
ML4NLP
Deep Structured Prediction – RNNs

CS 590NLP

Dan Goldwasser
Purdue University

dgoldwas@purdue.edu

10,000	feet	view

• So	far,	we	looked	at	simple	classification	
problems.
– Assume	a	word	window,	that	provides	fixed	sized	inputs.
• In	case	you	“run	out	of	input”	– zero	padding.

• What	can	you	do	if	the	size	of	the	input	is	not	fixed?
– Some	notion	of	compositionality	is	needed
– Simplest	approach:	sum	up	word	vectors
• Document	structure	is	lost..	Can	we	do	better?

Reminder:		Language	Models

• A	Language	model	defines	a	probability	
distribution	over	a	sequence	of	words:

• Simple,	yet	very	useful	idea!
– Estimate	using	a	large	collectionof	text	(no	supervision!)
– P(“I like NLP”) > P(“me like NLP”)

• Key	assumption:	Markov	model

P (w1, ..., wn)

Reminder:		Language	Models

• Markov	model:	Probability of wordi is conditioned on
previous n words

–Why	is	it	needed?
–What	will	happen	if	we	increase/decrease	n?

P (w1, ..., wn) =
n∏

i=1

P (wi|w1, .., wi−1) =

n∏

i=1

P (wi|wi−n−1, .., wi−1)

P (w1, ..., wn) =
n∏

i=1

P (wi|w1, .., wi−1) =

n∏

i=1

P (wi|wi−n−1, .., wi−1)

Reminder:		Language	Models

• Language	models	will	become	more	accurate,	
yet	harder	to	estimate	as	n	grows.
– Even	for	a	small	size	of	n,	the	number	of	
parameters	is	too	large!

• Question:	do	we	need	to	condition	on	more	
than	2-3	words?

Neural	Language	Model	– Take	1

A	Neural	Probabilistic	 Language	Model.	Bengio et-al	2003

Recurrent	Neural	Networks

• A	NN	version	of	a	language	model.
– More	broadly:		deal	with	data	over	time.

• Unlike	N-gram	models,	an	RNN	conditions	the	
current	word	on	all	previous	words.

• Efficient,	both	in	time	and	space		

Recurrent	Neural	Networks

x

h

y

x1, ..., xi−1, xi, xi+1, ..., xn

hi = σ
(

Whhhi−1 +Whxxi
)

yi = softmax(Ws hi)

Input	is	a	word	(vectors)	sequence:	

At	any	given	time	step	i :

ŷ ∈ R|V |

x1, ..., xi−1, xi, xi+1, ..., xn

hi = σ
(

Whhhi−1 +Whxxi
)

yi = softmax(Ws hi)

P (xi+1 = vj|xi, ..., x1) = yi,j
^

Recurrent	Neural	Networks

• Similar	to	traditional	LM,	we	define	a	probability	
distribution,	estimated	using	an	RNN
– I.e.,																						is	a	probability	distribution	over	V	

– We	can	define	a	loss	function	(cross-entropy):

J (t)(θ) = −

|V |∑

j=1

yt,j log ŷt,j

ŷ ∈ R|V |

RNN:	Forward	Propagation	

x

h

y

The	cat	sat	on	the	mat.	Where	has	the	cat	sat?

The	cat	sat	on	the	hat.	Where	has	the	cat	sat?

RNN-LM	Results

Extensions	of	recurrent	neural	network	
language	model	by	Mikolov et	al’11

Back-propagation	for	RNN

x

h

y
hi = Wf (hi−1) +Wxi

ŷi = Wf (hi)

∂E

∂W
=

T∑

i=1

∂Ei

∂W

∂Ei

∂W
=

t∑

k=1

∂Ei

∂yi

∂yi
∂hi

∂hi

∂hk

∂hk

∂W

hi = Wf (hi−1) +Wxi

ŷi = Wf (hi)

∂E

∂W
=

T∑

i=1

∂Ei

∂W

∂Ei

∂W
=

t∑

k=1

∂Ei

∂yi

∂yi
∂hi

∂hi

∂hk

∂hk

∂W

∂ht

∂hk
=

t∏

j=k+1

∂hj

∂hj−1

hx

s

hi = Wf (hi−1) +Wxi

ŷi = Wf (hi)

∂E

∂W
=

T∑

i=1

∂Ei

∂W

∂Ei

∂W
=

t∑

k=1

∂Ei

∂yi

∂yi
∂hi

∂hi

∂hk

∂hk

∂W
i

i

Vanishing/Exploding	Gradient

x

h

y

∂ht

∂hk
=

t∏

j=k+1

∂hj

∂hj−1

i

Vanishing/Exploding	Gradient

• Key	issue:	propagating	 the	error	over	long	
word	sequences

• The	gradient	is	a	product	of	Jacobians,		the	
product	can	become	very	large	or	very	small	
very	quickly

Why	is	this	a	problem?

hi = Wf (hi−1) +Wxi

ŷi = Wf (hi)

∂E

∂W
=

T∑

i=1

∂Ei

∂W

∂Ei

∂W
=

t∑

k=1

∂Ei

∂yi

∂yi
∂hi

∂hi

∂hk

∂hk

∂W

RNN	Extensions

• Key	issue:	long	range	dependencies	 between	
inputs.
– “how	can	we	know	which	word	is	important	to	
keep	around,	when	predicting	the	i+1	word?”

• Solution	idea:		complex	hidden	units	that	
implement	a	“memory”
– Maintain	”old	memories”	representing	relevant	
long	range	dependencies	

– Error	updates	can	be	back-propagated	at	different	
strengths.	

Gated	Recurrent	Units	(GRU)
• Until	now,	we	assumed	a	simple	hidden	layer:
– representing	the	previous	steps	and	input	word

• In	GRU’s	the	picture	is	more	complex,	it	adds	gates,	that	
control	how	the	hidden	state	is	computed

• Essentially,	more	layers	that	can	be	learned	from	data
– Update	Gate
– Reset	Gate

x1, ..., xi−1, xi, xi+1, ..., xn

hi = σ
(

Whhhi−1 +Whxxi
)

yi = softmax(Ws hi)

Gated	Recurrent	Units	(GRU)x1, ..., xi−1, xi, xi+1, ..., xn

hi = σ
(

Whhhi−1 +Whxxi
)

yi = softmax(Ws hi)
zi = σ (Wz

xi + U
z
hi−1)

ri = σ (Wr
xi + U

r
hi−1)

h̃i = tanh (Wxi + ri ◦ Uhi−1)

hi = zt ◦ hi−1 + (1− zi) ◦ h̃i

Original	RNN

GRU:
Update	Gate:

Reset	Gate:

New	memory

Final	memory	
(aka hidden
Layer)

Why	it	works

• Learn	a	set	of	parameters	for	each	one	of	the	
gates
– Recall:	gates	output	a	probability	
– If	reset gate	is	~0:	ignore	previous	hidden	state
• “forget”	irrelevant	information	
• Short	term	dependencies

– If	update gate	~1:	
copy	past	information	

• “remember”	past	state
• long	term	dependencies

zi = σ (Wz
xi + U

z
hi−1)

ri = σ (Wr
xi + U

r
hi−1)

h̃i = tanh (Wxi + ri ◦ Uhi−1)

hi = zt ◦ hi−1 + (1− zi) ◦ h̃i

Long-Short-Term-Memories	(LSTM)

• Similar	(and	older!)	idea,	though	more	complex

• Input gate

• Forget gate

• Output

• New memory

• Final Memory

• Final hidden state

LSTM

RNN	vs.	LSTM	vs.	GRU
Empirical	Evaluation	of	Gated	Recurrent	Neural	Networks	on	Sequence	Modeling.	Chung	et-al	2014

Empirical	Evaluation	of	Gated	Recurrent	Neural	Networks	on	Sequence	Modeling.	Chung	et-al	2014

LSTM		for	Semantic	Tasks

Learning Statistical Scripts with LSTM Recurrent Neural Networks.
Pichotta et-al AAAI-’16

• asdasd

Motivation

• Following the Battle of Actium, Octavian invaded
Egypt. As he approached Alexandria, Antony's
armies deserted to Octavian on August 1, 30 BC.

• Did Octavian defeat Antony?

2

• adasds

Motivation

• Following the Battle of Actium, Octavian invaded
Egypt. As he approached Alexandria, Antony's
armies deserted to Octavian on August 1, 30 BC.

• Did Octavian defeat Antony?

3

• adasds

Motivation

• Antony’s armies deserted to Octavian  
 ⇒ 
Octavian defeated Antony

• Not simply a paraphrase rule!

• Need world knowledge.

4

• adasds

Scripts
• Scripts: models of events in sequence.

• “Event”: verb + arguments.

• Events don’t appear in text randomly, but
according to world dynamics.

• Scripts try to capture these dynamics.

• Enable automatic inference of implicit events, given
events in text (e.g. Octavian defeated Antony).

5

• adasds

Background: Statistical
Scripts

• Statistical Scripts: Statistical Models of Event
Sequences.

• Non-statistical scripts date back to the 1970s
[Schank & Abelson 1977].

• Statistical script learning is a small-but-growing
subcommunity [e.g. Chambers & Jurafsky 2008].

• Model the probability of an event given prior
events.

8

• adasds

Background: Statistical
Script Learning

9

Millions
of

Documents

NLP Pipeline
 • Syntax
 • Coreference

Millions of
Event Sequences

Train a
Statistical Model

• adasds

Background: Statistical
Script Inference

10

New Test
Document

NLP Pipeline
 • Syntax
 • Coreference

Single
Event Sequence

Query Trained
Statistical Model

Inferred Probable
Events

• adasds

LSTM Script models

• Train LSTM sequence model on event sequences.

• Events are (verbs + arguments).

• Arguments can have noun info, coref info, or
both.

• To infer events, the model generates likely events
from sequence.

19

• adasds

LSTM Script models
• Mary’s late husband Matthew, whom she married at

21 because she loved him, …

20

[marry, mary, matthew, at, 21]; [love, she, him]

[�

���

���

R�

511
8QLW

[�

R�

511
8QLW

[7

R7

511
8QLW

• adasds

LSTM Script models
• Mary’s late husband Matthew, whom she married at

21 because she loved him, …

21

[marry, mary, matthew, at, 21]; [love, she, him]

[] []PDU\

R�

PDWWKHZ

R�

DW

R�

��

R�

PDUU\

R�

/670

ORYH

R�

VKH

R�

KLP

R�

�

R�

�

R��

• adasds

LSTM Script models
• Mary’s late husband Matthew, whom she married at

21 because she loved him, …

verb subj obj prep prep verb subj obj prep prep
 - 1 2 - - - 1 2 - -

22

[] []PDU\

PDWWKHZ

PDWWKHZ

DW

DW

��

��

ORYH

PDUU\

PDU\

/670

ORYH

VKH

VKH

KLP

KLP

�

�

�

�

�

Experimental Setup

• Train on English Wikipedia.

• Use Stanford CoreNLP to extract event sequences.

• Train LSTM using Batch Stochastic Gradient
Descent with Momentum.

• To infer next events, have the LSTM generate
additional events with highest probability.

24

• adasds

Evaluation

• “Narrative Cloze” (Chambers & Jurafsky, 2008):
from an unseen document, hold one event out, try
to infer it given remaining document.

• “Recall at k” (Jans et al., 2012): make k top
inferences, calculate recall of held-out events.

• (More metrics in the paper.)

25

• adasds

Evaluation
• Three Systems:

• Unigram: Always guess most common events.!

• Bigram: Variations of Pichotta & Mooney (2014)

• Uses event co-occurrence counts.

• Best-published system on task.!

• LSTM: LSTM script system (this work).

26

• adasds

Results: Predicting
Verbs & Coreference Info

Unigram

Bigram

LSTM

0 0.05 0.1 0.15 0.2

0.152

0.124

0.101

Recall at 25 for inferring Verbs & Coref info

27

• adasds

Results: Predicting
Verbs & Nouns

Unigram

Bigram

LSTM

0 0.02 0.04 0.06 0.08

0.061

0.037

0.025

Recall at 25 for inferring Verbs & Nouns

28

• adasds

Human Evaluations

• Solicit judgments on individual inferences on
Amazon Mechanical Turk.

• Have annotators rate inferences from 1-5 (or
mark “Nonsense,” scored 0).

• More interpretable.

29

• asd

Results: Crowdsourced Eval
Random

Bigram

LSTM

0 1 2 3 4

3.67

2.87

0.87

30

“Neutral”

“Unlikely”

“Very Unlikely”

“Nonsense”

“Likely”

