
ML4NLP
Local and Global Training 
for Structure Prediction

CS 590NLP

Dan Goldwasser
Purdue University

dgoldwas@purdue.edu



Structure	Prediction
Language is highly structured.

We read words in the context of other words.

We make long range inferences, in order to decode 
language meaning.
e.g., “John at lunch, he later went to sleep”

How can we account for structural dependencies 
when learning and making predictions?



NL	Structures:	the	10,000 feet View

•  Tip	of	the iceberg
Natural language, expressed in words, is just a surface		
representation	underlying	a	complex structure

the boy hits

the ball

A	core	concept	is Inference : generalizing	 the	notion	 of classification



Structure	Prediction
Let’s	look	at	a	couple	of	examples…

• Part	of	speech	Tagging
• Named	Entity	Recognition	
• Parsing
• Information	extraction
• Co-reference	Resolution	

How	would	you	categorize	the	structural	
dependencies	for	each	task?



Simple	example:	Sequence labeling
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•  Input:	A	sequence	of	tokens	(e.g., words)
•  Output:	A	sequence	of	labels	of	same	length	as input

Notable example: Part- of	–speech	 (PoS) tagging:
--										Given	a	sentence,	find	the	PoS	tags	of	all	the words

The Fed raises interest rates

Determiner Noun Verb Noun Noun

Verb Verb VerbOther possible output	 	
tags	for words:



Decoding (prediction)

Given	an	observation	sequence	and	an	HMM,	we need		
to	find	the	optimal	statesequence:

•  How	can	we	find it?
–  Combinatorial optimizationproblem

24

Basic idea:

Independence assumptions lead to an algorithmic  
solution!



Viterbi	Algorithm
Definitions:

n :	length	of	input,	Sk :	possible	symbols	at	position	k

r(y1, .., yk) =
kY

i=1

p(yi|yi�1)
kY

i=1

p(xi|yi)

Truncated version of the probability (defined over k long sequences, k<n)

⇡(k, v) = max(y1,...,yk;yk=v)r(y1, ..., yk)
max probability tag sequence of size k ending with v

DP table:

⇡(k, v) = max

u2Sk�1
(⇡(k � 1, u)⇥ p(v|u)⇥ p(xk|v))

Recursive definition of DP table:



Viterbi:	DP	Table	

D D D

N N N

V V V

…

⇡(3, D) = max(y1,...,y3;y3=D)r(y1, ..., y3)

⇡(k, v) = max(y1,...,yk;yk=v)r(y1, ..., yk)
max probability tag sequence of size k ending with v

⇡(k, v) = max

u2Sk�1
(⇡(k � 1, u)⇥ p(v|u)⇥ p(xk|v))

John ate lunch at the watering hole café 
Words

Tags



The	Viterbi	Algorithm
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Input : a sequence x1, .., xn ,

parameters: p(s|u), p(x|s) 8s, u 2 S

Initialization: ⇡(0, ✏) = 1

(Note:✏ is just a start symbol)

For k = 1..n

For v 2 Sk

⇡(k, v) = maxu2Sk�1(⇡(k � 1, u)⇥ p(v|u)⇥ p(xk|v)

Return maxu2Sn(⇡(n, u)⇥ p(�|u))
(Note:� is just an end symbol)

Note:
We	augment	 the	set	
of	tags	with start
symbol	and	compute	
parameters	for	these	
symbols

What	does	this	algorithm	return?	
We	are	interested	in	the	optimal	sequence!
Solution:	small	modification	to	the	algorithm,	maintain	a	list	of	backpointers

What	is	the	run	time	
complexity	of	Viterbi?	



Parameter	Estimation	

Two	terms:
p(xi|yi)p(yi|yi�1)

p(NN |DET ) =
count(NN,DET )

count(DET )

p(yi|yi�1) (transitions	probabilities)

p(“watering”|NN) =
count(“watering”, NN)

count(NN)

p(xi|yi) (emission	probabilities)

Initial	state	probability

In	practice:	smoothing	is	required!



Generative	vs.	Discriminative
Hmm:	Model	for	the	joint	probability	of	(x,y)

At	prediction	time	we	care	about	the	probability	of	output	given	the	input
Why	not	directly	optimize	this	conditional	likelihood	instead?

• Instead	of	modeling	the	joint	distribution	P(x,	y)	only	
focus on P(y|x)
– Where	have	we	seen	it	before?

– How	can	we	extend	this	model	to	sequences?

–Maximum	Entropy	Markov	Model	[McCallum,	et	al	2000]



Conditional	Models

This	assumption	lets	us	write	the	conditional	probability	
of	the	output	as

Yt-1 yt

xt xt

Yt-1 yt

xt
HMM Conditiona

l	Model

We	need	 to	learn	this	function



Learning	Conditional Models

•  Advantages:
–  Use	rich	features	that	depend	on	input	and	previous state
–  We	can	extract	rich	features	from	the	entire	inputsequence

•  Learning algorithms:
– Probabilistic:	Logistic	regressions	(=Max	Entropy)
–  We	can	also	use	any	multiclass classifier

•  Perceptron, SVM,..



Log-Linear	Models	for	Multiclass		Classification

Consider	multiclass classification
–  Input:	x,	output:	y	(multiclass 1,..,k)

–  Feature	representation: Φ(x,y)
•  Joint	feature	function	(input	+ output)

•  Conditional probability:

•  A	generalization	of	logistic	regression	tomulticlass



Training	is straightforward

Training: maximum likelihood

Regularized version:

For	logistic	Regression:



•  Gradient	basedmethods
– using	gradientof

•  Simple approach	
1.  Initialize	w =
ti 2.  For	t	=	
1,	2, …1. Update	w	= w	+	at r L(w)
3. Returnw

Gradient	Based optimization

A	vector,	whose	jth	element	is the		
derivative	 of	L	with wj.



Modeling	P(yi	| yi-1,	xi) P(yi	| yi-1,	x)

• Different	approaches	possible
1. Train	a	maximum	entropy (log-linear)	classifier

2. Or,	ignore	the	fact	that	we	are	predicting	a	probability,	
we	only	care	about	maximizing	some	score.	Train	any	
classifier,	using	say	the	perceptron algorithm

• For	both	cases:
– Use	rich	features	that	depend	on	input	and	previous	state
– We	can	increase	the	dependency	to	arbitrary	neighboring	xi’s

• Eg.	Neighboring	words	influence	this	words	POS	tag



MEMM: Max Entropy Markov Model

Φ(x,0,start,yti) Φ(x,	 1,y0,	y1) Φ(x,	 2,	y1,y2) Φ(x,	3,	y2,y3)

Compare	to	HMM:	Only	depends	on	the	word	and	the	previous tag

Determiner Noun Verb Noun

The Fed raises interest rates

Nounstart

Φ(x,4,	y3,	y4)

word The Fed raises interest rates
Caps Y Y N N N
--es N N Y N N

Previous start Determiner Noun Verb Noun



UsingMEMM

•  Training
–  Train	next--state	predictor	locally	as	maximum	likelihood

•  Similar	to	any	Log--linear model

•  Prediction/Decoding
–  Modify	the	Viterbi	algorithm	for	the	new independence
assumptions

In	general,	any	algorithm	can	be	used	to	score	yi given yi-1	 and x
–  Pick	your	favorite	multiclass classifier

Question:	How	would	you	modify	Viterbi		
when	using	non--probabilistic classifiers?



Label bias

Example:

The robot wheels are round

N V A

V N R

N

0.8

0.2

1 1

1
D

1

1

MEMM	independence
assumption

Suppose	 these	are	the	only	 state	transition allowed

Option	1:	 P(D	|	The) ·
P(N	|	D,	robot) ·
P(N	|	N,	wheels) ·
P(V|N,are) ·
P(A	|	V, round)

Option	2: P(D	|	The) ·
P(N	|	D,	robot) ·
P(V	|	N,	wheels) ·
P(N	|	V,	are) ·
P(	R|	N, round)

Learning local “next--	
state” classifiers

Example	based	on	[Wallach2002]



Label bias

The robot wheels are round

N

1 1
V N R

V

N

0.8

0.2

1

D
1

A
1

Option	 1:	P(D	|	The) ·
P(N	|	D,	robot) ·
P(N	|	N,	wheels) ·
P(V	|	N,	are)	· P(V	|	N,	Fred) ·
P(A	|	V, round)

Option	 2:	P(D	|	The) ·
P(N	|	D,	robot) ·
P(V	|	N,	wheels) ·
P(N	|	V,	are)	· P(N	|	V,	Fred) ·
P(	R|	N, round)
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The	path	scores	are	the	same
--			regrdless	of	the	change	in inputs!



Label	Bias
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• States	with	a	single	outgoing	transition	effectively	
ignore	their	input
– States	with	fewer	transitions	will	dominate	the	result

• Why?
– Each	next-state	classifier	is	normalized	locally
– If	a	state	has	fewer	next	states,	each	of	those	will	get	a	higher	
probability	mass

• …and	hence	preferred

• Side	note:	Surprisingly	doesn’t	affect	some	tasks
– Eg:	POS	tagging



Can	you	define	NER	as	a	MEMM?
Named	entity	recognition	(NER)

Identify	mentions	of	named	entity	in	text
People	(PER),	places	(LOC)	and	organizations	(ORG)

Barak	Obama	visited	Mount	Sinai	hospital	in	New	York

PER ORG LOC

Conceptually	two	considerations:
• Entity	boundary	(Begin,	Inside	,Outside)
• Entity	type	(PER,ORG,LOC)

Our	Labels:
Beginp,BeginL,Begino
Insidep,InsideL,Insideo
Outside

Beginp
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Given	a	sentence,	are	consecutive	predictions	
independent	of	each	other?



Global models

•  Train	the	predictor globally
–  Instead	of	training	local	decisions independently

•  Normalize globally
–  Make	each	edge	in	the	modelundirected
–  Not	associated	with	a	probability,	but	just	a “score”

•  Recall	the	difference	between	 local	vs. global for	
multiclass

based	on	V.	Srikumar slides



wTΦ (x,y0, y1)

Each	node	 is	a	random variable

We	observe	some	nodes	and	need	to	assign	the rest

Y0 y1 y2 y3

x

wTΦ (x,y1, y2)

Conditional	 Random	Field:	Factor graph
Factors

Each	factor	is	associated	with	a score

wTΦ (x,y2, y3)
Arbitrary features,		
as	with	local		
conditional		
models



Conditional	 Random	Field:	Factor graph

y0 y1 y2 y3

x

wTΦ(y0, y1) wTΦ(yti, x) wTΦ(y1,y2) wTΦ(x,y2, y3)wTΦ(y1,x) wTΦ(y2,	x)	wTΦ(y3, x)

A	different	factorization:	Recall	decomposition	of	structures	into	 parts.



Conditional	 Random	Field	for sequences

Z:	Normalizing	constant, sum over		
all sequences

y0 y1 y2 y3

x

wTΦ(x,y0, y1) wTΦ(x,y1, y2) wTΦ(x,y2, y3)

Assign	a	(conditional)	probability	to	the	entire sequence



CRF:	as	a	log-linear	model	over structures

•  Input:	x,	Output: y,
•  both	sequences	(for	now,	in	general	can	be	more	complex structures)

•  Given	a	feature	vector	for	the	entire inputand output	
sequence:Φ(x,y)

•  Define	a	log-linear	model,	P(y	|	x)	parameterized	by w

Similar	to	the	log	linear	model	we	saw,	but	now --
•  Space	of	y	is	the	set	of	all	possible	sequences	(length n)
•  Normalization	constant	sums	over	all sequences



Global features
The	feature	function	decomposes	over	the sequence
Aggregates	all	active	 features	into	a	global	representation

y0 y1 y2 y3

x

wTΦ(x,y0, y1) wTΦ(x,y1, y2) wTΦ(x,y2, y3)



Prediction
Goal:	To	predict	most	probable	sequence	y	an	input x

Since	the	scoredecomposes:

Note:	modified definition of	 	
Viterbi,	uses	sum	of scores,
instead	of	products of		
probabilities

è Prediction	via	Viterbi:



Training	a	chain CRF

•  Training	a CRF
–  Maximize	the	(regularized) log-likelihood



Training	with inference

Many	optimization methods:
–  Numerical optimization

•  Stochastic	gradient	ascent	can	also	work	very	 well

Simple	gradient ascent

•  Training	involves inference!
–  Summing	over	all	sequences	is	just	like Viterbi

• With	summation	instead	of maximization

This	is	an	instance	of	a		
repeating	idea	in
training		global models:
Training	requires inference



CRF	Summary

CRF:	Assign	condit.	probability	to	entire sequence
Z:	Normalizing	constant,	
sum	over	all	sequences

Can	also	be	view	as	a	log-linear	model	over	sequences,
Note	the	feature	vector	
in	this	case	(see	below)	 	
is	defined	over	the	entire	
sequence

With	this	view,	the	(regularized)	learning	objective	is:
This	is	an	instance	of	a	big	idea	
in	training	global	models:
Inference-based	Training

A	smooth+convex
objective,	we	can	use	
gradient	based	method:



CRF	Summary
•  An	undirected	graphical model

–  Decompose	the	score	over	the	structure	into	a	collection	 of factors
–  Each	factor	assigns	a	score	to	assignment	 of	the	random	variables	it	is		

connected to

•  Training	and prediction
–  Final	prediction	 via	argmax	wTΦ(x,y)
–  Train	by	maximum	(regularized) likelihood

•  Relation	 to	other models
–  A	generalization	of	logistic	regression	to structures
–  Effectively	a	linear classifier

–  We’ll	look	at	others	– perceptron,	SVM	for	structureprediction
–  An	instance	of	Markov	Random	Field,	with	some	random	variablesobserved



Big	Ideas
Generative	vs.	Discriminative	models

Generative:
learn	P(x,	y)
Characterize	“data	generation”	
Naïve	Bayes,	HMM

Discriminative:
learn	P(y	|	x)
Conditional	models	(focus	on	decision	boundary)
Probabilistic (Logistic	Regression)	or	not (SVM,..)



Big	Ideas
Local	vs.	Global	models

Local:
Training:	local	next-state	classifiers
Prediction:		optimize	global objective	(e.g.,	using	Viterbi)
MEMM	(or	use	a	non-probabilistic	classifier)

Global:
Training:	Global	sequence	 (or	structure)	predictor

“Inference	based	 training”
All	global	learners	 require	inference	at	training	time!

Prediction:		optimize	global objective	(e.g.,	using	Viterbi)
CRF,	Structured	Perceptron,	Structured	SVM,..



Let’s	look	at	a	few	more	global	models

In	the	beginning	there	was	HMM
We	derived	a	discriminative	algorithm	for	learning	
sequences

Local:	MEMM
Global:	CRF

Today:
Let’s	derive	another	simple	algorithm

Recall:	naïve	Bayes	is	a	linear	model
Can	we	say	the	same	about	naïve	Bayes	for	sequences?



NB	is	a	linear	classifier,	so	is	HMM..

• Consider	the	HMM

• Or	equivalently

Indicators:	I z =	1	if	z is	true;	else	0

This	is	a	linear	function!
è Log	P	terms	are	the	weights;	counts	and	indicators	are	features
è Can	be	written	as	a	wTΦ(x,y)	,and	use	a	different	feature	set



NB	is	a	linear	classifier,	so	is	HMM..
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HMM	is	a	linear	classifier
– Can	be	written	in	the	form:	wTΦ(x,y)
– We	can	add	other	features	beyond	omission/transition	
features,	as	long	as	the	output	can still be	decomposed

Difference	from	traditional	HMM:
Inference:	Viterbi	calculates	a	the	maximal		score	(rather	than	
probabilities) i.e.,	max wTΦ(x, y)

Learning:Use	other	different	learning	algorithms	(not	necessarily	
probabilistic)

– If	we	need	a	probabilistic	interpretation,	we	could	always	normalize	
– We	can	effectively	just	focus	on	the	score	of y for	a	particular	x
– Train	a	discriminative	model!



Structured	Perceptron	algorithm

Given	a	training	set	D	=	{(x,y)}
1. Initialize	 w ∈ Rn

2. For	Iteration=	1	…	T:
1. For	each	training	example	(x,	y)∈ D:

1. Predict	y’	=	argmaxy’	wTΦ	(x,	
y’)	2.If	y	≠	y’,	update	w	ß w	+	learningRate (Φ(x,	y)	-Φ	(x,	

y’))3. Return	w

Prediction:	argmaxy	wTΦ(x,	y)

T	is	a	hyperparameter	to	the	algorithm

Inference	based	training
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Note:	update	only	on	error!		
(perceptron	 is	mistake	driven)
Promote	y	(gold	structure)	and	
demote	y’	(predicted	
structure)	



Structured	Perceptron	algorithm

Extension	of	binary	perceptron	for	the	structured	case
Similar	guarantees;	if	data	is	linearly	separable
Good	idea:		limit	the	number	of	iterations

Tune	as	a	hyperparameter;	usually	few	are	enough

You	can	add	stability	by	averaging	the	models	perceptron	
produces:

Maintain	a	counter	for	each	weight	vector	seen	during	training.
Increase	the	counter	at	each	iteration	(regardless	if	an	update	
occurred)
Return	weighted	average	of	all	weight	vectors.



Structured	Perceptron	with	averaging
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Given	a	training	set	D	=	{(x,y)}
1. Initialize	 w	∈ Rn, 	 a∈ Rn

2. For	epoch	=	1	…	T:
1. For	each	training	example	(x,	y)	∈ D:

1. Predict	y’	=	argmaxy’	wTΦ	(x, y’)
2. If	y	≠	y’,	update	w	ß w	+	learningRate	(Φ(x,	y) - Φ(x,	y’ ))
3. Set	a	ß a	+	w

3. Return	a/	(nT)



Structure	Perceptron	for	Tagging	

Discriminative Training Methods for Hidden Markov Models: Theory and Experiments 
with Perceptron Algorithms  Michael Collins. ACL 2002

Use	a	global	feature	vector		

Compare a local model (MEMM) 
with a global model trained using 
the structured perceptron algorithm



CRF	and	Structured	Perceptron	are	not	
that	different!
stochastic	gradient	 descent	 update	 for	CRF

– For	a	training	example	(xi,	yi)

Structured	perceptron
– For	a	training	example	(xi,	yi)

Intuition:	CRF:	Expectation	(“soft	max”)
S.	Perceptron:	max

Is	the	result	of	argmax



Large	Margin	Structure	Prediction

l(w;(xn, yn))

l(w;(xn, yn)) = max
y′∈Y

∆(y, y′)− ⟨w,φ(xn, yn)⟩+ ⟨w,φ(xn, y′)⟩

l(w;(xn, yn)) = max
y′∈Y

∆(y, y′)− ⟨w,φ(xn, yn)⟩+ ⟨w,φ(xn, y′)⟩

Recall	the	Cost-Sensitive	Multi-Class	SVM

What	would	we	need	to	change?

Prediction:	

Learning:	



Structured	Prediction
The	key	difference	is	when	computing:

We	are	predicting	a	vector	instead	of	a	single	value.

• Also – adapt	the	distance	function	Δ for	structure
• Popular	choice:	hamming	distance	



Structure	SVM	– Take	1

Suppose	we	have	a	structure	(defined	as	a	factor	graph)

Each	factor	(or	part)	associated	with	a	feature	function
The	feature	vector	for	the	entire	structure	is	defined	by	
summing	up	the	features	for	the	parts



Structure	SVM	– Take	1

Given	some	training	data,	we	want	to	enforce	the	following:
For	each	example:

The	annotated	structure	(yi)	gets	the	highest	score	among	all	structures	(structured	
Perceptron)



Structure	SVM	– Take	1

Score for gold 
output

Score for 
other output

Maximize margin by 
minimizing the norm of w



Structure	SVM	– Take	2

Score for gold 
output

Score for 
other output

Maximize margin by 
minimizing the norm of w



Structure	SVM	– Take	2

Intuition:
èStructures	that	are	close	to	the	true	structure	(according	
to	their	Hamming	distance)	can	get	a	close	score	

èStructures	that	are	very	different	should	be	further	apart



Structure	SVM	– Take	3



Structure	SVM	– Take	3



Sub	gradient	for	S-SVM

Solve	the	max:			y’ =   

Notice	the	difference!
This	is	known	as	loss-augmented	inference

Question:	how	would	you	tweak	Viterbi?

The	sub-gradient	is:



SGD	for	S-SVM
At	each	step	go	down	the	(sub)	gradient:

What	happens	if	y’	=	y	?
Equivalent	algorithm:

If	y’=y:	

Otherwise:			



SGD	for	S-SVM



Open	Questions

So	far	we	have	seen	global and	local	training	regimes
Local	classifier:	learn	next	state	functions
Global	classifier:	optimize	a	global	objective

Pushing	this	idea	forward:	can	we	learn	global	models	over	
different	structure	types?

E.g.,	a	single	model	for	PoS,	chunking,	NER	and	parsing
Can	we	always	assume	that	everything	is	annotated?
How	can	we	move	beyond	sequences?



Structured	Learning	with	
missing	Information



Paraphrase	Detection

Consider	the	following	prediction	problem:
Given	two	sentences,	determine	if	the	sentences	have	the	same	meaning.

The US president met the British PM in London today

The US and British heads of state met in London at  5 PM.

The British PM met the president of the London club today.

Mary gave the ball to John earlier today

Can	you	design	a	classifier	for	this	task?



Paraphrase	detection

It’s	clear	that	a	better	representation	of	the	training	
instances	is	needed		
Intermediate	task:	explain why	two	sentences	form	a	
paraphrase	pair.

However	– the	training	data	does	not	provide	it!

The US president met the British PM in London today

The US and British heads of state met in London at  5 PM.



Learning	with	Latent	Variables	

The US president met the British PM in London today

The US and British heads of state met in London at  5 PM.

Basic	idea:	define	a	structured	prediction	problem	as	explanation

Φ(x,h) = < φ(x,h0 ),φ(x,h0,h1),...,φ(x,hd−1,hd ) >

..	And	then	use	it	to	make	predictions:



• Input	Representation:	feature	functions
– E.g.	Bag-of-words,	N-grams	 features

• Prediction	:	 ,
• Learning:	given	training	data	

Classification 101
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Weight	vector	(W)

Input	object	(x)

φ(x)

{(x1, y1),..., (xn, yn )}



Prediction over Latent Structures
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The	typical	classification	settings	-

Binary				
Label

Input	
Object

Feature	
Function

x φ(x) y



Prediction over Latent Structures
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But	our	settings	are	different		

Input	
Object

x

Inference		
(Semantic	parse)

h

Binary				
Label

y

Feature	
Function

φ(x,h)

• Different	Prediction	function!		

• Feature	representation	is	no	longer	deterministic	
– Depends	on	inference	(structured	prediction)



Structured Prediction Definitions
Finding	the	optimal	structure
Structure	represented	as	features

Given	a	weight	vector	W,	use	a	linear	model
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w

Weight	vector

Space	of	possible	
structures	for	input	x

H(x)

selected	structure

Φ(x,h) = < φ(x,h0 ),φ(x,h0,h1),...,φ(x,hd−1,hd ) >



Learning over Latent Structures

• Fixed	Supervision:	Feedback	is	associated	with	
All	representations	have	the	same	label
Binary	Classification	with	latent	structure
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Input	
Object

x

Inference
(semantic	parse)

h

Binary				
Label

y

Feature	
Function

φ(x,h)

Learn	both	problems	jointly using	Binary	supervision

x



Learning over Latent Representations

Each	input	defines	a	set	of	possible	representations

w	should	separate	single	representation	
Best	negative	structure	<0	; Best	positive	structure	>0

67
Fix	Representation.	Update	Weights.

argmaxh∈H (x )w
TΦ(x, y)



Learning over Latent Representations

• Each	data	point	has	a	single	feature	representation
– Learning	is	now	straight-forward

68
Fix	Representation.	Update	Weights.

argmaxh∈H (x )w
TΦ(x, y)



Learning over Latent Representations

The	new	weight	vector	defines	a	new	representation

69
Fix	Representation.	Update	Weights.	Repeat.

argmaxh∈H (x )w
TΦ(x, y)



Prediction is	similar	to	SVM:
One	difference:	
Learning:	Given	a	set	of	examples	{(x1,y1),..,(xk,yk)}

Non Convex Objective!
- Local minimum
- Exploit semi-convexity

- Fix positive representation, 
solve for negatives

NAACL’10

70

Learning over Latent Representations



Structure	Learning	with	Latent	Variables
We	can	easily	extend	this	framework	for	the	structured	
output	case.
Let	define	the	prediction	problem:

E.g.,	assume	a	latent	variable	associated	with	each	
state	in	a	sequence.
How	would	you	modify	traditional	Viterbi	for	this	
case?

argmax
h,y

wTΦ(x,h,y)



Viterbi:	DP	Table	

D D D

N N N

V V V

…

⇡(3, D) = max(y1,...,y3;y3=D)r(y1, ..., y3)

⇡(k, v) = max(y1,...,yk;yk=v)r(y1, ..., yk)
max probability tag sequence of size k ending with v

⇡(k, v) = max

u2Sk�1
(⇡(k � 1, u)⇥ p(v|u)⇥ p(xk|v))

John ate lunch at the watering hole café 
Words

Tags



Example
Consider	a	dialog	analysis	system,	that	classifies	users	
utterances	into	dialog-acts	

Hello, good morning!
Can you please tell me where to go?

I’m sorry I did not get that 

Where should I go?

I’m sorry I did not get that 

Me. Where. Go.

I’m sorry I did not get that 

Why don’t you go to @#$# ?

Q

Q

S

Q



Example

Consider	a	dialog	analysis	system,	that	classifies	users	
utterances	into	dialog-acts	

x

y0 y1 y2

h0 h1 h2



Realistic	Scenarios

natural language processing is fun!

自然语言处理是乐趣！

procesamiento del lenguaje natural es muy divertido!

traitement du langage naturel est amusant!

обработки естественного языка это весело!

प्राकृितक भाषा संसाधन मजेदार है!

Training data consists of full sentences, not word pairs!



Realistic	Scenarios

“Hi Siri, please make a reminder of the 23rd of the month to call mom”

Make_reminder( Date(Feb, 23,2106), r1) 
ReminderAction(r1, FindEntry(Mom),  call)

Training data consists of English + Logical, not word and predicates!



Structured	Perceptron	algorithm

Given	a	training	set	D	=	{(x,y*)}
1. Initialize	 w ∈ Rn

2. For	Iteration=	1	…	T:
1. For	each	training	example	(x,	y)∈ D:

1. Predict	h’,	y’	=	argmaxy’	wTΦ	(x ,			h					,			y’)	
2. Predict h* =	argmaxh’	wTΦ (		x ,			h					,			y*)
3. If	y	≠	y’,	update	w	ß w	+	learningRate (Φ(x ,	h*,	y*)	-Φ	(x, h	‘			,y’))

3. Return	w

Prediction:	argmaxy	wTΦ(x,	h		,	y)

77



Latent	Structure	SVM



Latent	Structure	SVM
The	Gradient	update	is	similar	to	S-SVM:

(..	And	also	shrink	W	at	each	update	step)



Beyond	Sequence	Models



Graphical	models

• A	language	to	represent	probability	distributions	
over	multiple	random	variables

– Representation:	Directed	or	undirected	graphs

– Encodes	conditional	independence	assumptions

• General	machinery	for:
– Representing,	estimating	and	computing	marginal +	
conditional	probabilities

• In	general	–support	inferences	about	a	domain

Interestingly,	you	have	already	seen	two	graphical	models!	
Which	ones?



Bayesian	Network

Data	structure	for	representing	joint	probability	
Encodes	independence	 assumptions

Decompose	joint	probability	via	a directed	acyclic	graph
– Nodes represent	random	variables
– Edges represent	conditional	dependencies
– Each	node	is	associated	with	a	conditional	probability	table (CPT)



Bayesian	Network

Example	from	Russell	and	Norvig

Compact	representation	of	the	joint	probability	distribution

P(B,	E,	A,	J,	M)	=	P(B)	P(E)	P(A|	B,	E)	P	(J	|	A)	P)	M	|A)

Question:	Where	do	the	independence	assumptions	come	from?

Domain	knowledge,	can	they	be	learned?



Bayesian	Network
• Example:	Hidden	Markov	Model

– Naïve	bayes	classifier	is	a	simple	Bayes	net

• Problem:	Bayesian	nets	can	create	unnatural	 conditional	
independence
– Eg:	Segmenting an	image	by	assigning	a	label	to	each	pixel

• Say,	we	want	adjacent	labels	to	influence	each	other

Two	problems:
1. What	is	the	right	direction	of	arrows?

2. For	any	choice	of	 the	arrows,	strange	
dependencies	 show up. X8	 is	independent	
of	everything	given	 its	Markov	blanket	
(other	circled	nodes	here)

Example	from	Kevin	Murphy



From	generative models	to	CRF

24
[Figure	from	Sutton	 and	 McCallum,	 ‘05]



General	CRFs

x1 x2

wTΦ	(x1,	x2,	y2)

x3

y3

y2

y1

wTΦ	(y1,	y2,	y3)

w Φ(x3,	y2,	y3)T
wTΦ	(x ,	y )1 1

Φ(x,y)	=	Φ (x1,	y1)	+	Φ (y1,	y2,	y3)	+	Φ (x3,	y2,	y3)	+	Φ (x1,	x2,	y2)

We	can	talk	about	
NB,	sequence	
models	and		general	
graphical	models	in	
the	same	
framework

Moving	from	a	sequence	
model	to	complex	
dependency	is	straight	
forward
- Higher	order	Features
- Partition	function



Structured	Perceptron	with	averaging

87

Given	a	training	set	D	=	{(x,y)}
1. Initialize	 w	∈ Rn, 	 a∈ Rn

2. For	epoch	=	1	…	T:
1. For	each	training	example	(x,	y)	∈ D:

1. Predict	y’	=	argmaxy’	wTΦ	(x, y’)
2. If	y	≠	y’,	update	w	ß w	+	learningRate	(Φ(x,	y) - Φ(x,	y’ ))
3. Set	a	ß a	+	w

3. Return	a/	(nT) The same  algorithm can still be used, 
we only need to adapt our inference 
procedure (argmax) and use different 
feature functions
à Introduces a computational issue!



Inference:	take	2
So	far	we	have	only	seen	the	Viterbi	algorithm

Solve	a	combinatorial	optimization	 problem,	by	making	a	strong	assumption	–
sequence	models.

What	happens	if	our	problem	requires	more	complex	
inference:

Parse	trees?
Segmentation?



Dynamic	Programming
You	actually	already	know	the	answer	(hint:	CS	580)
General	strategy,	used	by	many	combinatorial	
optimization	algorithms

Viterbi	:	sequences
CYK:	Parse	trees
Max-Spanning	tree:	Dependency	parse
Min-cut/max-flow:	segmentation
Edit	distance:	string	alignment	



Inference	as	Search

It’s	easy	to	think	about	inference	as	a	search	problem
Similar	to	most	of	AI..

A	search	problem	is	defined	by	–
State	(partial	assignment	of	the	structure)
State	transitions
State	state/End	state
Scoring	function	over	states

The	search	defines	the	highest	scoring	path	from	start	to	
end	è solves	the	argmax problem!



Inference	as	Search

Viterbi	can	be	though	of	as	a	search	problem

This	is	a	version	of	exact	search
Instead,	we	can	also	run	cheaper	greedy	search

At	each	step,	take	the	highest	scoring	transition
Is	this	a	problem?

Greedy	algorithms	are	sometimes	optimal!
Sub-modular	functions



Inference	as	Search
Beam	search:	mid-point	between	exact	and	greedy

Keep	a	priority	queue	of	size	k,	known	as	the	beam
At	each	level	only	explore	k	next	states

If	k	=	infinity:	this	is	just	BFS
Otherwise:	greedy	search	over	the	top	k	states

Very	popular!



Integer	Linear	Programming

An	expensive,	declarative alternative	to	search	algorithms.
Explicitly	states	the	objective	of	the	search.
General	form:

Solution	(assignment	to	x)	has	to	be	an	integer!
We	will	look	at	a	subset,	0-1	ILP



Integer	Linear	Programming
The	CEO	problem:

We	have	8	short	wood	pieces,	and	6	long	wood	pieces
Table	requires	2	long	pieces,	2	short	pieces
Chair	requires	1	long	pieces,	2	short	pieces
We	can	sell	tables	for	$20,	chairs	for	$15

We	want	to	maximize	our	profits!

Max 15 * chairs + 20 * tables

Subject to

Long pieces:  chairs + 2 tables ≤ 6
Short pieces:  2 chairs + 2 tables ≤ 8

(chairs≥0, tables≥0)



Integer	Linear	Programming

2	chairs	+	2	tables	=	8	small	pieces

chairs	+	2	tables	=	6	long	pieces

4

3

2

1

2 4 6



How	can	we	use	ILP	for	inference?
ILP	is	a	very	convenient	way	to	express	many	
combinatorial	optimization	problems!

Let’s	start	with	an	easy	example:	multi-class	classification

max
z

zA · c(A) + zB · c(B) + zC · c(C) (maximize the score)

s.t.
zA, zB, zC ∈ {0, 1}
zA + zB + zC = 1 (only a single label can be active)



How	can	we	use	ILP	for	inference?
we	assign	a	decision	variable	for	each	factor

max
y

wTφ(x1, y1) + wTφ(y1, y2, y3) + wTφ(x3, y2, y3) + wTφ(x1, x2, y2)



How	can	we	use	ILP	for	inference?
we	assign	a	decision	variable	for	each	factor

Slides	 adapted	from	V.	Srikumar slides

max
y

wTφ(x1, y1) + wTφ(y1, y2, y3) + wTφ(x3, y2, y3) + wTφ(x1, x2, y2)



How	can	we	use	ILP	for	inference?
we	assign	a	decision	variable	for	each	factor

z13AB implies z1A∧z3B

Slides	 adapted	from	V.	Srikumar slides



Adding	Constraints
Boolean	formulas	can	be	converted	into	linear	
constraints
One	out	of	z1,..zk

At	least	m	out	z1,..zk	

Implication:	z1 à zk z1+..+zk ≥ m

zk ≥ z1

z1+..+zk = 1



Let’s	practice!
How	would	you	write	a	sequence	labeling	problem	as	
ILP	instance?

1 2 3



We	presented	a	nice	“map”	for	structured	prediction:

Generative vs Discriminative
Local	vs global
Binary <		multiclass	<	sequence <	graph	

Now,	given	a	new	problem	you	have	to	decide:	

output decomposition, training regime and learning algorithm

Is the distinction really that clear cut?



Consistency	of	outputs

1 2 3

But	the	standard	CRF	learning	does	not	allow	for		
potential	 functions	to	be	set	manually

Should	we	learn	what	we	can	write	down	easily?
Especially	for	large,	computationally	 cumbersome	
factors

y1 y2 y3 f

A A A 0

A A B 0

A B A 0

A B B -1

B A A 0

B A B -1

B B A -1

B B B -1

Or:	How	to	introduce	knowledge	into	prediction

Suppose	we	have	a	sequence	labeling	problem	where	the	outputs	can	be	
one	of	A	or	B	We	want	to	add	a	condition: There	should	be	no	more	than	one	

B	in	the	output

Here	is	a	simple	way	to	capture	this	dependency



Another	look	at	learning	and	inference

Learning	a	global	model	encoding	our	knowledge	about	the	
problem

Complex	model	(many	more	features)
Computationally	intractable
Recall:	Inference-based	training	is	costly!

Alternatively,	Local	learning:	
Learn	local	decisions	independently	
piece	them	 together	 legally

Prediction:	 inference	can	still	be	global

Training:	 local	models



Combining	local	classifiers

• Option	2:	Inference	can	“glue”	together	local	decisions
– And	enforce global coherence (constrainted optimization)	

1 2 3

s.t. There is  no more than 
one B in the output

Option	1: learn	a	global	model,	penalizing	such	assignments

Knowledge:  no more than one ‘B’ in the output

1 2 3



Constrained Conditional	Model

Inference	consists	of	two	components
1. Local	classifiers	(may	be	a	collection	of	structures	

themselves)
– These	are	trained	models

2. A	set	of	constraints that	restrict	the	space	of	joint	
assignments	of	the	local	classifiers

Where	do	constraints	come	from?



Prediction	in	a	CCM

1 2 3

wTΦ (y ,	y )T 1 2 wTΦ (y ,	y )T 2 3

wTΦE (x,	y1) wTΦE (x,	y2) wTΦE (x,	y3)

Indicator	functions
Iz	=	1	if	z	is	true,	0	otherwise

One	indicator	per	factor	
One	score	per	indicator

argmax
y

⎛

⎝

∑

i

∑

l∈{A,B,C}

Iyi=l · c(x, l) +
∑

i

∑

l1,l2∈{A,B,C}

Iyi=l1∧yi=l2 · c(x, l1, l2)

⎞

⎠

Emission	scores	 Transition	scores



Prediction

Constraint	according	to		-
• Each	yi	 can	either	be	a	A,B,C	label

• At	most	one	'B' in	the	output

argmax
y

⎛

⎝

∑

i

∑

l∈{A,B,C}

Iyi=l · c(x, l) +
∑

i

∑

l1,l2∈{A,B,C}

Iyi=l1∧yi=l2 · c(x, l1, l2)

⎞

⎠

Global	Prediction	Objective:	



Inference	with	hard	constraints

argmax
y

∑

p∈Parts

∑

l∈Labels

Iyp=l
· c(x, l)

Indicator	variables

Constraints	can	be	written	over	the	indicator	variables	

The	result	is	an	ILP	instance,	which	can	be	solved	using	an	ILP	solver,
If	our	problem	is	too	big	(ILP	is	NP-Complete),	we	can	use	approximate
methods	(LP,	beam	search)

Question:	how	would	you	change	beam	search	to	avoid	illegal	states?



CCM	with	soft	constraints
Can	we	replace	the	hard	constraints	with	soft?

Why	would	we	want	to	do	it?
What	will	need	to	change?

Option	1:	set	a	fixed	high	cost	for	breaking	the	constraint

Option	2:	optimize	the	constraint	violation	 costs



CCM	with	soft	constraints

Question:
Assuming	we	take	option-2,	and	try	to	
optimize	the	cost	of	constraint	violation.

What is the difference between option-2 
and the global model with long range 
dependencies we started with?



Summary
Global	joint	inference

Output	structures	decomposes	into	factors/parts
Parts	can	be	scored	independently		BUT	
Their	assignment	is	interdependent!	Encode	using	constraints

Constraints	encode	your	knowledge	about	the	domain
“knowledge	injection”	

Intuition:	no	need	to	learn	what	you	already	know

Question: Can constraints replace data?


