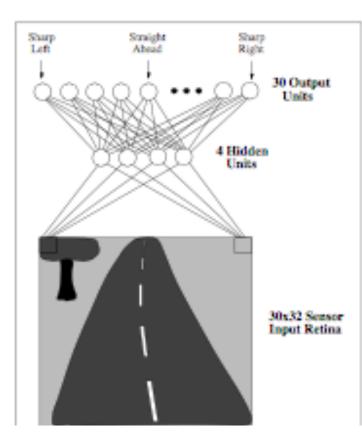
ALVINN: autonomous land vehicle in a NN

Pomerleau '89

ALVINN: autonomous land vehicle in a

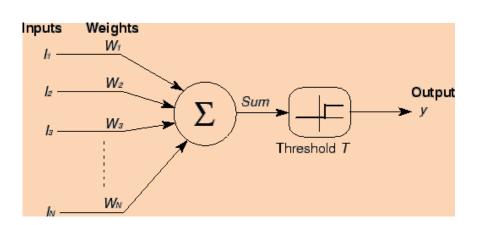
ΝN

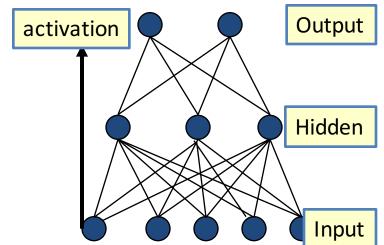
on to Machine Learni



			٠			×	D		D	o			×	×	×	×	×			D			D	×	ж	×	×	×			X
		٠	٠	a	٠	٠						×	٠	٠	٠		٠							×	٠						
		٠	٠										٠	٠	н									٠	×	٠					
		٠	٠	н	٠	٠							٠		٠						×			٠	×	٠	٠				
		٠	٠	٠	٠								٠				×					×		٠	٠					×	
		٠	٠	٠	×											٠					×								×		
		٠	٠												٠		٠							×							
		٠	٠	٠												٠	٠	٠	٠												
		٠	٠	×											н	٠	٠	٠	٠	٠											
		٠	٠	×												٠	٠	٠	٠	٠	٠				×						
		٠	٠	×												٠	٠	٠	٠						٠				٠		
		٠	×													٠		٠		٠				٠	×						
		٠															٠		×	٠	٠	×	×								
•		٠															٠	٠	٠	٠	٠	×		٠	٠		×				
	٠	٠																٠	×	٠	٠	٠			٠						
		٠																		٠	٠	٠	٠	٠	٠						
							×													٠	٠	٠	٠	٠	٠		8				
	н.					×	×	×			×							×	٠	٠	٠	٠	٠	٠	٠		٠				
	2							٠											٠	٠	٠	٠	٠	٠	٠		٠				
																				٠	٠	٠	٠	٠	٠						
3							×	٠	٠		×										٠	٠		٠							
	2	o						٠	٠	٠	×					o				٠	٠	٠		z	×		٠				
a				×	٠	٠	٠	٠	٠	*											٠	٠		٠	٠						
CX.	2			×	٠	٠	٠	٠	٠			×									٠	٠	٠	٠	٠		٠				
							٠	٠		×											٠	٠		٠	٠						
		٠	۰	٠	٠	٠	a		٠	٠	٠	٠										٠	٠	a	a		٠				
		٠		٠		٠	٠		٠	*	*										٠	٠		2	٠		٠				
		+				٠	٠		٠	٠	*	-			C									٠		-					
						٠					×											٠		٠	٠	٠			-		
														O	C	C	0	C	C												

- Basic element: linear unit
 - But, we would like to represent nonlinear functions
 - Multiple layers of linear functions are still linear functions
 - Threshold units are not smooth (we would like to use gradient-based algorithms)

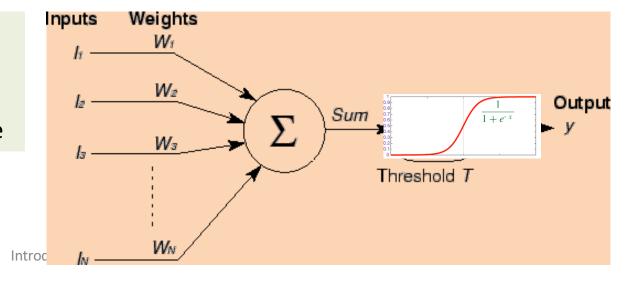




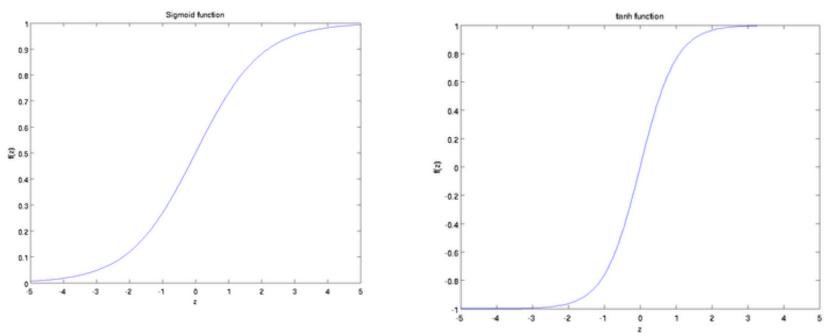
- Basic element: **sigmoid unit**
 - Input to a unit *j* is defined as: $\Sigma w_{ij} x_i$
 - Output is defined as : $\sigma (\Sigma w_{ij} x_i)$
 - σ is simply the logistic function:

 $\frac{1}{1+e^{-x}}$

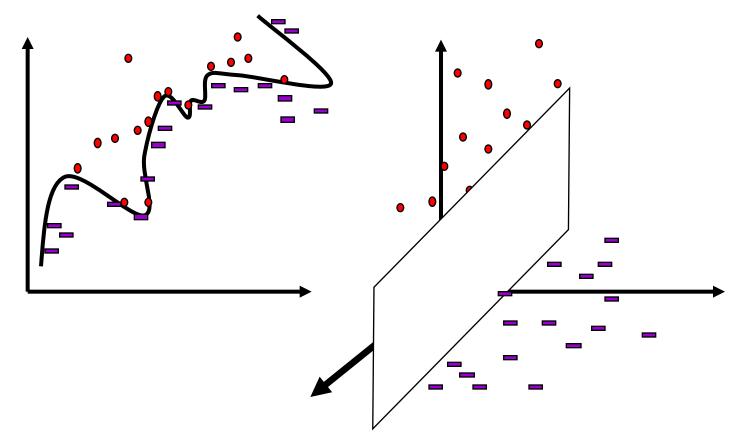
Note: similar to previous algorithms, We encode the bias/threshold, as a "fake" Feature that is always active



- Basic element: **sigmoid unit**
 - You can also replace the logistic function with other smooth activation functions



- **Key issue**: limited expressivity!
 - Minsky and Papert (1969) published an influential books showing what cannot be learned using perceptron
- These observation discouraged research on NN for several years
- But.. we really like linear functions!
- How did we deal with these issues so far?



In fact , Rosenblatt (1959) asked: "What pattern recognition problems can be transformed so as to become linearly separable"

Multi Layer NN

- Another approach for increasing expressivity: *Stacking multiple sigmoid units to form a network*
- Compute the output of the network using a 'feedforward' computation
- Learn the parameters of the network using the backpropagation algorithm
- Any Boolean function can be represented using a two layer network
- Any bounded continuous function can be approximated using a two layer network