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Social	NLP

• Last	week	we	discussed	the	speed-dates	paper.
• Interesting	perspective	on	NLP	problems-
– Can	we	use	NLP	methods	in	social	science	research?
– Key	idea:	
• Find	a	problem	in	the	real	world	that	you	can	about.
• DEFINE	THE	PROBLEM	FORMALLY	
• Identify	relevant	NLP	tools	that	can	measure	what	you	
are	interested	in.
• Evaluate	whether	they	actually	do.
• Use	NLP	tools	to	process	 large	amounts	of	data	and	say	
something	meaningful	about	the	world	that	you	
couldn't	before.



Some	(free!)	pointers	for	further	
reading

• Linguistic	Structure	Prediction.	Noah	Smith.
• http://www.morganclaypool.com/doi/abs/10.2200/S003

61ED1V01Y201105HLT013

• Structured	Learning	and	Prediction	in	Computer	Vision.	
Nowozin and	Lampert
http://www.nowozin.net/sebastian/papers/nowozin201

1structured-tutorial.pdf

• Speech	and	Language	Processing.	Jurafsky and	Martin
https://web.stanford.edu/~jurafsky/slp3/



Classification	

• A	fundamental	machine	 learning	tool
–Widely	applicable	in	NLP

• Supervised	learning:	Learner	is	given	a	
collection	of	labeled	documents
– Emails:	Spam/not	spam;	Reviews:	Pos/Neg

• Build	a	function mapping	documents	to	labels
– Key	property:	Generalization
• function	should	work	well	on	new	data



Learning	as	Optimization	

• Discriminative	Linear	classifiers
– So	far	we	looked	perceptron
– Combines	model	(linear	representation)	with	
algorithm	(update	rule)

– Let’s	try	to	abstract – we	want	to	find	a	linear	function	
performing	best	on	the	data
• What	are	good	properties	of	this	classifier?
• Want	to	explicitly	control	for	error	+	“simplicity”

– How	can	we	discuss	these	terms	separately	from	a	
specific	algorithm?
• Search	space	of	all	possible	linear	functions
• Find	a	specific	function	that	has	certain	properties..	



Classification
• So	far:	
– General	optimization	framework	for	learning
– Minimize	regularized	loss	function

– Gradient	descent	is	an	all	purpose	tool
• Computed	the	gradient	of	the	square	 loss	function

•
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Surrogate	Loss	functions

• Surrogate	loss	function:	smooth	
approximation	to	the	0-1	loss
– Upper	bound	to	0-1	loss
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Convex	Error	Surfaces	

• Convex	functions	have	a	single	minimum point
– Local	minimum	=	global	minimum
– Easier	to	optimize	
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Gradient	Descent	Intuition	

9

w2w3 w4

What is the gradient of Error(w) at this point?

w1

(1) The derivative of the function at 
w1 is the slope of the tangent line
à Positive slope (increasing)
Which direction should we move to 
decrease the value of Err(w) ?

(2) The gradient determines 
the direction of steepest 
increase of Err(w)  (go in the 
opposite direction)

(3) We also need to determine the step 
size (aka learning rate). 
What happens if we overshoot? 



Maximal	Margin	Classification
Motivation	for	the	notion	of	maximal	margin

Defined	w.r.t.	a	dataset	S	:



Some	Definitions

• Margin:	distance	of	the	closest	point	from	a	
hyperplane

• Our	new	objective	function
– Learning	is	essentially	solving:	

γ = min
xi,yi

yi(wTxi + b)

||w||

This is known as the geometric
margin, the numerator is known
as the functional margin

max
w

γ



Maximal	Margin

• We	want	to	find	

• Observation:	we	don’t	care	about	the	magnitude	of	w!
• Set	the	functional	margin	to	1,	and	minimize	W
• maxw is	equivalent	to minw ||w||in	this	setting
• To	make	life	easy:	

let’s	minimize		minw ||w||2
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max
w

γ

x1	+	x2		=	0
10x1	+	10x2		=	0
100x1	+	100x2		=0

max
w

γ



Hard	vs.	Soft	SVM
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Minimize:		½	||w||2

Subject to:∀ (x,y) ∈ S:					y wT x ≥ 1

Minimize:		½	||w||2 + c Σιξi
Subject to:	∀ (x,y) ∈ S:					yi wT xi ≥ 1-ξi ;	ξi >0,	i=1…m	



Objective	Function	for	Soft	SVM

• The	relaxation	of	the	constraint:	yi wi
Txi ≥ 1   can	be	

done	by	introducing	a	slack	variable	ξ (per	
example)	and	requiring:		 yi wi

Txi ≥ 1 - ξ i;   (ξ i ≥ )
• Now,	we	want	to	solve:	

Min ½ ||w||2 + c Σ ξi (subject to ξ i ≥ 0)
• Which	can	be	written	as:

Min  ½ ||w||2 + c Σ max(0, 1 – yi wT xi). 
• What	is	the	interpretation	of	this?
• This is the Hinge loss function
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Generalization into Multiclass 
problems



Multiclass	classification	Tasks
• So	far,	our	discussion	was	limited	to	binary	predictions
– Well,	almost (?)

• What	happens	if	our	decision	is	not	over	binary	labels?
– Many	interesting	classification	problems	are	not!
– POS:		Noun,verb,	determiner,..
– Document	classification:	sports,	finance,	politics
– Sentiment:		Positive,	negative,	objective

• Can	the	problem	be	reduced	into	a
binary	classification	problem?
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How	can	we	approach	these	problems?
Hint:	What is the 
computer science 
solution to:  “I can solve 
problem A, but now I 
have problem B, so…”



Multiclass	classification	

• We	will	look	into	two	approaches:
– Combining	multiple	binary	classifiers	
• One-vs-All
• All-vs-All

– Training	a	single	classifier
• Extending	SVM	to	the	multiclass	case



One-Vs-All
Assumption: Each class can be separated from the rest 

using a binary classifier
• Learning:	Decomposed	to	learning	k	independent	binary	
classifiers,	one	corresponding	to	each	class
– An	example	(x,y)	is	considered	positive	for	class	y	and	negative	
to	all	others.

– Assume	m	examples,	k	class	labels	(assume	m/k	in	each)
– Classifier	fi:	m/k	(positive)	and	(k-1)m/k	(negative)

• Decision:	Winner	Takes	All:	
– f(x) = argmaxi fi (x)  =  argmaxi (vix)

18

Q:	Why do we need 
the assumption above?



• sd

Example:	One-vs-All



Solving	Multi-Class	with	binary	
learning

• Multi-Class	classifier
– Function f : x à {1,2,3,...,k}

• Decompose	into	binary	problems

Not	always	possible	to	learn		
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Learning	via	One-Versus-All
• Find	vr,vb,vg,vy∈ Rn such	that

– vr x	>	0	 iff y	=	red			 L
– vb x	>	0	 iff y	=	blue J
– vg	x	>	0	 iff y	=	green J
– vy x	>	0	 iff y	=	yellow J

• Classification:	f(x) = argmaxi (vi x)

H = Rkn

Real	Problem



All-vs-All
Assumption: There is a separation between every pair of classes 

using a binary classifier in the hypothesis space.

• Learning: Decomposed	to	learning	[k	choose	2]	~	k2 independent	
binary	classifiers,	separating	between	every	two	classes
– Assume	m	examples,	k	class	labels.	For	simplicity,	say,	m/k	in	each.
– Classifier fij: m/k (positive)	and	m/k	(negative)

• Decision:	Winner	Decision	procedure	is	more	involved	since	output	
of	binary	classifier	may	not	cohere	(transitivity	no	ensured)	:	
– Majority:	classify	example	x	to	label	i if	i wins	on	it	more	often	that	j	(j=1,…k)	
– Tournament:	start	with	n/2	pairs;	continue	with	winners	



All-vs-All

• s



Multiclass	by	reduction	to	Binary

• Decompose	the	multiclass	learning	problem	into	
multiple	binary	learning	problems	

• Prediction:	combine	binary	classifiers
• Learning:	optimize	local	correctness
– No	global	view
– Separation	between	learning	and	prediction	procedures

• We	can	train	the	classifier		to	meet	the	REAL	objective
– Real	objective:	final	performance,	not	local	metric



Multiclass	SVM

• Single	classifier	optimizing	a	global	objective
– Extend	the	SVM	framework	to	the	multiclass	settings

• Binary	SVM:
– Minimize	||W||	such	that	the	closest	points	to	the	
hyperplane have	a	score	of	+/- 1

• Multiclass	SVM
– Each	label	has	a	differentweight	vector
– Maximize	multiclass	margin



Margin	in	the	Multiclass	case

Revise	the	definition	for	the	multiclass	case:
• The	difference	between	the	score	of	the	
correct	label	and	the	scores	of	competing	
labels
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Colors	indicate	different	labels

margin

SVM	Objective:	Minimize	total	norm	of	weights	s.t. the	
true	label	is	scored	at	least	1	more	than	the	second	best.



Hard	Multiclass	SVM

Regularization	

The	score	of	the	
true	label	has	to	be	
higher	than	1,
for	any	label



Soft	Multiclass	SVM

• asd
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Regularizer Slack	Variables

Relax	hard	constraints	
using	slack	variables

The	score	of	 the	true	label	should	have	a	
margin	of	1-ξi

Positive	slack

K.	Crammer,	Y.	Singer:	”On	 the	Algorithmic	Implementation	of	Multiclass	 Kernel-based	Vector	Machines”,	JMLR,	2001



Alternative	Notation
• For	examples	with	label	iwe	want:	wi

Tx > wj
Tx

• Alternative	notation:		Stack	all	weight	vectors

• Define	features	jointly	over	the	input	and	output

is	equivalent	 to			wi
Tx > wj

Tx



Multiclass	classification	so	far

• Learning:

• Prediction
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Cost	Sensitive	Multiclass	Classification

• Sometime	we	are	willing	to	“tolerate”	some	
mistakes	more	than	others
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Cost	Sensitive	Multiclass	Classification

• We	can	think	about	it	as	a	hierarchy:

• Define	a	distance	metric:
– Δ(y,y’) =	tree	distance	between	y	and	y’

We	would	like	to	incorporate	that	into	our	learning	
model	

Introduction	 to	Machine	Learning.	Fall	2015 32



Cost	Sensitive	Multiclass	Classification
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Cost	Sensitive	Multiclass	Classification

Introduction	 to	Machine	Learning.	Fall	2015 34

Instead	we	can	have	an	unconstrained	version	-

l(w;(xn, yn))

l(w;(xn, yn)) = max
y′∈Y

∆(y, y′)− ⟨w,φ(xn, yn)⟩+ ⟨w,φ(xn, y′)⟩



Reminder:	Subgradient descent	

• asdas
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Slides	by	Sebastian	Nowozin and	Christoph H.	Lampert “structured	models	in	computer	vision”	tutorial	CVPR	2011



Reminder:	Subgradient descent	
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Reminder:	Subgradient descent	
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Reminder:	Subgradient descent	
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Subgradient for	the	MC	case
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Subgradient for	the	MC	case
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Subgradient for	the	MC	case
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Subgradient for	the	MC	case
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Subgradient for	the	MC	case
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Subgradient descent	for	the	MC	case
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Subgradient descent	for	the	MC	case

• asd

Introduction	 to	Machine	Learning.	Fall	2015 45

Question:	What	is	the	difference	between	this	algorithm	and	the	
perceptron	variant	for	multiclass	classification?



Can	you	define	NER	as	a	multiclass	
classification	problem?

• Named	entity	recognition	(NER)
– Identify	mentions	of	named	entity	in	text
– People	(PER),	places	(LOC)	and	organizations	(ORG)

Barak	Obama	visited	Mount	Sinai	hospital	in	New	York

PER ORG LOC

Conceptually	two	considerations:
• Entity	boundary	(Begin,	Inside	,Outside)
• Entity	type	(PER,ORG,LOC)

Our	Labels:
Beginp,BeginL,Begino
Insidep,InsideL,Insideo
Outside

Beginp

46

Given	a	sentence,	are	consecutive	predictions	
independent	of	each	other?



Introduction	to	Deep	
Learning



Deep	Learning	in	NLP
• So	far	we	used	linear	models

– They	work	fine,	but	we	made	some	assumptions
• The	problems	are	linear,	or	we	are	willing	to	work	in	

order	to	make	them	linear
• Feature	engineering	is	a	form	of	expressing	domain	

knowledge
• We	are	fine	working	with	very	very	high	dimensional	

data
– It’s	easy	to	get	there.	
– Everything	is	mostly	linear	at	that	point.

• What	could	go	wrong?



Deep	Learning	Architectures	for	NLP

• The	key	question	we	follow	– how	can	you	build	
complex	(compositional?)		meaning	
representation,	for	larger	units	than	words,	to	
support	advanced	classification	tasks?

• We	will	look	at	several	popular	architectures.	
– We	will	build	on	a	“recently	introduced	model	from	
the	70’s”	
• Maybe	even	before	that..
• NN	made	a	come-back	in	the	last	5	years.



Neural	Networks	
• Robust	approach	for	approximating	functions
– Functions	can	be	real-valued,	discrete	or	vector	valued

• One	of	the	most	effective	general	purpose	learning	
methods
– A	lot	of	attention	in	the	90’s,	making	a	comeback!

• Especially	useful	for	complex	problems,	where	the	input	
data	is	hard	to	interpret
– Sensory	data	(speech,	vision,	etc)

• Many	successful	application	domains
• Interesting	spin:	Learning	input	representation
– So	far	we	thought	about	the	feature	representation	 as	being	
fixed
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Neural	Network

• Simply	put,	NN’s	are	functions	f: XàY
– f	is	a	non-linear	function
– X	is	a	vector of	continuous	or	discrete	variables
– Y	is	a	vector of	continuous	or	discrete	variables

• Very	expressive	classifier
– In	fact,	NN	can	be	used	to	represent	any	function

• The	function	f	is	represented	using	a	network	
of	logistic	units

Introduction	 to	Machine	Learning.	Fall	2015 51



Multi	Layer	Neural	Networks

• Multi-layer	network	were	designed	to	overcome	the	
computational	(expressivity)	limitation		of	a	single	
threshold	element.	

• The	idea	is	to	stack	several	
layers	of	threshold	elements,	
each	layer	using	the	output	of	
the	previous	layer	as	input

52

activation

Input

Hidden

Output

Multi-layer	networks	can	represent	
arbitrary	functions,	but	building	
effective	learning	methods	for	such	
network	was	[thought	to	be]	difficult.	



Example:	NN	for	speech	vowel	
recognition
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Pomerleau ‘89

ALVINN:	autonomous	land	vehicle	in	a	
NN



ALVINN:	autonomous	land	vehicle	in	a	
NN
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Basic	Units	in	Multi-Layer	NN

• Basic	element:	linear	unit
– But,	we	would	like	to	represent	nonlinear	functions

• Multiple	layers	of	linear	functions	are	still	linear	functions

– Threshold	units	are	not	smooth	(we	would	like	to	use	
gradient-based	algorithms)
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activation

Input

Hidden

Output



Basic	Units	in	Multi-Layer	NN

• Basic	element:	sigmoid	unit
– Input	to	a	unit	j is	defined	as:	Σwijxi
– Output	is	defined	as	:	σ (Σwijxi)
• σ is	simply	the	logistic	function:	
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Note:	similar	to	previous	
algorithms,	We	encode	the	
bias/threshold,	as	a	“fake”	
Feature	that	is	always	active



Basic	Units	in	Multi-Layer	NN

• Basic	element:	sigmoid	unit
– You	can	also	replace	the	logistic	function	with	
other	smooth	activation	functions
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Basic	Units	in	Multi-Layer	NN

• Key	issue:	limited	expressivity!
– Minsky and	Papert (1969)	published	an	influential	
books	showing	what	cannot	be	learned	using	
perceptron

• These	observation	discouraged	research	on	
NN	for	several	years

• But..	we	really	like	linear	functions!
• How	did	we	deal	with	these	issues	so	far?
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Basic	Units	in	Multi-Layer	NN
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In	fact	,	Rosenblatt	(1959)	asked:	“What pattern recognition problems 
can be transformed  so as to become linearly separable”



Multi	Layer	NN
• Another	approach	for	increasing	expressivity:	

Stacking	multiple	sigmoid	units	to	form	a	network
• Compute	the	output	of	the	network	using	a	‘feed-
forward’	computation

• Learn	the	parameters	of	the	network	using	the	
backpropagation algorithm	

• Any	Boolean	function	can	be	represented	using	a	
two	layer	network

• Any	bounded	continuous	function	can	be	
approximated	using	a	two	layer	network
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