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Abstract
We present an approach to textual entailment recog-

nition, in which inference is based on a shallow se-

mantic representation of relations (predicates and

their arguments) in the text and hypothesis of the

entailment pair, and in which specialized knowl-

edge is encapsulated in modular components with

very simple interfaces. We propose an architecture

designed to integrate different, unscaled Natural

Language Processing resources, and demonstrate an

alignment-based method for combining them. We

clarify the purpose of alignment in the RTE task,

identifying two distinct alignment models, each of

which leads to a different type of entailment system.

We identify desirable properties of alignment, and

use this to inform our implementation of an align-

ment component. We evaluate the resulting system

on the RTE5 data set, and use an ablation study to

assess the conformance of our alignment approach

with these desired characteristics.

1 Introduction

Machine Learning solutions for the problem of
Recognizing Textual Entailment (RTE) must over-
come a significant obstacle: the relatively small
amount of labeled entailment data, given the com-
plexity of the RTE problem. Previous success-
ful approaches typically overcome this by using a
pipeline model that extracts a limited number of
high-level features from induced representations
of entailment pairs, and training a classifier us-
ing labeled entailment corpora. In particular, these
systems define some kind of alignment between
the text and hypothesis of an entailment pair, and
use this to simplify the machine learning prob-
lem. However, their treatments of alignment are in
some cases not well specified, and in others do not
account well for the need to incorporate a wider
range of analytical resources in a straightforward
manner. Moreover, the relationship between align-
ment and entailment is still unclear.

We attempt to address these and other problems
using a meaning representation centered around
natural language relations (predicate-argument
structures that use natural language rather than
canonical logical symbols), and an alignment-
based model that integrates them with analytic re-
sources operating at a range of granularities. We
clarify possible roles for alignment in RTE sys-
tems, outline desirable characteristics for align-
ment, and implement a solution accordingly. We
evaluate our implementation on the RTE5 data set,
and show via an ablation study that our alignment
component has some of the desirable characteris-
tics we identify.

2 Alignment and Entailment

As observed in (MacCartney et al., 2008), align-
ment components are present in many of the more
successful RTE systems. Some alignment-like
mechanism seems essential for systems with su-
pervised machine learning components: if local
decisions are to play a role in a global decision,
systems need signals either to identify the correct
local comparisons to make, or to signify what label
these local decisions should take when training the
system. RTE data offers only a single global label,
and alignment is a natural way to try to propagate
this information to local decisions.

In order to facilitate progress on the general
problem of alignment as it relates to Textual En-
tailment, we examine ways in which alignment
has been and can be used in RTE systems. We
identify some desirable characteristics of an align-
ment component for such applications by consid-
ering an ideal case, and the way reality departs
from the ideal. We use these observations to as-
sess previous work on alignment in the context of
RTE, and to motivate our approach to alignment.



2.1 The Purpose of Alignment

The goal of alignment components is to decom-
pose the text and hypothesis into semantic con-
stituents, and determine which text constituent
should be compared to which hypothesis con-
stituent. However, there is more than one way
in which such alignments are used: for example,
to combine local decisions into a global decision
(“alignment as entailment”); or as a means to de-
termine which local comparisons should be made
(“alignment as filter”). In the former case, a scor-
ing function may be tuned and a threshold ap-
plied to determine entailment/non-entailment. In
the latter case, alignment edges select among local
decisions and are used to inform a separate sub-
sequent step – for example, these local decisions
may be used as features in one or more classifiers,
or may guide the selective application of more ex-
pensive resources.

2.2 Desirable Characteristics of Alignment

The goal of alignment is to select among local de-
cisions. In the ideal case, our alignment is max-
imally informed: that is, sufficient information is
explicitly encoded in a way that allows alignment
to select those local decisions that will result in the
correct entailment decision.

Robust entailment recognition requires under-
standing of natural language text, and a suitable
representation. If such a representation exists and
is accurately encoded as constituents and struc-
ture in the text and hypothesis, and if appropriate
metrics exist, these deep structures can be com-
pared, scored, and modeled to determine the best
alignment. In a variation of this ideal, the seman-
tics of the representation is truly compositional,
and we do not require a specific metric at the
deepest structural level; instead, we use the deep
structure to select among comparisons of smaller
constituents, and apply the metrics for those con-
stituents to generate the optimal alignment. This
requires that metrics operate on the same scale,
lest an incorrect alignment have a better score than
a correct alignment.

In reality, we do not have truly deep structure,
though we do have (noisy) analytics that oper-
ate at a number of granularities. Our metrics,
which compare constituents from given analytic
resources, are not guaranteed to generate outputs
with comparable distributions (i.e., they may not
be compatible).

In the light of desired and actual component be-
haviors, the following characteristics are desirable
for alignment components:

• Alignment should simplify the entailment
problem; a complete graph over text and
hypothesis constituents is in some sense an
alignment, but we are interested in identify-
ing local comparisons that are directly rele-
vant to the entailment decision (such as map-
ping an entity in the hypothesis to a cor-
responding entity in the text, instead of a
function word). Alignments should therefore
respect some constraints on the number of
edges.

• Alignment should be robust to noise in indi-
vidual resources; it should, if possible, avoid
the limitations of a pipelined approach (and
the attendant propagation of errors).

• Alignment should permit incorporation of
metrics that are not mutually compatible (i.e.,
use different output scales and/or distribu-
tions of similarity values) as-is, but take ad-
vantage of those that are compatible.

• Given a new analytical resource, it should be
easy to incorporate it into an existing align-
ment framework.

• Alignment should not require large amounts
of labeled data for training.

• Alignment should accommodate constituents
at multiple granularities.

• If an aligner has access to deep structure rel-
evant to entailment decisions, it should use
it and show improved performance. Perfor-
mance should degrade gracefully as the reli-
ability of the deep analysis decreases.

2.3 Previous Work

RTE researchers have used alignment in a number
of ways, and in some cases, begun to define what
alignment means in the context of entailment. This
section discusses some representative examples.

The system described by (Zanzotto and Mos-
chitti, 2006) can be framed in terms of the “align-
ment as entailment” approach, as they define an
intra-pair alignment function and a distance met-
ric between alignments for different pairs, then
use the entailment labels to learn a separator based
on a combination of these metrics. They propose
an elegant model for cross-pair similarity based



on tree kernels applied to syntactic parse trees.
They use a pipeline model in which similar pairs
of terms in the text and hypothesis are replaced by
placeholders, which are used to focus the struc-
tural similarity computations. However, simply
adding more similarity resources is problematic as
this will tend to increase the number of matching
sites, and therefore increase the search space of
the tree kernel alignment step. There is also the
problem of accounting for small structural differ-
ences which have a disproportionate effect on cost
– e.g. conditional and factive structures. Finally,
as the similarity computation is based on syntac-
tic structure, it is hard to envision a way to incor-
porate non-token-level analytical resources in an
uncanonized fashion.

(Hickl et al., 2006; de Marneffe et al., 2007)
follow the “alignment as filter” approach. (Hickl
et al., 2006) use a pipelined approach to incor-
porate named entity and coreference information
in the surface text. They use human annotated
data to train a maximum entropy classifier to de-
termine entailment of shallow parse chunks. The
classifier uses features based on named entity in-
formation, WordNet similarity, and string edit dis-
tance (among others). Features from the resulting
chunk-level alignment are used together with fea-
tures from other sources to train a classifier that
makes a global entailment decision. In addition to
committing to a pipelined preprocessing system, it
is not clear if their approach can be easily extended
to incorporate new analytics, especially if they are
not at the token or phrase level of representation.

(de Marneffe et al., 2007) investigate alignment
more carefully, and formalize it as an optimization
problem that accounts for alignments of individ-
ual tokens in the hypothesis and of pairs of hy-
pothesis tokens connected by a dependency edge.
They use human-annotated alignment data to train
their aligner, which they evaluate in its own right.
This is the basis of the alignment step in the en-
tailment system described in (MacCartney et al.,
2006), where it is used as a source of features for
a global classifier. While they present a useful
formulation of alignment in terms of an objective
function, it accounts only for local structure in the
hypothesis.

(MacCartney et al., 2008) generalize the align-
ment problem to the phrase level (where phrase
simply means contiguous text span), and formal-
izes the alignment score in terms of equality, sub-

stitution, insertion, and deletion of phrases in the
Text with respect to the Hypothesis. They train
this model using lexical alignment labelings gen-
erated by (Brockett, 2007). While they report
an improvement over two lexical-level alignment
baselines, they do not observe significant differ-
ence in performance by the phrase-level system
compared to a token-level alignment by the same
system (i.e., where the phrase size is fixed at one
token). One problem with this approach is that
it appears to disregard known constituent bound-
aries and does not seem to offer a clean mecha-
nism for applying specialized similarity resources
in ways other than uniformly across all contiguous
text spans. Moreover, it requires labeled alignment
data, of which only a limited amount is available,
and that too only at the token level.

2.4 Alignment for Feature Selection
There are (at least) three ways in which “Align-
ment as Filter” could inform feature selection for
entailment decisions: 1. it can identify which
constituents in the hypothesis match which con-
stituents in the text, and inform a subsequent deci-
sion about the deep structure connecting the con-
stituents; 2. it can use the deep structure to in-
form a set of subsequent decisions over local con-
stituents (i.e. constrain the set of local compar-
isons using comparable deep structure); or 3. it can
try to solve both problems simultaneously (similar
to the “Alignment as Entailment” approach).

TEXT: John bought four books and three pencils
when he visited the bookstore.
HYP 1: John went to the bookstore.
HYP 2: John has four pencils.

Figure 1. Example of two Textual Entailment pairs.

Consider the example in figure 1. Approach 1
might determine that “[John] [went to] [the book-
store]” from HYP 1 matches “[John] [visited]
[the bookstore]” from TEXT. The entailment de-
cision then requires that the structural connec-
tion of “John” and the term “visit” be detected
or inferred. Approach 2 might match the predi-
cate “[John] [has] [four pencils]” in HYP 2 with
“[John] [bought] [four books and three pencils]”
in TEXT; the entailment decision then hinges on
the local decision as to whether “four pencils”
matches “four books and three pencils”. One in-
stantiation of approach 3 involves considering all
possible matches at both the deep structural level



and at the shallow level, and optimizing the align-
ment jointly over the two sets.

It is hard to imagine the third approach succeed-
ing without requiring all metrics to be compati-
ble. In the current work, we focus on a method
intended to straddle approaches 1 and 2, but avoid
the complications of approach 3.

3 Relation Alignment for Textual
Entailment Recognition (RATER)

The RATER framework has four major compo-
nents comparable to previous RTE systems:

1. Preprocessor. Annotates the entailment pair
with a range of analytical tools.

2. Graph Generator. Applies metrics to con-
stituents in specified annotation views to gen-
erate a match graph over the Text and Hy-
pothesis constituents of the entailment pair.

3. Aligner. Filters the edges in the match graph
to focus the feature extraction step.

4. Feature Extractor/Classifier. Extracts fea-
tures based on the alignment output, and la-
bels the input example.

The following sections describe these compo-
nents and compare them to previous work.

3.1 Preprocessing and Data Representation

The preprocessing stage annotates the underly-
ing text with tokenization and sentence split-
ting, part-of-speech (Roth and Zelenko, 1998),
named entity (Ratinov and Roth, 2009), shallow-
(Punyakanok and Roth, 2005) and syntactic-
parse (Charniak and Johnson, 2005), semantic role
labels (Punyakanok et al., 2008), multi-word ex-
pressions, phrasal verbs, coreference (Bengtson
and Roth, 2008), modality, and quantifiers.

Rather than follow the pipelined approach of
many RTE systems, we represent the combined
analysis of the text in each entailment pair using
the MRCS representation described in (Roth and
Sammons, 2008), which comprises a set of stand-
off annotations of the text. Each resource gener-
ates a separate view of the underlying text, or aug-
ments a view produced by another tool (specifi-
cally, modality and quantifiers augment the views
generated by semantic role labelers). Each view is
populated with constituents representing semantic
components of a text span, identified by an analyt-
ical resource. Two constituents may be linked by

an edge representing a structural relation. Figure 2
shows an example of this representation.

For example, a constituent from the named en-
tity view represents a mention of an entity, while
a constituent from the semantic relation view rep-
resents a relation (a predicate and its arguments,
each a constituent in the semantic frame com-
ponent view). Examples of edges representing
structural relations between constituents include
edges in dependency graphs and roles in seman-
tic frames.

This representation is designed to facilitate
comparison of Hypothesis and Text constituents
from different views with each other, to minimize
canonization, and to be easily extended to incorpo-
rate new analytical tools. The Meaning Represen-
tation described in the following section is lifted
directly from the semantic role labeling views of
the data representation.

3.2 Meaning (and Knowledge)
Representation

Previous efforts to map natural language into
canonical logical forms (such as (Bos and Mark-
ert, 2006)) have not been as successful as ap-
proaches working directly with the natural lan-
guage representation, whether based purely on the
lexical level (e.g. (Adams, 2006)) or using shallow
induced structure (e.g. (Bar-Haim et al., 2007b)).
Logical systems tend to be overly vulnerable to er-
ror propagation: for example, an error in determin-
ing the sense of a polysemous word directly affects
unification of the induced logical form.

Approaches such as (Bar-Haim et al., 2007a)
use natural language rules that map between sen-
tence structures. The edges of these structures typ-
ically represent edges in a syntactic full- or de-
pendency parse tree, while nodes are either nat-
ural language expressions or variables represent-
ing shared content between the mapped sentence
structures. When determining whether a rule
structure matches that of a given text span, lexical
resources such as WordNet may be used to gener-
alize the rule in a controlled way, greatly increas-
ing expressiveness of individual rules. Typically,
rules are applied to the text of the entailment pair
in order to explicitly represent the implicit and en-
tailed meanings of the underlying text, which may
require chaining of rules by trying to apply each
rule in the rule base over multiple iterations.

This ability to encode background knowledge



WORD Italian Director Federico Fellini had many successful films . He eventually received an Oscar .

INDEX 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

NE Italian director Oscar

WORD An Italian director was awarded an Oscar .

1 2 3 4 5 6 7 8

Federico FelliniItalian Director Federico FelliniDirectorItalian

SRL

TEXT

ARG_1

INDEX

HYPOTHESIS

SRL

ARG_2 ARG_1

ID TV1A0 ID TV1A1
ID TV2ADID TV2A0

COREF

NE Italian Director Federico Fellini

ARG_0

VB: have
ID TV1

Lang Title Person

ID Co1

ID HV1A1ID HV1A2

ID TV2A1

AM_ADV
ARG_0

ARG_1

ID TV2
VB: receive
Tense: PastTense: past

ID Co2

Dotted lines show coverage

NOTES

ID HV1    VB: award
Tense: Past

Figure 2. Example of a Textual Entailment pair as represented in MRCS.

in a representation that avoids the multiplicity
of fully grounded natural language expressions,
while to a large extent avoiding the limitations
of canonical forms, is very appealing, though not
without its drawbacks. In particular, background
knowledge must still be acquired, and the expres-
siveness of the chosen natural language structure
must be accounted for. Syntactic parses are rel-
atively complex structures, and text spans with
very similar lexical content may be expressed with
a large number of syntactic structures – passive-
active, light verb, and node raising constructions
greatly complicate the process of generating rules
with sufficient coverage to apply to more than a
few sentences. Moreover, minor errors in attach-
ments of constituents in parse trees may impact the
effectiveness of such rules, and chaining of rules
which may themselves be inaccurate can lead to
inaccurate representations of meaning.

For these reasons, we favor shallow semantic
structure based on the PropBank annotation stan-
dard (Kingsbury et al., 2002), a much flatter tree-
like representation of text. Rather than focus on
rule generation at this level of representation, we
experiment with resources that abstract declarative
knowledge into Metrics (section 3.3), and directly
compare the shallow semantic structures them-
selves. We rely on enhancing the semantic struc-
ture, which may be achieved with rules or with
other analytic resources, and on a learning frame-

work that uses features informed by the semantic
structure, but not constrained to a specified scoring
function and threshold (section 3.7).

While we have experimented with rules map-
ping between SRL-based structures, the benefit of
rules derived from automatically extracted para-
phrase resources such as DIRT (Lin and Pantel,
2001) is limited by their specificity and their noise,
while our relation comparison metric (which in-
corporates the lexical similarity metric based on
WordNet, (Miller et al., 1990)) obviates the need
for many simple rules. Rules derived from Verb-
Net (Kipper et al., 2000) generally map specific
verbs to very general ones, and are therefore of
limited value, in our experience, for the RTE task.
However, such resources, if available, can be en-
capsulated as metrics or used by an annotator to
augment existing views.

3.3 Comparing Semantic Units with Metrics

Determining whether the Hypothesis is entailed by
the Text depends heavily on local entailment deci-
sions, such as recognizing when two mentions of
an entity refer to the same underlying referent, and
identifying when a word in the text has the same
meaning as a given word in the hypothesis. As
described in section 2, many such local decisions
may inform the final entailment decision.

Often, there are multiple matching candidates
in the text for a given term in the hypothesis. In



order to compare different mappings, it is neces-
sary to define relevance or similarity of individual
constituents to other constituents, and this is made
easier when such comparisons may be ranked. To
this end, we encapsulate declarative knowledge in
Metrics where possible.

An Entailment Metric is defined as a resource
that compares two semantic constituents of spe-
cific types and returns a real number in the range
[−1, 1]. A score close to 1 indicates high similar-
ity, close to 0 means irrelevant, and close to−1 in-
dicates contradiction (e.g. antonymy). High mag-
nitude therefore indicates strong relevance, while
low magnitute indicates weak relevance.

Metrics may be defined over arbitrary con-
stituents, and may compose results from met-
rics over sub-constituents. We have implemented
metrics for comparing named entities, words and
multi-word phrases, numerical quantities, and se-
mantic relations. Metrics can encapsulate rule-
based resources as well as classifiers, and there-
fore have the potential to generalize over different
approaches to RTE.

The Graph Generator applies our metrics to ap-
propriate semantic constituents in the multi-view
representation of the entailment pair, representing
the result of each such comparison with an edge
whose weight is the score assigned by the metric
that generated it.

3.4 Aligning Natural Language Relations

We wish to use the alignment step to filter the
edges in the Graph Generator output to focus fea-
ture extraction. The aligner must be able to in-
tegrate different information sources at a variety
of granularities, take advantage of deep structure
annotation where available, yet degrade gracefully
when it is not.

We resolve these problems by formulating mul-
tiple alignments, each of which integrates infor-
mation from comparable resources that have com-
patible metrics. This allows comparable resources
(for example, multi-word expressions and individ-
ual words, both of which use WordNet-derived
metrics) to compete with each other, but separates
metrics with different scales (such as Named En-
tity metrics, which are based on rules and string
similarity measures). To ensure that the align-
ment is informative, we constrain it by requiring
that each token in the hypothesis be aligned at
most once, i.e. only a single constituent covering

a given token may be selected from the set of all
constituents covering that token.

We then extract features from each alignment,
and from comparisons between different align-
ments over the same entailment pair. In particular,
we compare the natural language relation align-
ment with other views, with the intuition that if
the relations are successfully aligned, other views
provide relevant information. For example, if the
named entity alignment disagrees with the relation
alignment, this may suggest that the relation align-
ment is incorrect.

We use the feature extraction approach to pro-
vide robustness against analytic and metric noise
and incompleteness of relation annotation re-
sources. If deeper structure is successfully anno-
tated and the relevant metrics are good, these deep
features should be strong. If the deep structure re-
sources are too noisy or absent, features from other
views/alignments will become more important.

3.5 Constrained Optimization Model for
Alignment-As-Filter

Alignment is formulated as an optimization prob-
lem subject to the constraint that each token in the
hypothesis must be mapped to at most one target
in the text, so constituents covering more than one
token may not overlap. Constituents at different
granularities may both have alignment edges in an
optimal solution, provided they do not overlap.

Since metrics may return negative scores, the
objective function must account for these. Nega-
tive scores indicate contradiction: in the absence
of a better positive match, this information may be
highly relevant to the subsequent entailment deci-
sion. In the objective function, therefore, the mag-
nitude of the edge weight is used. The edge retains
a label indicating its negativity, which is used in
the feature extraction stage.

For alignments over shallow constituents, we
must guess at the deep structure; we therefore in-
clude locality in the objective function by penal-
izing alignments where neighboring constituents
in the hypothesis are paired with widely separated
constituents in the text. We ignore crossing edges,
as we do not believe these are reliably informative
of entailment.

The objective function is then:∑
i e(Hi, Tj) + α.

∑
i ∆(e(Hi, Tj), e(Hi+1, Tk))

m
(1)



and the constraint:∑
j

I[e(Hi, Tj)] ≤ 1 (2)

where m is the number of tokens in the hypoth-
esis; e(Hi, Tj) is the magnitude of the score of a
metric comparing hypothesis token i and text to-
ken j; and α is a parameter weighting the distance
penalty. ∆(e(Hi, Tj), e(Hi+1, Tk)) measures the
distance, in tokens, between the text constituent
aligned to hypothesis token i and the text con-
stituent aligned to hypothesis token i+1. For con-
stituents covering multiple tokens, this value is the
minimum distance between any token covered by
the constituent covering Tj and any token covered
by Tk. I[e(Hi, Tj)] is an indicator function indi-
cating that token i in the hypothesis is mapped to
token j in the text. Note that this differs from the
formulation in (de Marneffe et al., 2007), as it ac-
counts for the locality of mapped constituents in
the text in addition to that in the hypothesis. Note
also that distance could be defined over structures
like dependency trees, although we have not yet
investigated such options.

For alignments that combine constituents of dif-
ferent granularities, the formulation above uses
as token-level edge-weights the magnitude of the
edge score for the mapped constituents covering
the pair of tokens in question. Note that if con-
stituents from different views are combined in this
way, their metrics must be compatible.

Since we did not have training data, we selected
the alignment parameter α by hand (a positive
value close to zero, sufficient to break ties), and
used brute force search to find the optimal align-
ment. The search time has an upper limit, after
which a greedy left-to-right alignment is used in
place of the optimal solution.

3.6 Constrained Optimization Model for
Alignment-As-Entailment

We also performed experiments with the “align-
ment as entailment” approach, as described
in (Chang et al., 2010). In this setting, we rep-
resent each of the candidate sentences as a uni-
fied graph consisting of SRL, dependency parse,
NER, and coreference views (we used the coref-
erence view to substitute canonical mentions for
pronouns). We scored candidate pairs based on
our ability to align the constituents of these views.

The constituents we considered were individual
tokens and named entities, and the relations indi-

cated SRL argument types (between verbs and the
heads of their arguments) and dependency edges
(within SRL arguments that spanned more than
one token or named entity). The alignment process
was framed as a constrained optimization process
that picks the best matching for constituents un-
der constraints forcing the validity of the resulting
alignment.

Conventional alignment methods weigh local
alignment decisions according to external simi-
larity metrics, and ignore existing labeled data,
using it only when optimizing the classification
model. Our approach aims to optimize the align-
ment model parameters using the labeled data. In
this setting, the problem of learning the entail-
ment classifier is not separate from that of align-
ing the graphs. We use the aligned constituents
as features for learning an entailment model us-
ing labeled data, and propagate the learned feature
weights to the aligner, where they can be used to
weigh competing alignment decisions. We iterate
over this model until the weights converge.

Formally, we optimize the following objective
function, when performing alignment :∑

i

W T φ(e(Hi, Tj))+∑
i

W T φ(e(ri(Hj ,Hk), r(Tl, Tm)))

where W is a weight vector, and φ is a fea-
ture mapping defined over the chosen constituent
alignments. The formula is separated into two
parts: the first considers features extracted from
token alignments (words and named entities), and
is denoted as e(Hi, Tj), where Hi, Tj correspond
to the mapped tokens in hypothesis and text, re-
spectively. The second part is defined over rela-
tions (SRL and dependency parse) and is denoted
as e(ri(Hj ,Hk), r(Tl, Tm)), where r(·, ·) denotes
a directed, labeled edge between tokens. In addi-
tion, we enforce consistency between alignment of
these two views by adding the following constraint
:

∀j, k, l,m e(r(Hj ,Hk), r(Tl, Tm)) ⇔
e(Hj , Tl) ∧ e(Hk, Tm)

The alignment process can now be simply ex-
plained by the procedure outlined in figure 3.

The results of this approach are provided in ta-
ble 2 under the heading Alignment as Entailment.



Feature Name # Type Description
Word-LLM real Sum of scores of word edges selected by aligner, averaged by number of tokens

in hypothesis
Frac-TokenMatch real Fraction of words in H that are aligned to T with non-zero edges.
Frac-NEmatch real Fraction of NEs in H that have a non-zero edge to some NE token in T (using

NESim metric)
SRL-verbLLM real Consider only SRL verbs (over all SRL relations in H), and find LLM using the

Word-view edges for those words
SRL-coreLLM real Same as SRL-verbLLM, but for all core arguments (ARG0,1,2) (includes all

relations in H)
SRL-verbScore real Sum of scores of edges that align SRL verbs in H to some SRL argument in T,

averaged by number of relations in H: this uses SRL view, when present
SRL-coreScore real Same as SRL-verbScore, but for core SRL arguments (ARG0,1,2)
SRL-verb-none boolean Active if, in the SRL view, the verb did not align to any argument
SRL-verb-sth boolean Active if, in the SRL view, the verb aligned to some argument (verb or A*)
SRL-core-none boolean Active if, in the SRL view, none of the core arguments (ARG0,1,2) aligned to

any argument
SRL-core-some boolean Active if, in the SRL view, some but not all core arguments (ARG0,1,2) aligned

to some argument
SRL-core-all boolean Active if, in the SRL view, all core arguments (ARG0,1,2) aligned to some

argument
SRLpos-core-Bef boolean Active if all core arguments before the verb in H are aligned to arguments before

the verb in T
SRLpos-core-Aft boolean Active if all core arguments after the verb in H are aligned to arguments after

the verb in T
VB-none boolean Active if VERB tokens did not match any token in T
VB-match boolean Active if VERB tokens match some arguments in T (no SRL constraint check)
Acore-none boolean Active if tokens from none of the core arguments ARG0,1,2 match T
Acore-some-cons boolean Active if tokens from some (but not all) core arguments ARG0,1,2 match “con-

secutive” tokens in T
Acore-all-cons boolean Active if tokens from all core arguments ARG0,1,2 match “consecutive” tokens

in T
Acore-some-match boolean Active if tokens from some (but not all) core arguments ARG0,1,2 match “con-

secutive” tokens in T
Acore-all-match boolean Active if tokens from all core arguments ARG0,1,2 match some arguments in T

(no SRL constraint check)
Con-root boolean Active if any contradiction feature is active (negation, poor predicate relation

match, poor NE match)

Table 1. Features used in the RATER classifier

while ¬ converged do
D = ∅
for all (T,H) ∈ Training Data do

D = D ∪ALIGNW (T,H)
end for
W = LEARN(D)

end while

Figure 3. Alignment Learning Algorithm

3.7 Learning and Classifying

Since we did not have a large amount of training
data, we kept the number of alignment-based fea-
tures relatively low to keep the learning problem
simple. We intended the features to be intuitive:
they should make sense from the perspective of the
general problem of entailment, not just in the con-
text of this particular data set. The feature types
are presented in table 1.

We trained an SVM classifier using a slightly
adapted version of (Fan et al., 2008). The classifier

was trained on the RTE5 development set.

4 Evaluation and Discussion

To evaluate the effectiveness of the RATER ap-
proach, we performed an ablation study on our
RTE system. The system should show improve-
ment with additional (informative) resources,
should not overfit to the training set, and its per-
formance should improve if reliable deep structure
cues are present.

A significant problem for most analytical re-
sources is that they are intra-sentence; at present,
the only inter-sentence analytic resource available
to us is our coreference resolver. To test the sys-
tem’s response to deep structure cues, we inte-
grated this with the shallow semantic predicate-
argument structures by adding coreferent men-
tions of arguments in the predicate-argument
structures as additional arguments with the same
role, and retraining the classifier on the resulting
alignment output.



RTE5 Dev RTE5 Test
System Version # Overall QA IE IR Overall QA IE IR
Baseline 0.628 0.641 0.557 0.683 0.600 0.550 0.500 0.750
Submitted Run * 0.630 0.632 0.537 0.689 0.643 0.585 0.595 0.750
Without NE * 0.627 0.610 0.579 0.688 0.595 0.565 0.515 0.705
Submitted Run (fixed) 0.648 0.647 0.552 0.744 0.644 0.580 0.576 0.775
Without NE (fixed) 0.640 0.631 0.577 0.708 0.629 0.580 0.530 0.775
Simple NE 0.623 0.655 0.543 0.670 0.633 0.580 0.605 0.715
Without WN 0.647 0.650 0.533 0.755 0.603 0.565 0.535 0.710
Submitted Plus Coref 0.663 0.665 0.559 0.765 0.666 0.596 0.615 0.785
Alignment As Entailment 0.667 0.645 0.555 0.800 0.670 0.640 0.540 0.830

Table 2. Performance of different versions of the system. NE means “Named Entity”; WN means “WordNet”.

We also trained and evaluated a baseline version
of the system by deactivating all except the lexical
alignment features.

Table 2 compares the results of the different ver-
sions of our system on the RTE5 Dev and Test cor-
pora, and includes the ablation runs we submitted.
The learning component of the system was trained
on the RTE5 Development set, so the ‘RTE5 Dev’
results in the table show a self-training bias.

On examining the trace files for two of the runs
we submitted originally (marked with an asterisk
in table 2), we observed errors arising from a bug
in our system that affected the word-level align-
ments of approximately 60 development examples
and 90 test examples. We re-ran the corrected ver-
sions of the system for those examples, to get the
results marked “fixed” in the table of results.

The ablation results indicate the importance
of both Named Entity recognition/resolution and
WordNet-based similarity to our system. In our
framework, WordNet mappings are especially use-
ful when they allow relation predicates in the text
and Hypothesis to be matched.

The breakdown by task shows that although it
is beneficial in the general case, the more complex
NE actually hurts performance in the IE subtask.
The reason is that IE examples often lack explicit
structures (from the system’s perspective) and so
decisions are made based more on similarity of
Hypothesis constituents to Text constituents. The
simpler system generates different scores for non-
identical Named Entity pairs; for example, in test
example 4, the simple metric assigns a similarity
score of zero to the pair (Santana, Juan Carmelo
Santana), while the more advanced metric assigns
it a score of 1.0. This leads to different feature
weights, and to different classifications, e.g. test
example 15.

The benefit of additional deep structure is ap-
parent from the “Submitted Plus Coref(erence)”

results. When this additional structure is explic-
itly encoded, more positive examples have com-
parable predicate-argument structures, resulting in
stronger cues from agreement between predicate-
argument alignments and those of other views, and
hence more reliable features in the final classifier.

In general, the results support our intuitions that
the RATER approach we have outlined in this
work has the desired attributes specified in sec-
tion 2.2: new resources can be added in a modular
fashion via annotators and metrics, and have a sig-
nificant effect on system performance; and making
implicit structure explicit in terms of predicate-
argument structures improves system performance
as expected. Overall, the results show good gener-
alization of the system trained on the development
data when evaluated on the test data; this makes
sense, as all the resources we add are intended to
be generally useful for NLP applications, and are
not tuned for or developed from the RTE5 data.

5 Conclusions and Future Work

We have identified three ways in which alignment
may be used in relation to making entailment deci-
sions, and identified some desirable characteristics
for alignment components. We have implemented
a system based on this analysis, designed to han-
dle non-scaled comparison resources and differ-
ent analytic granularities, and to have a graceful
degradation in performance if some resources are
unavailable or unreliable for a particular domain.
Our experimental evaluation on the RTE5 data in-
dicates that our effort has been reasonably suc-
cessful.

We hope that our work contributes to the under-
standing needed for the development of a general
entailment framework; we plan to improve and ul-
timately release the code for our data representa-
tion and comparison resources.

We are presently investigating ways to learn the



parameters for the existing alignment component,
and to improve the alignment-as-entailment ap-
proach.
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