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NLP	can	help	you	social	life!

Alternative		title	–

how can classification technology give dating advice?



Classification	

• A	fundamental	machine	 learning	tool
–Widely	applicable	in	NLP

• Supervised	learning:	Learner	is	given	a	
collection	of	labeled	documents

– Emails:	Spam/not	spam;	Reviews:	Pos/Neg

• Build	a	function mapping	documents	to	labels

– Key	property:	Generalization
• function	should	work	well	on	new	data



Generative	vs.	Discriminative

• Language	models	and	NB	are	examples	of	generative	
models

• Generative	models	capture	the	joint	probability	of	the	input	
and	outputs	P(x,y) 
– Most	of	the	early	work	in	statistical	NLP	is	generative:	Language	

models,	NB,	HMM,	Bayesian	Networks,	PCFG,	etc.

• We	think	about	generative	models	as	the	hidden	variables	
generating	the	observed	data

• Super-easy	training	=	counting! h
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Naïve	Bayes



Generative	vs.	Discriminative

• On	the	other	hand..	

• We	don’t	care	about	the	joint	probability,	we	can	about	

the	conditional	probability	– P(y|x)
• Conditional	or	discriminative models	characterize	the	

decision	boundary	directly	(=conditional	probability).	

– Work	really	well	in	practice,	easy	to	incorporate	arbitrary	

features,..

– SVM,	perceptron,	Logistic	Regression,	CRF,	…

• Training	is	harder	(we’ll	see..)
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Logistic	regression





Learning	as	Optimization	

• Discriminative	Linear	classifiers
– So	far	we	looked	perceptron
– Combines	model	(linear	representation)	with	

algorithm	(update	rule)

– Let’s	try	to	abstract – we	want	to	find	a	linear	function	
performing	best	on	the	data

• What	are	good	properties	of	this	classifier?

• Want	to	explicitly	control	for	error	+	“simplicity”

– How	can	we	discuss	these	terms	separately	from	a	
specific	algorithm?
• Search	space	of	all	possible	linear	functions
• Find	a	specific	function	that	has	certain	properties..	



Classification

• So	far:	
– General	optimization	framework	for	learning

– Minimize	regularized	loss	function

– Gradient	descent	is	an	all	purpose	tool

• Computed	the	gradient	of	the	square	 loss	function

•
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minw =
∑

n

loss(yn,wn) +
λ

2
||w||2



Surrogate	Loss	functions

• Surrogate	loss	function:	smooth	

approximation	to	the	0-1	loss

– Upper	bound	to	0-1	loss
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Convex	Error	Surfaces	

• Convex	functions	have	a	single	minimum point

– Local	minimum	=	global	minimum

– Easier	to	optimize	
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(Empirical)	

Error

Convex error functions have 
no local minima

Global	
Minimum

Hypothesis	

space



Gradient	Descent	Intuition	
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What is the gradient of Error(w) at this point?

w
1

(1) The derivative of the function at 
w1 is the slope of the tangent line

à Positive slope (increasing)
Which direction should we move to 
decrease the value of Err(w) ?

(2) The gradient determines 
the direction of steepest 

increase of Err(w)  (go in the 
opposite direction)

(3) We also need to determine the step 
size (aka learning rate). 

What happens if we overshoot? 



Regularization

• Our	main	goal	– Generalization

• Simply	minimizing	the	loss	over	the	training	data	may	

lead	to	overfitting

• Instead,	we	add	a	regularizer to	the	loss.

• Two	views	-



Maximal	Margin	Classification

Motivation	for	the	notion	of	maximal	margin

Defined	w.r.t.	a	dataset	S	:



Some	Definitions

• Margin:	distance	of	the	closest	point	from	a	

hyperplane

• Our	new	objective	function

– Learning	is	essentially	solving:	

γ = min
xi,yi

yi(wTxi + b)

||w||

This is known as the geometric
margin, the numerator is known

as the functional margin

max
w

γ



Maximal	Margin

• We	want	to	find	

• Observation:	we	don’t	care	about	the	magnitude	of	w!
• Set	the	functional	margin	to	1,	and	minimize	W
• maxw is	equivalent	to minw ||w||in	this	setting

• To	make	life	easy:	
let’s	minimize		minw ||w||2
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max
w

γ

x1	+	x2		=	0
10x1	+	10x2		=	0
100x1	+	100x2		=0

max
w

γ



Hard	SVM	Optimization

• This	leads	to	a	well	defined	constrained	optimization	

problem,	known	as	Hard	SVM:

• This	is	an	optimization	problem	in	(n+1)	variables,	

with	|S|=m	inequality	constraints.			
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Minimize:		½	||w||2

Subject to:� (x,y) � S:					y wT x ≥ 1



Hard	vs.	Soft	SVM
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Minimize:		½	||w||2

Subject to:� (x,y) � S:					y wT x ≥ 1

Minimize:		½	||w||2 + c Σιξi
Subject to:	� (x,y) � S:					yi wT xi ≥ 1-ξ

i
;	ξ

i
>0,	i=1…m	

Linearly	inseparable	datasets	cannot	be	learned!

Instead,	we	solve	a	relaxed	problem,	by	introducing	slack	variables



Objective	Function	for	Soft	SVM

• The	relaxation	of	the	constraint:	yi wi
Txi ≥ 1   can	be	

done	by	introducing	a	slack	variable	ξ (per	

example)	and	requiring:		 yi wi
Txi ≥ 1 - ξ i;   (ξ i ≥ )

• Now,	we	want	to	solve:	

Min ½ ||w||2 + c Σ ξi (subject to ξ i ≥ 0)

• Which	can	be	written	as:

Min  ½ ||w||2 + c Σ max(0, 1 – yi wT xi). 

• What	is	the	interpretation	of	this?
• This is the Hinge loss function
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Sub-Gradient
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0							1

Standard	0/1	loss
Penalizes	all	incorrectly	classified	

examples	with	the	same	amount

Hinge	loss
Penalizes	incorrectly	classified	

examples	and	correctly	classified	

examples	that	lie	within	 the	margin

Non	Convex

Convex,	
but	not	differentiable	at	x=1

Solution: subgradient

0							1

Examples	that	are	correctly	classified	
but	fall	within	the	margin

The	sub-gradient	of	a	function	c	at	x0	is	any	vector	v
such	that:	
At	differentiable points	this	set	only	contains	the	
gradient	at	x0
Intuition:	the	set	of	all	tangent	 lines	(lines	under	c,	
touching	c	at	x0	)

Image	from	CIML



Summary

• Support	Vector	Machine

– Find	max	margin	separator

– Hard	SVM	and	Soft	SVM

– Can	also	be	solved	in	the	dual

• Allows	adding	kernels

• Many	ways	to	optimize!	

– Current:	stochastic	methods	in	the	primal,	dual	coordinate	

descent

• Key	ideas	to	remember:
– Learning:	Regularization	+	empirical	loss	minimization

– Surprise:	Similarities	to	Perceptron	(with	small	changes)	
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Questions?


