MLANLP
Deep Structured Prediction — RNNs

Dan Goldwasser
Purdue University

dgoldwas@purdue.edu

CS 590NLP

10,000 feet view

e So far, we looked at simple classification
problems.

— Assume a word window, that provides fixed sized inputs.
* In case you “run out of input” — zero padding.
 What can you do if the size of the input is not fixed?
— Some notion of compositionality is needed
— Simplest approach: sum up word vectors

e Document structure is lost.. Can we do better?

Reminder: Language Models

* A Language model defines a probability
distribution over a sequence of words:

P(wl, 500 wn)

* Simple, yet very useful idea!

— Estimate using a large collection of text (no supervision!)
— P(“I like NLP”) > P(“me like NLP”’)

* Key assumption: Markov model

Reminder: Language Models

* Markov model: Probability of word.is conditioned on
previous n words

P(wl,...,wn) = HP(wZ-|w1,..,wi_1) = HP(wi\wi_n_l,..,wi_l)

1=1

— Why is it needed?

— What will happen if we increase/decrease n?

Reminder: Language Models

* Language models will become more accurate,
vet harder to estimate as n grows.

— Even for a small size of n, the number of
parameters is too large!

 Question: do we need to condition on more
than 2-3 words?

Neural Language Model — Take 1

i-th output = P(w, = i | context)

softmax
[X J 000)

most| computation here \

tanh

shared parameters
across words

index for w,_, index for wy_; index for w,_,;

A Neural Probabilistic Language Model. Bengio et-al 2003

Recurrent Neural Networks

* A NN version of a language model.

— More broadly: deal with data over time.

* Unlike N-gram models, an RNN conditions the
current word on all previous words.

 Efficient, both in time and space

Recurrent Neural Networks

WS c R |V |x Dy,
y 4+ ¢t ¢
h " Q . O O Whh c RDhXDh
—
x Q00 000 000
Inputis a word (vectors) sequence: L1, .--s Li—1,Ljy Litl, -5 Ln
At any given time step i : h,=o0 (Whhh¢_1 + thxz-)

Y = softmax(W* h;)

P<xi—|—1 p— ’l}j‘ﬂji, ceey 5131) — yAZ,]

Recurrent Neural Networks

e Similar to traditional LM, we define a probability
distribution, estimated using an RNN
— l.e.,, ¢ e RVl isaprobabilitydistributionoverV

— We can define a loss function (cross-entropy):

V]
JO0) == yi;log g,
=1

RNN: Forward Propagation

S |V|><Dh
TEYTTTY ¢ ¢
O b OO
h _>g 8 —'g Wt ¢ RDh*Dh
th c RD}LXd - -
x 00 000 ©0O0

The cat sat on the mat. Where has the cat sat?

The cat sat on the hat. Where has the cat sat?

RNN-LM Results

Model Perplexity
Kneser-Ney 5-gram 141
Random forest [Xu 2005] 132
Structured LM [Filimonov 2009] 125
Feedforward NN LM 116
Syntactic NN LM [Emami 2004] 110
RNN trained by BP 113
RNN trained by BPTT 106
4x BRNN trained by BPTT o8

Extensions of recurrent neural network
language model by Mikolov et al’11

Back-propagation for RNN

% é he = W f(hyy) + W,
e o S
) Ji = W f(h;
o o J J(hi)
LS
00O 00O
OF _ - OF,
oW = oW |
| Oh;, Oh,
OE; _ — OEidy; Ohi Ol oh, Oh;_,

OW <= Qy; Oh; Oy OW J=k+l

Vanishing/Exploding Gradient

Oh, Oh;_
SN NS R
00 ﬁ
e _fof o) _|9m o O
dx |0z or, | | : e :
L 011 ox,, -

Oh - Oh t
t i T viael £1(1
= 11 a5 = T wraneir) g
J j=k+1

j=k+1

Vanishing/Exploding Gradient

* Key issue: propagating the error over long
word sequences

* The gradient is a product of Jacobians, the
product can become very large or very small
very quickly aE

Z OFE'i 0y;[0h;|0h;,
0y; Oh,; %@W

Why is this a problem?

RNN Extensions

* Key issue: long range dependencies between
Inputs.
— “how can we know which word is important to
keep around, when predicting the i+1 word?”

* Solution idea: complex hidden units that
implement a “memory”

— Maintain “old memories” representing relevant
long range dependencies

— Error updates can be back-propagated at different
strengths.

Gated Recurrent Units (GRU)

* Until now, we assumed a simple hidden layer:
— representing the previous steps and inputword

hi =0 (W"hi_y + W";)

* |In GRU’s the picture is more complex, it adds gates, that
control how the hidden state is computed

* Essentially, more layers that can be learned from data

— Update Gate
— Reset Gate

Gated Recurrent Units (GRU)

h; =0 (Whhhi_1 — thl‘i) <— Original RNN

GRU:
Update Gate: Zi — 0 (WZIZ _|_ Uzhz'_l)

Reset Gate: TZ' — 0 (WT.CUZ _I_ Urhi_l)
tanh (Wax; + r; o Uh;_1)
zrohi_1+(1—2z)oh,

New memory

h
Final memory hl

(aka hidden
Layer)

Gated Recurrent Unit - GRU

[7 i),
h > : '

R Rt -
&

—— —

Element wise addition

Element wise multiplication
Routes information can propagate along

Involved in modifying information flow and
values

Why it works

* Learn a set of parameters for each one of the
gates

— Recall: gates output a probability

— If reset gate is ~0: ignore previous hidden state
* “forget” irrelevant information
e Short term dependencies

— If update gate ~1: zi =0 (W + U h;_,)

copy past information

* “remember” past state i

* long term dependencies hi = tanh (W; +1; 0 Uhi—1)
hi=zoh;_1+(1—2z)oh;

T, =0 (WTCCZ -+ Urhz'_l)

Long-Short-Term-Memories (LSTM)

e Similar (and older!) idea, though more complex

* Input gate is =0 (W("')azt + U(i>ht_1)

+ Forget gate fo=0 (WDz +UDh,)

° Output Or = 0 (W(O)xt + U(O)ht_l)

* New memory é = tanh (W, + UOhy_y)
* Final Memory ¢t = froci—1+ 14 0¢

* Finalhidden state h; = o; o tanh(cy)

Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. Chung et-al 2014

RNN vs. LSTM vs. GRU

T, [

v —= R <IN
X/_,om cour
(a) Long Short-Term Memory (b) Gated Recurrent Unit
tanh | GRU | LSTM
) train || 3.22 | 2.79 3.08
Nottingham | ..., g_g 323 | 320
Music Datasets train . 6.94 A
JSB Chorales | "\ Il 9.10 | 8.54 | 867

. train || 5.64 | 5.06 | 5.18

MuscData est || 623 | 599 | 623

Pi i train || 5.64 | 4.93 6.49
S test || 9.03 | 882 | 9.03

train || 6.29 | 2.31 1.44

Ubisoft dataset A test 6.44 | 3.59 2.70
Ubisoft Datasets . . train | 7.61 ’)
Ubisoft dataset B test || 7.62 | 0.88 1.26

Table 2: The average negative log-probabilities of the training and test sets.

Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. Chung et-al 2014

;|

tanh train
tanh valid
GRU train
GRU valid
LSTM train
LSTM valid

10*

0 100

.

tanh train
] « -+ tanh valid
» « GRU train
= « GRU valid
= LSTM train
e - LSTM valid

..

R E R R R R E R SR

0 100 200 400 500 200 300 400 500
Wall Clock Time (seconds)
. 10* :
«—= tanh train «— tanh train
* -+ tanh valid « -« tanh valid
»—« GRU train =« GRU train
» -« GRU valid » » GRU valid
+—+ LSTM train +—+ LSTM train
¢ ¢ LSTMvalid ¢ ¢ LSTM valid
)
.
- ..
“
3 ’ '.-.f°'a§'f A R A R I R
10 Pt ooy
A L L . 'Q.A.._.
..‘-”’.'_""' raandng "eo r'.—. 2 *

(a) Nottingham Dataset

0 10000 20000 30000 40000

(b) MuseData Dataset

LSTM for Semantic Tasks

Learning Statistical Scripts with LSTM Recurrent Neural Networks.
Pichotta et-al AAAI-16

Motivation

e Following the Battle of Actium, Octavian invaded
Egypt. As he approached Alexandria, Antony's
armies deserted to Octavian on August 1, 30 BC.

e Did Octavian defeat Antony?

Motivation

e Following the Battle of Actium, Octavian invaded
Egypt. As he approached Alexandria, Antony's
armies deserted to Octavian on August 1, 30 BC.

e Did Octavian defeat Antony?

Motivation

e Antonys armies deserted to Octavian
=

Octavian defeated Antony
* Not simply a paraphrase rule!

* Need world knowledge.

Scripts

e Scripts: models of events in sequence.

* "Event’”: verb + arguments.

Events don’t appear in text randomly, but
according to world dynamics.

Scripts try to capture these dynamics.

Enable automatic inference of implicit events, given
events in text (e.g. Octavian defeated Antony).

5

Background: Statistical
Scripts

Statistical Scripts: Statistical Models of Event
Seqguences.

Non-statistical scripts date back to the 1970s
[Schank & Abelson 1977].

Statistical script learning is a small-but-growing
subcommunity [e.g. Chambers & Jurafsky 2008].

Model the probability of an event given prior
events.

Background: Statistical

Millions
of
Documents

—> «Syntax >

Script Learnir

9

NLP Pipeline

. Coreference

Millions of
Event Sequences

4

Train a
Statistical Model

Background: Statistical
Script Inference

NLP Pipeline
—> «Syntax >
. Coreference

Single
Event Sequence

New Test
Document

4

Inferred Probable Query Trained
Events Statistical Model

10

LSTM Script models

* Train LSTM sequence model on event sequences.
* Events are (verbs + arguments).

* Arguments can have noun info, coref info, or
both.

e To infer events, the model generates likely events
from sequence.

19

LSTM Script models

e Mary's late husband Matthew, whom she married at
21 because she loved him, ...

[marry, mary, matthew, at, 21]; [love, she, him]

(0] O O

1 2 T
RNN q RNN . RNN
Unit Unit Unit

X X X

1 2 T

20

LSTM Script models

e Mary's late husband Matthew, whom she married at
21 because she loved him, ...

[marry, mary, matthew, at, 21]; [love, she, him]

LSTM [—

21

Experimental Setup

Train on English Wikipedia.
Use Stanford CoreNLP to extract event sequences.

Train LSTM using Batch Stochastic Gradient
Descent with Momentum.

To infer next events, have the LSTM generate
additional events with highest probability.

24

Evaluation

* “Narrative Cloze” (Chambers & Jurafsky, 2008):
from an unseen document, hold one event out, try
to infer it given remaining document.

 “Recall at k” (Jans et al., 2012): make k top
inferences, calculate recall of held-out events.

* (More metrics in the paper.)

25

Evaluation

* Three Systems:
- Unigram: Always guess most common events.
- Bigram: Variations of Pichotta & Mooney (2014)
-+ Uses event co-occurrence counts.
- Best-published system on task.

- LSTM: LSTM script system (this work).

26

Results: Predicting
Verbs & Coreference Info

Recall at 25 for inferring Verbs & Coref info

27

Results: Predicting
Verbs & Nouns .

0 0.02 0.04 0.06 0.08

Recall at 25 for inferring Verbs & Nouns

28

Human Evaluations

 Solicit judgments on individual inferences on
Amazon Mechanical Turk.

 Have annotators rate inferences from 1-5 (or
mark “Nonsense,” scored 0).

* More interpretable.

29

Results: Crowdsourced Eval

Random

LSTM

30

