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Abstract

We propose an end-to-end variational au-
toencoding parsing (VAP) model for semi-
supervised graph-based projective dependency
parsing. It encodes the input using continuous
latent variables in a sequential manner by deep
neural networks (DNN) that can utilize the
contextual information, and reconstruct the in-
put using a generative model. The VAP model
admits a unified structure with different loss
functions for labeled and unlabeled data with
shared parameters. We conducted experiments
on the WSJ data sets, showing the proposed
model can use the unlabeled data to increase
the performance on a limited amount of la-
beled data, on a par with a recently proposed
semi-supervised parser with faster inference.

1 Introduction

Dependency parsing captures bi-lexical relation-
ships by constructing directional arcs between
words, defining a head-modifier syntactic struc-
ture for sentences, as shown in Figure 1. De-
pendency trees are fundamental for many down-
stream tasks such as semantic parsing (Reddy
et al., 2016; Marcheggiani and Titov, 2017), ma-
chine translation (Bastings et al., 2017; Ding and
Palmer, 2007), information extraction (Culotta and
Sorensen, 2004; Liu et al., 2015) and question
answering (Cui et al., 2005). Recently, efficient
parsers (Kiperwasser and Goldberg, 2016; Dozat
and Manning, 2017; Dozat et al., 2017; Ma et al.,
2018) have been developed using various neural
architectures.

While supervised approaches have been very suc-
cessful, they require large amounts of labeled data,
particularly when neural architectures are used,
which usually are over-parameterized. Syntactic
annotation is notoriously difficult and requires spe-
cialized linguistic expertise, posing a serious chal-
lenge for low-resource languages. Semi-supervised
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Figure 1: A dependency tree: directional arcs represent
head-modifier relation between words.
parsing aims to alleviate this problem by combin-
ing a small amount of labeled data and a large
amount of unlabeled data, to improve parsing per-
formance on using labeled data alone. Traditional
semi-supervised parsers use unlabeled data to gen-
erate additional features in order to assist the learn-
ing process (Koo et al., 2008), together with differ-
ent variants of self-training (Søgaard, 2010). How-
ever, these approaches are usually pipe-lined and
error-propagation may occur.

In this paper, we propose Variational Autoen-
coding Parser, or VAP, extends the idea of VAE,
illustrated in Figure 3. The VAP model uses unla-
beled examples to learn continuous latent variables
of the sentence, which can be used to support tree
inference by providing an enriched representation.

We summarize our contributions as follows:
1. We proposed a Variational Autoencoding Parser

(VAP) for semi-supervised dependency parsing;
2. We designed a unified loss function for the pro-

posed parser to deal with both labeled and unla-
beled data.

3. We show improved performance of the proposed
model with unlabeled data on the WSJ data
sets, and the performance is on a par with a re-
cently proposed semi-supervised parser (Corro
and Titov, 2019), with faster inference.

2 Related Work

Most dependency parsing studies fall into two
major groups: graph-based and transition-based
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(Kubler et al., 2009). Graph-based parsers (Mc-
Donald, 2006) regard parsing as a structured predic-
tion problem to find the most probable tree, while
transition-based parsers (Nivre, 2004, 2008) treat
parsing as a sequence of actions at different stages
leading to a dependency tree.

While earlier works relied on manual feature
engineering, in recent years the hand-crafted fea-
tures were replaced by embeddings and deep neural
network architectures were used to learn represen-
tation for scoring structural decisions, leading to
improved performance in both graph-based and
transition-based parsing (Nivre, 2014; Pei et al.,
2015; Chen and Manning, 2014; Dyer et al., 2015;
Weiss et al., 2015; Andor et al., 2016; Kiperwasser
and Goldberg, 2016; Wiseman and Rush, 2016).

The annotation difficulty for this task, has also
motivated work on unsupervised (grammar in-
duction) and semi-supervised approaches to pars-
ing (Tu and Honavar, 2012; Jiang et al., 2016; Koo
et al., 2008; Li et al., 2014; Kiperwasser and Gold-
berg, 2015; Cai et al., 2017; Corro and Titov, 2019).
It also leads to advances in using unlabeled data for
constituent grammar (Shen et al., 2018b,a)

Similar to other structured prediction tasks, di-
rectly optimizing the objective is difficult when the
underlying probabilistic model requires marginal-
izing over the dependency trees. Variational ap-
proaches are a natural way to alleviate this diffi-
culty, as they try to improve the lower bound of the
original objective, and have been applied in sev-
eral recent NLP works (Stratos, 2019; Chen et al.,
2018; Kim et al., 2019b,a). Variational Autoen-
coder (VAE) (Kingma and Welling, 2014) is partic-
ularly useful for latent representation learning, and
has been studied in semi-supervised context as the
Conditional VAE (CVAE) (Sohn et al., 2015). Note
our work differs from VAE as VAE is designed for
tabular data but not for structured prediction, as
the input towards VAP is the sequence of sentential
tokens and the output is the dependency tree.

3 Graph-based Dependency Parsing

A dependency graph of a sentence can be regarded
as a directed tree spanning all the words of the
sentence, including a special “word”–the ROOT–
to originate out. Assuming a sentence of length
l, a dependency tree can be denoted as T = (<
h1,m1 >, . . . , < hl−1,ml−1 >), where ht is the
index in the sequence of the head word of the de-
pendency connecting the tth word mt as a modifier.

Our graph-based VAP parser is constructed
based on the following standard structured predic-
tion paradigm (McDonald et al., 2005; Taskar et al.,
2005). In inference, based on the scoring func-
tion SΛ with parameter Λ, the parsing problem is
formulated as finding the most probable directed
spanning tree for a given sentence x:

T ∗ = argmax
T̃ ∈T
SΛ(x, T̃ ),

where T ∗ is the highest scoring parse tree and T is
the set of all valid trees for the sentence x.

It is common to factorize the score of the entire
graph into the summation of its substructures–the
individual arc scores (McDonald et al., 2005):

SΛ(x, T̃ ) =
∑

(h,m)∈T̃

sΛ(h,m) =
l∑

t=1

sΛ(ht,mt),

where T̃ represents the candidate parse tree, and
sΛ is a function scoring individual arcs. sΛ(h,m)
describes the likelihood of an arc from the head h
to its modifier m in the tree. Throughout this paper,
the scoring is based on individual arcs, as we focus
on first-order parsing.

3.1 Scoring Function Using Neural
Architecture

We used the same neural architecture as that in
Kiperwasser and Goldberg (2016)’s study. We first
use a bi-LSTM model to take as input ut = [pt; et]
at position t to incorporate contextual information,
by feeding the word embedding et concatenated
with the POS tag embeddings pt of each word. The
bi-LSTM then projects ut as ot.

Subsequently a nonlinear transformation is
applied on these projections. Suppose the
hidden states generated by the bi-LSTM are
[oroot,o1,o2, . . . ,ot, . . . ,ol], for a sentence of
length l, we compute the arc scores by introduc-
ing parametersWh,Wm, w and b, and transform
them as follows:

rh−arct =Whot; rm−arct =Wmot,

sΛ(h,m) = wᵀ(tanh(rh−arch + rm−arcm + b)).

In this formulation, we first use two parameters
to extract two different representations that carry
two different types of information: a head seeking
for its modifier (h-arc) and a modifier seeking for
its head (m-arc). Then a nonlinear function maps
them to an arc score.
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Figure 2: In this illustration of the arc scoring matrix,
each entry represents the (h(head) → m(modifier))
score.
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Figure 3: Illustration of variational autoencoder
(VAE)(left) and variational autoencoding parser
(VAP)(right).

For a single sentence, we can form a scoring
matrix as shown in Figure 2, by filling each entry
in the matrix using the score we obtained. There-
fore, the scoring matrix is used to represent the
head-modifier arc score for all the possible arcs
connecting two tokens in a sentence (Zheng, 2017).
Using this scoring arc matrix, we build our graph-
based parser.

4 Variational Autoencoding Parser

VAP (illustrated in Figure 3b) is a semi-supervised
parser able to make use of unlabeled data in ad-
dition to labeled data, extending the idea of varia-
tional autoencoder (VAE, illustrated in Figure 3a)
to dependency parsing.

VAP learns, using both labeled and unlabeled
data, a continuous latent variables representation,
designed to support the parsing task by creating
contextualized token-representations that capture
properties of the full sentence. Typically, each
token in the sentence is represented by its latent
variable zt, which is a high-dimensional Gaussian
variable, to be aggregated as a group of latent vari-
ables z. This configuration ensures the continuous

latent variable retains the contextual information
from lower-level neural models to assist finding its
head or its modifier; as well as forcing the repre-
sentation of similar tokens to be closer. The latent
variable group z is modeled via P (z|x). In addi-
tion, we model the process of reconstructing the
input sentence from the latent variable through a
generative story P (x|z).

We adjust the original VAE setup in our semi-
supervised task by considering examples with la-
bels, similar to recent conditional variational for-
mulations (Sohn et al., 2015; Miao and Blunsom,
2016; Zhou and Neubig, 2017). We propose a full
probabilistic model for a given sentence x, with the
unified objective to maximize for both supervised
and unsupervised parsing as follows:

J = logPθ(x)P
ε
ω(T |x), ε =

{
1, if T exists,
0, otherwise.

This objective can be interpreted as follows: if
the training example has a golden tree T with
it, then the objective is the log joint probability
Pθ,ω(T ,x); if the golden tree is missing, then the
objective is the log marginal probability Pθ(x).
The probability of a certain tree is modeled by a
tree-CRF with parameters ω as Pω(T |x). Given
the assumed generative process Pθ(x|z), directly
optimizing this objective is intractable, thus instead
we optimize its Evidence Lower BOund (ELBO):

Jlap = E
z∼Qφ(z|x)

[logPθ(x|z)]

−KL(Qφ(z|x)||Pθ(z))
+ ε E

z∼Qφ(z|x)
[logPω(T |z)] .

We show Jlap is the ELBO of J in the appendix
A.1.

In practice, similar as VAE-style
models, E

z∼Qφ(z|x)
[logPθ(x|z)] is ap-

proximated by 1
N

∑N
j=1 logPθ(x|zj)

and E
z∼Qφ(z|x)

[logPω(T |z)] by

1
N

∑N
j=1 logPω(T |zj), where zj is the j-th

sample of N samples sampled from Qφ(z|x). At
prediction stage, we simply use µz rather than
sampling z.

4.1 Incorporating POS and External
Embeddings

In previous studies (Chen and Manning, 2014;
Dozat and Manning, 2017; Dozat et al., 2017;
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Kiperwasser and Goldberg, 2016) exploring pars-
ing using neural architectures, POS tags and ex-
ternal embeddings have been shown to contain
important information characterizing the depen-
dency relationship between a head and a child.
Therefore, in addition to the variational autoen-
coding framework taking as input the randomly
initialized word embeddings, optionally we can
build the same structure for POS to reconstruct
tags and for external embeddings to reconstruct
words as well, whose variational objectives are
Up and Ue respectively. Hence, the final varia-
tional objective can be a combination of three:
U = Uw(The original U in Lemma A.1)+Up+Ue
(or just U = Uw + Up if external embeddings are
not used).

5 Experiments

5.1 Experimental Settings

Data sets We compared our models’ perfor-
mance with strong baselines on the WSJ data set,
which is the Stanford Dependency conversion (De
Marneffe and Manning, 2008) of the Penn Tree-
bank (Marcus et al., 1993). We used the standard
section split: 2-21 for training, 22 for development
and 23 for testing.

To simulate the low-resource language environ-
ment, we used 10% of the whole training set as the
annotated, and the rest 90% as the unlabeled.

Input Representation and Architecture We
describe the details of the architecture as follows:
The internal word embeddings have dimension 100
and the POS embeddings have dimension 25. The
hidden layer of the bi-LSTM layer is of dimen-
sion 125. The nonlinear layers used to form the
head and the modifier representation both have 100
dimension. We also used separate bi-LSTMs for
words and POSs.

Training In the training phase, we usedd Adam
(Kingma and Ba, 2014) to learn all the parameters
in the VAP model. We did not take efforts to tune
models’ hyper-parameters and they remained the
same across all the experiments. To preventing
over-fitting, we applied the “early stop” strategy by
using the development set.

5.2 Semi-Supervised Dependency Parsing on
WSJ Data Set

We evaluated our VAP model on the WSJ data
set and compared the model performance with

other semi-supervised parsing models, including
CRFAE (Cai et al., 2017), which is originally de-
signed for dependency grammar induction but can
be adopted for semi-supervised parsing, and “differ-
entiable Perturb-and-Parse” parser (DPPP) (Corro
and Titov, 2019). To contextualize the results, we
also experiment with the supervised neural margin-
based parser (NMP) (Kiperwasser and Goldberg,
2016), neural tree-CRF parser (NTP) and the super-
vised version of VAP, with only the labeled data.
To ensure a fair comparison, our experimental set
up on the WSJ is identical as that in DPPP, using
the same 100 dimension skip-gram word embed-
dings employed in an earlier transition-based sys-
tem (Dyer et al., 2015). We show our experimental
results in Table 1.

Model UAS
DPPP(L) 88.79
DPPP(L+U) 89.50
CRFAE(L+U) 82.34
NMP(L) 89.64
NTP (L) 89.63
Self-training (L+U) 87.81
VAP (L) 89.37
VAP (L+U) 89.49

Table 1: This table compares the model performance
on the WSJ data set with 10% labeled data. “L” means
only 10% labeled data is used, while “L+U” means
both 10% labeled and 90% unlabeled data are used.

As shown in this table, our VAP model is able
to utilize the unlabeled data to improve the overall
performance on that with only using labeled data
alone. Our VAP model performs slightly worse
than the NMP model, which we attribute to the
increased model complexity by incorporating ex-
tra encoder and decoders to deal with the latent
variable. However, our VAP model achieved com-
parable results on semi-supervised parsing as the
DPPP model, while our VAP model is simple and
straightforward without inferencing the parse tree
if it is unknown. Instead, the DPPP model has to
apply Monte Carlo sampling from the posterior of
the structure by using a “GUMBEL-MAX trick”
to approximate the categorical distribution at each
step, which is intensively computationally expen-
sive, in order to form a dependency tree of high
probability. Self-training using NMP with both
labeled and unlabeled data is also included as a
base-line, where the performance is deteriorated
without appropriately using the unlabeled data.
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6 Conclusion

In this study, we presented Variational Autoencod-
ing Parser (VAP), an end-to-end parser, capable of
utilizing the unlabeled data together with labeled
data to improve the parsing performance, without
any external resources. The proposed VAP model
performs on a par with a recently published (Corro
and Titov, 2019) semi-supervised parsing system
on the WSJ data set, with faster inference, showing
its potential for low-resource languages.
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A Appendix

A.1 ELBO of LAP’s Original Ojective
Given an input sequence x, we prove that Jlap is
the ELBO of J :

Lemma A.1. Jlap is the ELBO (evidence lower
bound) of the original objective J , with an input
sequence x.

Denote the encoderQ is a distribution used to ap-
proximate the true posterior distribution Pφ(z|x),
parameterized by φ such that Q encoding the input
into the latent space z.

Proof.

logPθ(x)P
ε
ω(T |x) = logPθ(x)︸ ︷︷ ︸

U

+ ε logPω(T |x)︸ ︷︷ ︸
L

U = log

∫
z
Qφ(z|x)

Pθ(x)

Qφ(z|x)
dz

≥ E
z∼Qφ(z|x)

[logPθ(x|z)]

− E
z∼Qφ(z|x)

[
log

Qφ(z|x)
Pθ(x)

]
= E
z∼Qφ(z|x)

[logPθ(x|z)]

−KL (Qφ(z|x)||Pθ(z)) ,
(ELBO of traditional VAE)

L =ε logPω(T |x)

=ε log

∫
z
Pω(T |z)Qφ(z|x)dz

=ε log E
z∼Qφ(z|x)

[Pω(T |z)]

≥ε E
z∼Qφ(z|x)

[logPω(T |z)] .

Combining U and L leads to the fact:

U + L ≥ E
z∼Qφ(z|x)

[logPθ(x|z)]

−KL(Qφ(z|x)||Pθ(z))
+ε E

z∼Qφ(z|x)
[logPω(T |z)] = Jlap

A.2 Mean Field Approximation and
Annealing

Directly calculating the the auxiliary posterior
Qφ(z|x) is difficult due to the complex model
structure with deep neural networks, thus we used a
mean field approximation (Tanaka, 1999) together
with the conditional independence assumption by

assumingQφ(z|x) =
∏l
t=1Qφ(zt|xt) to compute

it. Similarly, the generative model Pθ(x|z), acting
as a decoder parameterized by θ, tries to regenerate
the input xt at time step t given the latent variable
zt, assuming Pθ(x|z) =

∏l
t=1 Pθ(xt|zt). The en-

coder and the decoder are trained jointly using the
traditional variational autoencoder framework, by
minimizing the KL divergence between the approx-
imated posterior and the true posterior.

We parameterize the encoder Qφ(zt|xt) in two
steps: First a bi-LSTM is used to obtain a non-
linear transformation ht of the original xt; then
two separate MLPs are used to compute the mean
µzt and the variance σ2

zt . The generative story
Pθ(xt|zt) follows such parameterization: we used
a MLP of two hidden layers in-between to take
zt as the input, and predict the word (or POS tag)
over the vocabulary, such that the reconstruction
probability can be measured.

Following traditional VAE training paradigms,
we also apply the “re-parameterization” trick
(Kingma and Welling, 2014) to circumvent the
non-differentiable sampling procedure to sample
zt from the Qφ(zt|xt). Instead of directly sample
fromN (µzt ,σ

2
zt), we form zt = µzt + ε�σ2

zt by
sampling ε ∼ N (0, I). In addition, to avoid hin-
dering learning during the initial training phases,
following previous works (Chen et al., 2018; Bow-
man et al., 2016), we anneal the temperature on the
KL divergence term from a small value to 1.

A.3 Empirical Bayesian Treatment
From an empirical Bayesian perspective, it is bene-
ficial to estimate the prior distribution directly from
the data by treating prior’s parameters part of the
model parameters, rather than fixing the prior using
some certain distributions. Similar to the approach
used in the previous study (Chen et al., 2018), LAP
also learns the priors from the data by updating
them iteratively. We initialize the priors from a
standard Gaussian distribution N (0, I), where I is
an identity matrix. During the training, the current
priors are updated using the last optimized poste-
rior, following the rule:

πkθ(z) =
∑
x

Qk−1φ (z|x)P (x),

where P (x) represents the empirical data distribu-
tion, and k the iteration step. Empirical Bayesian
is also named as “maximum marginal likelihood”,
such that our approach here is to marginalize over
the missing observation as a random variable.


