ML4NLP Deep Structured Prediction – RNNs

Dan Goldwasser Purdue University

dgoldwas@purdue.edu

10,000 feet view

- So far, we looked at simple classification problems.
 - Assume a word window, that provides fixed sized inputs.
 - In case you "run out of input" zero padding.
- What can you do if the size of the input is not fixed?
 - Some notion of compositionality is needed
 - Simplest approach: sum up word vectors
 - Document structure is lost.. Can we do better?

Reminder: Language Models

• A Language model defines a probability distribution over a sequence of words:

 $P(w_1,...,w_n)$

- Simple, yet very useful idea!
 - Estimate using a large collection of text (no supervision!)
 - P("I like NLP") > P("me like NLP")
- Key assumption: Markov model

Reminder: Language Models

 Markov model: Probability of word_i is conditioned on previous n words

$$P(w_1, ..., w_n) = \prod_{i=1}^n P(w_i | w_1, ..., w_{i-1}) = \prod_{i=1}^n P(w_i | w_{i-n-1}, ..., w_{i-1})$$

- Why is it needed?
- What will happen if we increase/decrease n?

Reminder: Language Models

- Language models will become more accurate, yet harder to estimate as n grows.
 - Even for a small size of n, the number of parameters is too large!

• **Question**: *do we need to condition on more than 2-3 words?*

Neural Language Model – Take 1

A Neural Probabilistic Language Model. Bengio et-al 2003

Recurrent Neural Networks

- A NN version of a language model.
 More broadly: deal with data over time.
- Unlike N-gram models, an RNN conditions the current word on all previous words.
- Efficient, both in time and space

Recurrent Neural Networks

Input is a word (vectors) sequence: $x_1, ..., x_{i-1}, x_i, x_{i+1}, ..., x_n$

At any given time step *i* :

$$h_{i} = \sigma \left(W^{hh} h_{i-1} + W^{hx} x_{i} \right)$$
$$\hat{y} = \operatorname{softmax}(W^{s} h_{i})$$

$$P(x_{i+1} = v_j | x_i, \dots, x_1) = \hat{y}_{i,j}$$

Recurrent Neural Networks

• Similar to traditional LM, we define a probability distribution, estimated using an RNN

- I.e., $\hat{y} \in R^{|V|}$ is a probability distribution over V

- We can define a loss function (cross-entropy):

$$J^{(t)}(\theta) = -\sum_{j=1}^{|V|} y_{t,j} \log \hat{y}_{t,j}$$

RNN: Forward Propagation

The cat sat on the mat. Where has the cat sat?

The cat sat on the hat. Where has the cat sat?

RNN-LM Results

Model	Perplexity
Kneser-Ney 5-gram	141
Random forest [Xu 2005]	132
Structured LM [Filimonov 2009]	125
Feedforward NN LM	116
Syntactic NN LM [Emami 2004]	110
RNN trained by BP	113
RNN trained by BPTT	106
4x RNN trained by BPTT	98

Extensions of recurrent neural network language model by Mikolov et al'11

Back-propagation for RNN

$$h_i = Wf(h_{i-1}) + Wx_i$$
$$\hat{y_i} = Wf(h_i)$$

$$\frac{\partial E}{\partial W} = \sum_{i=1}^{T} \frac{\partial E_i}{\partial W}$$

$$\frac{\partial E_i}{\partial W} = \sum_{k=1}^{i} \frac{\partial E_i}{\partial y_i} \frac{\partial y_i}{\partial h_i} \frac{\partial h_i}{\partial h_k} \frac{\partial h_k}{\partial W}$$

$$\frac{\partial h_t}{\partial h_k} = \prod_{j=k+1}^{i} \frac{\partial h_j}{\partial h_{j-1}}$$

Vanishing/Exploding Gradient

Vanishing/Exploding Gradient

- **Key issue**: propagating the error over long word sequences
- The gradient is a product of Jacobians, the product can become very large or very small very quickly $\partial E_i = \int_{t=0}^{t} \partial E_i \partial u_i \partial h_i \partial h_i$

$$\frac{\partial E_i}{\partial W} = \sum_{k=1}^{t} \frac{\partial E_i}{\partial y_i} \frac{\partial y_i}{\partial h_i} \frac{\partial h_i}{\partial h_k} \frac{\partial h_k}{\partial W}$$

Why is this a problem?

RNN Extensions

- Key issue: long range dependencies between inputs.
 - "how can we know which word is important to keep around, when predicting the i+1 word?"
- Solution idea: complex hidden units that implement a "memory"
 - Maintain "old memories" representing relevant long range dependencies
 - Error updates can be back-propagated at different strengths.

Gated Recurrent Units (GRU)

- Until now, we assumed a simple hidden layer:
 - representing the previous steps and input word

$$h_i = \sigma \left(W^{hh} h_{i-1} + W^{hx} x_i \right)$$

- In GRU's the picture is more complex, it adds gates, that control how the hidden state is computed
- Essentially, more layers that can be learned from data
 - Update Gate
 - Reset Gate

Gated Recurrent Units (GRU)

$$h_i = \sigma \left(W^{hh} h_{i-1} + W^{hx} x_i \right)$$
 Original RNN

GRU:

Update Gate:
$$z_i = \sigma \left(W^z x_i + U^z h_{i-1} \right)$$

Reset Gate:

$$r_i = \sigma \left(W^r x_i + U^r h_{i-1} \right)$$

New memory

$$\tilde{h}_i = \tanh\left(Wx_i + r_i \circ Uh_{i-1}\right)$$

Final memory (aka *hidden Layer*)

$$h_i = z_t \circ h_{i-1} + (1 - z_i) \circ \tilde{h}_i$$

Gated Recurrent Unit - GRU

1

- Element wise addition
- Element wise multiplication
 - Routes information can propagate along
 - Involved in modifying information flow and values

Why it works

- Learn a set of parameters for each one of the gates
 - **Recall**: gates output a probability
 - If reset gate is ~0: ignore previous hidden state
 - "forget" irrelevant information
 - Short term dependencies
 - If update gate ~1:
 copy past information
 - "remember" past state
 - long term dependencies

$$z_{i} = \sigma \left(W^{z} x_{i} + U^{z} h_{i-1} \right)$$
$$r_{i} = \sigma \left(W^{r} x_{i} + U^{r} h_{i-1} \right)$$
$$\tilde{h}_{i} = \tanh \left(W x_{i} + r_{i} \circ U h_{i-1} \right)$$
$$h_{i} = z_{t} \circ h_{i-1} + (1 - z_{i}) \circ \tilde{h}_{i}$$

Long-Short-Term-Memories (LSTM)

- Similar (and older!) idea, though more complex
- Input gate $i_t =$
- Forget gate
- Output
- New memory

$$i_t = \sigma \left(W^{(i)} x_t + U^{(i)} h_{t-1} \right)$$
$$f_t = \sigma \left(W^{(f)} x_t + U^{(f)} h_{t-1} \right)$$
$$o_t = \sigma \left(W^{(o)} x_t + U^{(o)} h_{t-1} \right)$$

$$\tilde{c}_t = \tanh\left(W^{(c)}x_t + U^{(c)}h_{t-1}\right)$$

• Final Memory

$$c_t = f_t \circ c_{t-1} + i_t \circ \tilde{c}_t$$

• Final hidden state $h_t = o_t \circ \tanh(c_t)$

LSTM

RNN vs. LSTM vs. GRU

(a) Long Short-Term Memory

(b) Gated Recurrent Unit

			tanh	GRU	LSTM
Music Datasets	Nottingham	train	3.22	2.79	3.08
		test	3.13	3.23	3.20
	JSB Chorales	train	8.82	6.94	8.15
		test	9.10	8.54	8.67
	MuseData	train	5.64	5.06	5.18
		test	6.23	5.99	6.23
	Piano-midi	train	5.64	4.93	6.49
		test	9.03	8.82	9.03
	Ubisoft dataset A	train	6.29	2.31	1.44
Ubisoft Datasets		test	6.44	3.59	2.70
	Ubisoft dataset B	train	7.61	0.38	0.80
		test	7.62	0.88	1.26

Table 2: The average negative log-probabilities of the training and test sets.

Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. Chung et-al 2014

LSTM for Semantic Tasks

Learning Statistical Scripts with LSTM Recurrent Neural Networks. Pichotta et-al AAAI-'16

Motivation

- Following the Battle of Actium, Octavian invaded Egypt. As he approached Alexandria, Antony's armies deserted to Octavian on August 1, 30 BC.
 - Did Octavian defeat Antony?

Motivation

- Following the Battle of Actium, Octavian invaded Egypt. As he approached Alexandria, Antony's armies deserted to Octavian on August 1, 30 BC.
 - Did Octavian defeat Antony?

Motivation

Antony's armies deserted to Octavian
 ⇒

Octavian defeated Antony

- Not simply a paraphrase rule!
- Need world knowledge.

Scripts

- Scripts: models of events in sequence.
 - "Event": verb + arguments.
 - Events don't appear in text randomly, but according to world dynamics.
 - Scripts try to capture these dynamics.
 - Enable automatic inference of implicit events, given events in text (e.g. *Octavian defeated Antony*).

Background: Statistical Scripts

- **Statistical Scripts**: Statistical Models of Event Sequences.
- Non-statistical scripts date back to the 1970s [Schank & Abelson 1977].
- Statistical script learning is a small-but-growing subcommunity [e.g. Chambers & Jurafsky 2008].
- Model the probability of an event given prior events.

Background: Statistical Script Learning

Background: Statistical Script Inference

LSTM Script models

- Train LSTM sequence model on event sequences.
 - Events are (verbs + arguments).
 - Arguments can have noun info, coref info, or both.
- To infer events, the model generates likely events from sequence.

LSTM Script models

• Mary's late husband Matthew, whom she married at 21 because she loved him, ...

[marry, mary, matthew, at, 21]; [love, she, him]

LSTM Script models

• Mary's late husband Matthew, whom she married at 21 because she loved him, ...

[marry, mary, matthew, at, 21]; [love, she, him]

Experimental Setup

- Train on English Wikipedia.
- Use Stanford CoreNLP to extract event sequences.
- Train LSTM using Batch Stochastic Gradient Descent with Momentum.
- To infer next events, have the LSTM generate additional events with highest probability.

Evaluation

- "Narrative Cloze" (Chambers & Jurafsky, 2008): from an unseen document, hold one event out, try to infer it given remaining document.
- "Recall at *k*" (Jans et al., 2012): make *k* top inferences, calculate recall of held-out events.
- (More metrics in the paper.)

Evaluation

- Three Systems:
 - **Unigram:** Always guess most common events.
 - **Bigram:** Variations of Pichotta & Mooney (2014)
 - Uses event co-occurrence counts.
 - Best-published system on task.
 - **LSTM:** LSTM script system (this work).

Results: Predicting Verbs & Coreference Info

Recall at 25 for inferring Verbs & Coref info

Results: Predicting Verbs & Nouns

Recall at 25 for inferring Verbs & Nouns

Human Evaluations

- Solicit judgments on individual inferences on Amazon Mechanical Turk.
 - Have annotators rate inferences from 1-5 (or mark "Nonsense," scored 0).
 - More interpretable.

Results: Crowdsourced Eval

