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Reading	for	next	time

Using	classification	to	understand	human	interactions

Slide	taken	from	D.	Jurafsky

Link	to	reading	material	in	Piazza,
under	resources



Classification	

• A	fundamental	machine	 learning	tool
–Widely	applicable	in	NLP

• Supervised	learning:	Learner	is	given	a	
collection	of	labeled	documents
– Emails:	Spam/not	spam;	Reviews:	Pos/Neg

• Build	a	function mapping	documents	to	labels
– Key	property:	Generalization
• function	should	work	well	on	new	data



Sentiment	Analysis

Dude, I just watched this horror 
flick! Selling points: nightmares 
scenes, torture scenes, terrible 
monsters that was so bad a##!

Don’t buy the popcorn it was 
terrible, the monsters selling it 
must have wanted to torture me, 
it was so bad it gave me 
nightmares!

What should your learning algorithm look at?



Deceptive	Reviews

Finding	Deceptive	Opinion	 Spam	by	Any	Stretch	of	the	Imagination.	Ott etal.	ACL	2011
What should your learning algorithm look at?



Power	Relations

Echoes	of	Power:	Language	Effects	and	Power	Differences	in	Social	Interaction.	Danescu-Niculescu-Mizil et-al	 .	WWW	2012.

Blah	
Unaccep
table	
blah

Your	honor,	 I	
agree	blah	blah	
blah

What should your learning algorithm look at?



Naive	Bayes
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P(x1,x2, ...,xn | vj ) =

    = P(x1 | x2, ...,xn , vj)P(x2, ...,xn | vj)
    = P(x1 | x2, ...,xn , vj)P(x2 | x3, ...,xn , vj)P(x3, ...,xn | vj)
    = .......
    = P(x1 | x2, ...,xn , vj)P(x2 | x3, ...,xn , vj)P(x3 | x4 , ...,xn , vj)...P(xn | vj)

VMAP = argmaxv P(x1, x2, …, xn | v )P(v)

Assumption:	feature	values	are	independent	given	the	target	value

    = P(xi | vj )i=1

n
∏



Naïve	Bayes:	practical	stuff
• Underflow	prevention
– Multiplying	probabilities	will	result	in	floating	point	
underflow	(round	to	zero)

– Summing	log	probabilities	will	solve	the	problem:

• Feature	“tweaking”
– “Pure	BoW”	is	often	too	naïve	
– Stemming/normalization	(hate,	hated,	hating,	hates)
– Phrase	extraction	(e.g.,	negation,	scientific/numeric	expr.)
– Up	weighting	– increase	the	counts	of	“important”	words

NB	Decision:	argmaxc_j log P(cj) + ∑i log P(xi | cj)



Linear	Classifiers
• Linear	threshold	functions

– Associate	a	weight	(wi)	with	each	feature	(xi)
– Prediction:	sign(b + wTx) = sign (b + Σ wi xi)

• b + wTx ≥ 0	predict	y=1
• Otherwise,	predict	y=-1

• NB	is	a	linear	threshold	function
– Weight	vector	(w)	is	assigned	by	estimating	the	label	probability,	

given	the	model	independency	assumptions
• Linear	threshold	functions	are	a	very	popular	representation!

• Generative	Vs.	Discriminative	models
– Generative	models	represent	the	joint	probability	P(x,y),	while	

discriminative	models	represent	P(y|x)	directly



Generative	vs.	Discriminative

• Language	models	and	NB	are	examples	of	generative	
models

• Generative	models	capture	the	joint	probability	of	the	input	
and	outputs	P(x,y) 
– Most	of	the	early	work	in	statistical	NLP	is	generative:	Language	

models,	NB,	HMM,	Bayesian	Networks,	PCFG,	etc.

• We	think	about	generative	models	as	the	hidden	variables	
generating	the	observed	data

• Super-easy	training	=	counting! h

x1 x2 xk

Naïve	Bayes



Generative	vs.	Discriminative

• On	the	other	hand..	
• We	don’t	care	about	the	joint	probability,	we	can	about	

the	conditional	probability	– P(y|x)
• Conditional	or	discriminative models	characterize	the	

decision	boundary	directly	(=conditional	probability).	
– Work	really	well	in	practice,	easy	to	incorporate	arbitrary	
features,..

– SVM,	perceptron,	Logistic	Regression,	CRF,	…
• Training	is	harder	(we’ll	see..) h

x1 x2 xk

Logistic	regression



Practical	Example
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Source: Scaling to very very large corpora for natural language disambiguation
Michele Banko, Eric Brill. Microsoft Research, Redmond, WA.  2001.

Task: context sensitive 
spelling
{principle , 
principal},{weather,whet
her}.



Linear	Classifiers

Each	point	in	this	space	
is	a	document.

The	coordinates	(e.g.,	
x1,x2),	are	determined	
by	feature	activations
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sign(b + wTx)

Learning	=	adjust	the	weights	
(w)	 to	find	a	good	decision	
boundary	



Expressivity	
By	transforming	the	feature	space	these	
functions	can	be	made	linear

Represent	each	point	in	2D	as	(x,x2)



Expressivity	

More	realistic	scenario:	the	data	
is	almost linearly	separable,	
except	for	some	noise.
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Features
• So	far	we	have	discussed	BoW representation
– In	fact,	you	can	use	a	very	rich	representation

• Broader	definition
– Functions	mapping	attributes	of	the	input	to	a	
Boolean/categorical/numeric	value

• Question:	assume	that	you	have	a	lexicon,	
containing	positive	and	negative	sentiment	
words.	How	can	you	use	it	to	improve	over	BoW?

φ1(x) =
1 x1 is capitalized
0 otherwise

⎧
⎨
⎩

φk (x) =
1 x contains ''good '' more than twice
0 otherwise

⎧
⎨
⎩



Perceptron

• One	of	the	earliest	learning	algorithms	
– Introduced	by	Rosenblatt	1958	to	model	neural	learning

• Goal:	directly	search	for	a	separating	hyperplane
– If	one	exists,	perceptron	will	find	it
– If	not,	…

• Online algorithm
– Considers	one	example	at	a	time	(NB	– looks	at	entire	data)

• Error	driven	algorithm
– Updates	the	weights	only	when	a	mistake	is	made



Perceptron

• We	learn	f:Xà {-1,+1}	represented	as	f	=sgn{w�x)
• Where	X=		{0,1}n		or	X=	Rn and	w	² Rn

• Given	Labeled	examples:		{(x1,	y1),	(x2,	y2),…(xm,	ym)}
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1. Initialize	w=0	

2.			Cycle	through	all	examples										

a.	Predict the	label	of	instance	x	to	be y’	=	sgn{w�x)

b.	If	y’≠y,	update the	weight	vector:	

w	=	w	+	r	y x (r - a constant, learning rate)
Otherwise,	if	y’=y, leave	weights	unchanged.

Rn∈



Margin

• The	margin	of	a	hyperplane for	a	dataset	is	the	
distance	between	the	hyperplane and	the	data	point	
nearest	to	it.	



Margin

• The	margin	of	a	hyperplane for	a	dataset	is	the	
distance	between	the	hyperplane and	the	data	point	
nearest	to	it.	

• The	margin	of	a	data	set	(𝛾)	is	the	maximum	margin	
possible	for	that	dataset	using	any	weight	vector.	



Learning	using	the	Perceptron	Algorithm
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• Perceptron	guarantee:	find	a	linear	separator	(if	
the	data	is	separable)		

• There	could	be	many	models	consistent	with	the	training	
data
– How	Did	the	perceptron	algorithm	deal	with	this	problem?

• Trading	some	training	error	for	better	generalization
– This	problem	is	aggravated	when	we	explode	the	feature	space



Perceptron

• We	learn	f:Xà {-1,+1}	represented	as	f	=sgn{w�x)
• Where	X=		{0,1}n		or	X=	Rn and	w	² Rn

• Given	Labeled	examples:		{(x1,	y1),	(x2,	y2),…(xm,	ym)}

22

1. Initialize	w=0	

2.			Cycle	through	all	examples										

a.	Predict the	label	of	instance	x	to	be y’	=	sgn{w�x)

b.	If	y’≠y,	update the	weight	vector:	

w	=	w	+	r	y x (r - a constant, learning rate)
Otherwise,	if	y’=y, leave	weights	unchanged.

Rn∈

How	would	you	tweak	the	Perceptron	to	make	it	- (1)	realistic?	(2)	“better”?



Learning	as	Optimization	

• Discriminative	Linear	classifiers
– So	far	we	looked	perceptron
– Combines	model	(linear	representation)	with	
algorithm	(update	rule)

– Let’s	try	to	abstract – we	want	to	find	a	linear	function	
that	performs	‘the	best’	on	the	data
• What	are	good	properties	of	this	classifier?
• Want	to	explicitly	control	for	error	+	“simplicity”

– How	can	we	discuss	these	terms	separately	from	a	
specific	algorithm?
• Search	space	of	all	possible	linear	functions
• Find	a	specific	function	that	has	certain	properties..	



Learning	as	Optimization

24

• Instead	we	can	think	about	learning	as	optimizing	an	
objective	function	(e.g.,	minimize	mistakes)

• We	can	incorporate	other	considerations	by	modifying	
the	objective	function	(regularization)

• Sometime	referred	to	as	structural	risk	minimization	



Loss	Function
• To	formalize	performance	let’s	define	a									
loss		function:
–Where							is	the	gold	label

• The	loss	function	measures	the	error	on	a	
single	instance
– Specific	definition	depends	on	the	learning	task

25

loss(y, ŷ)
ŷ

loss(y, ŷ) = (y − ŷ)2

Regression

loss(y, ŷ) =

{

0 y = ŷ

otherwise

Binary	classification

1 otherwise



0-1	Loss
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1

0
0-1

y(w*x)

loss

loss(y, f(x)) = 0 iff y = ŷ
loss(y, f(x)) = 1 iff y ̸= ŷ

loss(y · f(x)) = 0 iff y · f(x) > 0 (correct)
loss(y · f(x)) = 1 iff y · f(x) < 0 (Misclassified)



The	Empirical Risk	of	f(x)

• The	empirical	risk	of	a	classifier	on	a	dataset	D	
is	its	average	loss	on	the	items	in	d	

• Realistic	learning	objective:	find	an	f that	
minimizes	the	empirical	risk	

27

RD(f) =
1

D

∑

D

loss(yi, f(xi))



Empirical	Risk	Minimization

• Learning:	Given	a	training	dataset	D,	return	the	
classifier	f(x)	that	minimizes	the	empirical	risk	

• Given	this	definition	we	can	view	learning	as	a	
minimization	problem
– The	objective	function	to	minimize	(empirical	risk)	is	
defined	with	respect	to	a	specific	loss	function

– Our	minimization	procedure	(aka	learning)	will	be	
influenced	by	the	choice	of	loss	function
• Some	are	easier	to	minimize	than	other!

28



Error	Surface
• Linear	classifiers:	hypothesis	space	parameterized	by	w
• Error/Loss/Risk	are	all	functions	of	w

29

Local	Minimum

Global
Minimum

Hypothesis	
Space

(Empirical)	
Error

Learning: find the 
global minimum of 
the error surface



Convex	Error	Surfaces	

• Convex	functions	have	a	single	minimum point
– Local	minimum	=	global	minimum
– Easier	to	optimize	

30

(Empirical)	
Error

Convex error functions have 
no local minima

Global	
Minimum

Hypothesis	
space



Error	Surface	for	Squared	Loss	
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Err(w) =
1

2

∑

d∈D

(ŷd − yd)
2

We	add	the	½	for	convenience	

y = w
T
x

Since      is a constant (for a given dataset), the Error 
function is a quadratic function of W (paraboloid) 
èSquared	Loss	function	is	convex!

ŷ

How can we find the global minimum? 
E

rr
(w

)



Gradient	Descent	Intuition	

32

w2w3 w4

What is the gradient of Error(w) at this point?

w1

(1) The derivative of the function at 
w1 is the slope of the tangent line
à Positive slope (increasing)
Which direction should we move to 
decrease the value of Err(w) ?

(2) The gradient determines 
the direction of steepest 
increase of Err(w)  (go in the 
opposite direction)

(3) We also need to determine the step 
size (aka learning rate). 
What happens if we overshoot? 



Note	about	GD	step	size

• Setting	the	step	size	to	a	very	small	value
– Slow	convergence	rate

• Setting	the	step	size	to	a	large	value
– May	oscillate	(consistently	overshoot	the	global	min)

• Tune	experimentally
– More	sophisticated

algorithm	set	the	value
automatically

33

w2w3 w4 w1



The	Gradient	of	Error(w)
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∇Err(w) =

(

∂Err(w)

∂w0

,
∂Err(w)

∂w1

, ...,
∂Err(w)

∂wn

)

The	gradient	is	a	vector	of	partial	derivatives.	

It	Indicates	the	direction	of	steepest	increase in	Err(w),	for	
each	one	of	w’s	coordinates

The	gradient	is	a	generalization	of	the	derivative	



Gradient	Descent	Updates

• Compute	the	gradient	of	the	training	error	at	each	
iteration
– Batch	mode:	compute	the	gradient	over	all	training	
examples

• Update	w:

35

∇Err(w) =

(

∂Err(w)

∂w0

,
∂Err(w)

∂w1

, ...,
∂Err(w)

∂wn

)

wi+1 = wi
− α∇Err(wi)

Learning	rate	(>0)



Computing					Err(wi)	for	Squared	Loss

36

Δ

Err(w) =
1

2

∑

d∈D

(yd − f(xd))
2



Batch	Update	Rule	for	Each	wi

• Implementing	gradient	descent:	as	you	go	
through	the	training	data,	accumulate	the	
change	in	each	wi of	W

37



Gradient	Descent	for	Squared	Loss

38



Batch	vs.	Online	Learning

• The	Gradient	Descent	algorithm	makes	updates	after	
going	over	the	entire	data	set
– Data	set	can	be	huge
– Streaming	mode	(we	cannot	assume	we	saw	all	the	data)
– Online	learning	allows	“adapting”	to	changes	in	the	target	
function

• Stochastic	Gradient	Descent	
– Similar	to	GD,	updates	after	each	example
– Can	we	make	the	same	convergence	assumptions	as	in	
GD?

• Variations:	update	after	a	subset	of	examples

39



Stochastic	Gradient	Descent	

40



Polynomial	Regression

• GD:	general	optimization	algorithm
–Works	for	classification	(different	loss	function)
– Incorporate	polynomial	features	to	fit	a	complex	
model

– Danger	– overfitting!

41



Regularization	
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• We	want	a	way	to	express	preferences	when	searching	
for	a	classification	function	(i.e.,	learning)

• Many	functions	can	agree	with	the	data,	which	one	should	we	
choose?
– Intuition:	prefer	simpler	models	
– Sometimes	we	are	even	willing	to	trade	a	higher	error	rate	
for	a	simpler	model	(why?)

• Add	a	regularization	 term:
– This	is	a	form	of	inductive bias

minw =
∑

n

loss(yn,wn) + λR(w)

How	different	values	impact	learning?

minw =
∑

n

loss(yn,wn) + λR(w)



Regularization		
• A	very	popular	choice	of	regularization	term	is	
to	minimize	the	norm	of	the	weight	vector
– For	example	
– For	convenience:	½	squared	norm

• Q:	What	is	the	update	gradient	of	the	loss	function?
• At	each	iteration	we	subtract	the	weights	by	λ*w

• In	general,	we	can	pick	other	norms	(p-norm)
– Referenced	as	L-p norm
– Different	p	will	have	a	different	effect!

43

||w|| =

√

∑

d

w
2

d

minw =
∑

n

loss(yn,wn) +
λ

2
||w||2

||w||p =

(

∑

d

|wd|
p

)
1

p



Classification
• So	far:	
– General	optimization	framework	for	learning
– Minimize	regularized	loss	function

– Gradient	descent	is	an	all	purpose	tool
• Computed	the	gradient	of	the	square	 loss	function

• Moving	to	classification	 should	be	very	easy
– Simply	replace	the	loss	function

• …

44

minw =
∑

n

loss(yn,wn) +
λ

2
||w||2



Classification
• Can	we	minimize	the	empirical	error	directly?
– Use	the	0-1	loss	function

• Problem:	Cannot	be	optimized	directly
– Non	convex	and	non	differentiable	

• Solution:	define	a	smooth	loss	function,	an	
upper	bound	to	the	0-1	loss	function

45



Square	Loss	is	an	Upper	bound	to	0/1	Loss	

46

Is	the	square		loss	a	good	candidate	to	be	a	surrogate	
loss	function	for	0-1	loss?



Surrogate	Loss	functions

• Surrogate	loss	function:	smooth	
approximation	to	the	0-1	loss
– Upper	bound	to	0-1	loss

47



Logistic	Function
• Smooth	version	of	the	threshold	function

• Known	as	a	sigmoid/logistic	function
– Smooth	transition	between	0-1

• Can	be	interpreted	as	the	conditional	probability	
• Decision	Boundary
– y=1:	h(x)	>0.5è wtx>=0
– Y=0:	h(x)	<0.5	èwtx<0

48

hw(x) = g(wTx)

z = wTx

g(z) =
1

1 + e−z

Sigmoid	 (logistic)	function



Logistic	Regression
• Learning:	optimize	the	likelihood	of	the	data

– Likelihood:	probability	of	our	data	under	current	parameters
– For	easier	optimization,	we	look	into	the	log	likelihood	(negative)

• Cost	Function
– If y = 1:    - log  P(y=1| x, w) =   - log (g(w,x))
– If	the	model	gives	very	high	probability	to	y=1,	what	is	the	cost?
– If y = 0:   - log  P(y=0| x, w) = - log  1- P(y=1| x, w) = - log (1- g(w,x))

• Or	more	succinctly	(with	l2 regularization)

• This	function	is	convex	and	differentiable
– Compute	the	gradient,	minimize	using	gradient	descent	

`
49

Err(w) =
∑

i

yi log h(xi) + (1− yi)log (1− h(xi))Err(w) = −
∑

i

yilog(eg(w,xi)) + (1− yi)log(1− eg(w,xi)) +
1

2
λ||w||2Err(w) = −

∑

i

yilog(eg(w,xi)) + (1− yi)log(1− eg(w,xi)) +
1

2
λ||w||2



Logistic	Regression

• Let’s	consider	the	stochastic	gradient	descent	
rule	for	LR:

• What	is	the	difference	compared	to:
– Linear	Regression?
– Perceptron?

wj = wj
− α(yi − h(xi)) x

j



Next	up:	Hinge	Loss

• Another	popular	choice	for	loss	function	is	the	
hinge	loss
–We	will	discuss	in	the	context	of	support	vector	
machines	(SVM)

51

L(y, f (x)) =max(0,1− y f (x))

It’s easy to observe that:
(1) The hinge loss is an upper bound 

to the 0-1 loss 
(2) The hinge loss is a good 

approximation for the 0-1 loss
(3) BUT … 

It is not differentiable at y(wTx)=1
Solution: Sub-gradient descent



Maximal	Margin	Classification
Motivation	for	the	notion	of	maximal	margin

Defined	w.r.t.	a	dataset	S	:



Some	Definitions

• Margin:	distance	of	the	closest	point	from	a	
hyperplane

• Our	new	objective	function
– Learning	is	essentially	solving:	

γ = min
xi,yi

yi(wTxi + b)

||w||

This is known as the geometric
margin, the numerator is known
as the functional margin

max
w

γ



Maximal	Margin

• We	want	to	find	

• Observation:	we	don’t	care	about	the	magnitude	of	w!
• Set	the	functional	margin	to	1,	and	minimize	W
• maxw is	equivalent	to minw ||w||in	this	setting
• To	make	life	easy:	

let’s	minimize		minw ||w||2

54

max
w

γ

x1	+	x2		=	0
10x1	+	10x2		=	0
100x1	+	100x2		=0

max
w

γ



Hard	SVM	Optimization

• This	leads	to	a	well	defined	constrained	optimization	
problem,	known	as	Hard	SVM:

• This	is	an	optimization	problem	in	(n+1)	variables,	
with	|S|=m	inequality	constraints.			

55

Minimize:		½	||w||2

Subject to:∀ (x,y) ∈ S:					y wT x ≥ 1



Hard	vs.	Soft	SVM
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Minimize:		½	||w||2

Subject to:∀ (x,y) ∈ S:					y wT x ≥ 1

Minimize:		½	||w||2 + c Σιξi
Subject to:	∀ (x,y) ∈ S:					yi wT xi ≥ 1-ξi ;	ξi >0,	i=1…m	



Objective	Function	for	Soft	SVM

• The	relaxation	of	the	constraint:	yi wi
Txi ≥ 1   can	be	

done	by	introducing	a	slack	variable	ξ (per	
example)	and	requiring:		 yi wi

Txi ≥ 1 - ξ i;   (ξ i ≥ )
• Now,	we	want	to	solve:	

Min ½ ||w||2 + c Σ ξi (subject to ξ i ≥ 0)
• Which	can	be	written	as:

Min  ½ ||w||2 + c Σ max(0, 1 – yi wT xi). 
• What	is	the	interpretation	of	this?
• This is the Hinge loss function

57



Sub-Gradient
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0							1

Standard	0/1	loss
Penalizes	all	incorrectly	classified	
examples	with	the	same	amount

Hinge	loss
Penalizes	incorrectly	classified	
examples	and	correctly	classified	
examples	that	lie	within	 the	margin

Non	Convex

Convex,	
but	not	differentiable	at	x=1

Solution: subgradient

0							1

Examples	that	are	correctly	classified	
but	fall	within	the	margin

The	sub-gradient	of	a	function	c	at	x0	is	any	vector	v
such	that:	
At	differentiable points	this	set	only	contains	the	
gradient	at	x0
Intuition:	the	set	of	all	tangent	 lines	(lines	under	c,	
touching	c	at	x0	)

Image	from	CIML



Summary
• Support	Vector	Machine
– Find	max	margin	separator
– Hard	SVM	and	Soft	SVM
– Can	also	be	solved	in	the	dual

• Allows	adding	kernels

• Many	ways	to	optimize!	
– Current:	stochastic	methods	in	the	primal,	dual	coordinate	
descent

• Key	ideas	to	remember:
– Learning:	Regularization	+	empirical	loss	minimization
– Surprise:	Similarities	to	Perceptron	(with	small	changes)	
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Summary	

• Introduced	an	optimization	framework	for	learning:	
– Minimization	problem
– Objective:	data	loss	term	and	regularization	cost	term
– Separate	learning	objective	from	learning	algorithm

• Many	algorithms	for	minimizing	a	function

• Can	be	used	for	regression	and	classification
– Different	loss	function	
– GD	and	SGD	algorithms

• Classification:	use	surrogate	loss	function
– Smooth	approximation	to	0-1	loss

60



Questions?


