
Leveraging Representation and Inference through
Deep Relational Learning

Maria Leonor Pacheco
Dept. of Computer Science

Purdue University
pachecog@purdue.edu

Ibrahim Dalal
Indian Institute of Technology

Hyderabad
cs14btech11041@iith.ac.in

Dan Goldwasser
Dept. of Computer Science

Purdue University
dgoldwas@purdue.edu

Abstract

We present DRAIL, a declarative framework for specifying deep relational models.
Our framework provides an easy-to-use interface for defining complex models
consisting of many interdependent variables, and experimenting with different
design choices, learning algorithms and neural architectures. We demonstrate the
importance of correctly modeling the interactions between learning, representation
and inference by applying DRAIL to two challenging relational learning problems,
combining textual and social information. Then, we introduce a relational zero-shot
learning task and explore the deep component of DRAIL to work in this setting.

Dealing with structured data, such as conversational interactions (e.g., debates), and social and
information networks, requires modeling the interactions between different data points and decisions
defined over them. Traditionally, there are two approaches for doing this: (1) graphical models,
that capture the interactions between variables using probabilistic inference; and (2) end-to-end
deep learning techniques, in which these dependencies are represented in a latent high-dimensional
space. Graphical models explicitly define how the model decomposes, resulting in an interpretable
models which can incorporate constraints capturing relevant world knowledge. On the other hand,
deep learning approaches capture structural dependencies in a latent space, resulting in expressive
classifiers that are often difficult to interpret and constrain according to domain knowledge.

In an effort to combine these two trends, we present DRAIL, a declarative modeling language for
defining deep structured prediction problems. A DRAIL program consists of a set of rules, each
defining a factor template over a set of variables. Each rule is associated with a neural architecture
used to learn its scoring function, and a feature representation definition, which describes how the
model variables are represented. From a modeling perspective, DRAIL resembles other declarative
languages such as Markov Logic Networks [Domingos et al., 2016] and Probabilistic Soft Logic
[Bach et al., 2015]. It uses first order logic as a template language for defining factor graphs. In
DRAIL, the scoring function for each factor can be learned using highly expressive models; unlike
the other frameworks, which assume a fixed representation.

Previous efforts to combine deep learning with structured inference [Chen and Manning, 2014;
Durrett and Klein, 2015; Andor et al., 2016; Lample et al., 2016; Kiperwasser and Goldberg, 2016]
combine the two approaches in an ad hoc way, focusing on application-specific properties. For
example, training a linear-chain CRF with neural nets as emission potentials, while using simple
transition probabilities. We designed DRAIL to answer the need for a more general approach to
study the interactions between inference and representation.

1 DRaiL Overview

A task in DRAIL is defined by specifying a finite set of entities and predicates. Decisions are defined
using rule templates, formatted as horn clauses: rLH ⇒ rRH , where rLH (body) is a conjunction

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.



of observations and predicted values, and rRH (head) is the output value to be predicted. Each rule
template t is associated with a neural architecture, defined over a parameter set wt, to learn its scoring
function, and a feature function φt, mapping the initial observations to an input vector for the neural
net. The predicates in the horn clauses can correspond to hidden or observed information, and a
specific input is defined by the instantiations -or groundings- of these elements. Each rule grounding
is comprised of a feature representation φt(rLHi) and an output value rRHi. The collection of all
rule groundings represents our global decision, taking into account the consistency and dependencies
between the rules using a set of constraints C. We define rule activations over Boolean variables rti
for each rule grounding, indicating whether they are active or not. The final prediction corresponds to
the collection of heads in active rule groundings.

R∗ = arg max
rti

∑
i

rti · score(φt(rLHi),w
t, rRHi)

subject to C, ∀i; rti ∈ {0, 1} (1)

y =
⋃

rti∈=R∗

rRHi (2)

We include two different protocols to learn how to score rules: local learning, in which the scoring
function corresponding to each rule template is optimized independently of the other templates, and
global learning, which optimizes the parameters of all the scoring functions jointly. Neural models
are specified using Pytorch, and different architectures can be used to represent different factors in
both learning protocols. After scoring factors, we assign values to the output variables by running
an inference procedure. Currently, we formulate inference as an Integer Linear Program (ILP). The
details of the ILP formulation are outlined in appendix A.

Local Learning Each rule is treated as an independent learning problem, and their associated
network parameters are optimized separately.

Global Learning Different rules are combined into a globally normalized model, which uses
inference to ensure a globally consistent decision. We use the structured hinge loss and the error is
back-propagated to update the parameters in all networks.

LG =
∑
j

max
y∈Y

(∆(y, yj) +
∑

rti∈R
∗

score(φt(rLHi),wt, rRHi))−
∑
rti∈G

score(φt(rLHi),wt, rRHi) (3)

Here yj , is the gold prediction for input instance j, G is the set of gold rule activations, and Y
denotes all possible predictions.

2 Model and Evaluation
We design our experimental evaluation to demonstrate the modeling capabilities of DRAIL for three
challenging relational problems. First, we define two typical collective classification tasks: predicting
paper topics in a citation network, and predicting user stances on a set of known political issues in a
debate social network. Then, we formulate a zero-shot learning task for predicting the stance of posts
written in political debates.

2.1 Collective Classification
Datasets For the topic prediction task, we use Citeseer-M10 [Lim and Buntine, 2016], consisting
of 10,310 publications from 10 distinct areas, and 77,218 citation links. For the stance prediction
task, we sampled 17,588 users, their profiles, stances and friends from debate.org. The friendship
graph contains 139,428 edges. Users have stances (i.e. pro or con) in a number of political issues.
For brevity, we focus on Marriage Equality. We represent these tasks using rules of the form:

1. rule: InGraph(a,g)⇒ HasLabel(a,x)
2. rule: InGraph(a,g) & InGraph(b,g) & Edge(a,b) & HasLabel(b,y)⇒ HasLabel(a,x)

The first rule is a simple local rule that maps a node to a label (e.g. Paper⇒ Topic, User⇒ Stance).
The second rule exploits the relational dependency between nodes a and b (e.g. Citation⇒ Topic,
Friendship⇒ Stance). We experimented with different initial representations, as well as ways to
combine them using neural architectures and global inference.

2



Initial Representations and Neural Architectures We explored different initial representations
to represent both textual and relational information. DeepWalk uses the network structure [Perozzi
et al., 2014], Doc2Vec embeds the text of papers and profiles [Le and Mikolov, 2014], and TriDNR
combines text and network information through its coupled neural model [Pan et al., 2016]. For all
neural models, we use a feed-forward net with one hidden layer and 50 hidden units. An outline of
this architecture can be observed in Appendix B, Figure 1.

As a baseline, we used the initial representations directly as inputs to the neural models. The best
macro F1 scores were obtained by concatenating Doc2Vec and Deepwalk, 0.585 for predicting paper
topics, and 0.556 for predicting user stances. For papers, we were able to improve these results using
TriDNR, obtaining 0.690. More results can be observed in Appendix C, Table 3.

Then, we define the collective dependencies described above using DRAIL and experiment with
different rule compositions. We write local and relational rules, and use inference to make a global
decision. DRAIL allows us to combine different representations either in the same neural network
or by exploiting inference. For example, we can write a single rule that takes both the document
embedding and the node embedding as an input (D2Va; DWa) to represent a node a. On the
other hand, we can write several rules for the same dependency. For example, using different
neural networks to represent the edge (a, b): one for the text information (D2Va;b), and one for the
node embeddings (DWa;b). We highlight this flexibility in our experiments and compare different
compositions, using the same neural architectures as the baseline methods. These results can be
observed in Table 1.

Paper⇒ T Citation⇒ T Macro F1
Inf Gl

D2Va ; DWa D2Va;b ; DWa;b 0.592 0.550
D2Va D2Va;b 0.561 0.606DWa DWa;b

TDNRa TDNRa;b 0.707 0.705
D2Va D2Va;b

0.675 0.716DWa DWa;b

TDNRa TDNRa;b

User⇒ S Friendship⇒ S F1 (Gl)
D2Va D2Va;b 0.567
DWfa DWa;b 0.572

D2Va ; DWa D2Va;b ; DWa;b 0.563
D2Va D2Va;b 0.583DWfa DWa;b

Table 1: Collective classification results

Additionally, we compare local learning with inference only at prediction time (Inf), and global
learning (Gl). Due to space constraints, we limit the discussion of learning protocols to the citation
network. All other results use global learning. Evaluation was done with 5-fold cross validation.
Using inference, either at prediction time or during learning, consistently outperforms the local
methods. We also observe that combining different networks for different representations when using
global learning consistently improves performance.

2.2 Zero-Shot Debate Stance Prediction
Traditionally, relational learning approaches use symbolic representations of the data. In Section 2.1
we experimented with a distributed representation for input instances, in this section we suggest
that the same can be done for the output space. Instead of using categories known a priori, we take
a zero-shot learning approach, and learn a distributed representation for the output space as well.
The learned representation allows us to capture the semantic relatedness between newly unobserved
classes and the classes seen during training. We take advantage of DRAIL’s neural architecture and
define this process in a relational setting.

To help make the discussion concrete, consider the binary stance classification task of predicting
the stance (i.e. pro or con) of a post written in an online debate, similar to the one we discussed
in the previous section. In that case, our model learns to predict stances on a specific topic, such
as Marriage Equality (ME) or Gun Control (GC). The decision rule for ME can be expressed as:
InDebate(p,d) ⇒ HasStanceME(p,x). Predicting stances for GC would require learning a new rule
from scratch: InDebate(p,d) ⇒ HasStanceGC(p,x). Instead, we would like to leverage the fact that
stances in these domains are highly correlated, and suggest a zero-shot set up, which can be expressed
succinctly as: InDebate(p,d) & Issue(d,t) ⇒ HasStance(p,x). In this setup, prediction depends
on learning a good embedding for instances of the relation Issue(d,t). To study these settings we
consider an extreme case, in which each debate defines its own topic and the output space is defined
by embedding the title of the debate.

3



There are some straight-forward structural constraints in this setup, as posts written by the same
author in a single debate will have the same stance. Likewise, posts written by the instigator and
posts written by the contender will have opposing stances. We represent the task as follows:

1. rule: InDebate(p,d) & HasTitle(d,t)⇒ HasStance(p,x)
2. rule: InDebate(p,d) & IsAuthor(p,a) & HasTitle(d,t)⇒ HasStance(p,x)
3. constr: InDebate(p,d) & InDebate(o,d) & SameAuthor(p,o) & HasStance(p,x)⇒ HasStance(o,x)
4. constr: InDebate(p,d) & InDebate(o,d) & !SameAuthor(p,o) & HasStance(p,x)⇒ !HasStance(o,x)

Dataset We collected 21,794 political debates from debate.org, containing a total of 162,037 posts.
All debates have at least two posts, and posts contain between one and 25 sentences.

Initial Representations and Neural Architectures We used a very simple initial representation
for sentences and titles, averaging their pre-trained word vectors [Mikolov et al., 2013]. For users,
we use a 1-hot representation of their profile attributes (e.g: gender, occupation, religion, etc). Since
many users don’t disclose all of their information, these features are very sparse. For the first rule
(NN1), we represent the post using a BiLSTM over its sentences, and the title using a feed-forward
net. We concatenate the hidden layer of the title with the last hidden state of the BiLSTM. For the
second rule (NN2), we represent both the title and the user using feed-forward computations, and
concatenate their hidden layers. We define a third architecture (NN3) as an alternative representation
for rule 2, where we concatenate the hidden layers of the title and user with the last hidden state of
the post. In all cases, we add a softmax on top to predict the stance. These architectures are outlined
in Appendix B, Figures 3, 2 and 4. When we combine the two rules using inference, we share the
title parameters between the two networks.

Given that each one of the 21,794 debates has a different title, the standard leave-one-out zero-shot
learning setup would be too expensive to compute. We divide the debates randomly into five folds
and perform 5-fold cross validation.

Model Accuracy
+ Inf

NN1(Post & Title⇒ S) 0.5611 0.6645
NN2(User & Title⇒ S) 0.5514 0.5759

NN3 0.5791 0.5793(Post & User & Title⇒ S)

(a) Neural models with and without constraints

Model Protocol Acc

Inference 0.6721NN1(Post & Title⇒ S)
NN2(User & Title⇒ S) Global 0.7289(Struct. Loss)

(b) Combining different representations

Table 2: Zero-Shot Debate Stance Prediction

Table 2 summarizes our results. In Table 2a, we use different representations and architectures with
and without inference. As expected, enforcing the debate structural constraints consistently improves
results, and is particularly helpful in the "Post & Title⇒ Stance" case. Our intuition is that some
posts are easier to disambiguate than others, and inference allows them to dominate the prediction.
However, the best results are obtained when we not only enforce the debate structural constraints, but
also combine the two representations (i.e. post and users) using inference, as observed in Table 2b.
Using different rules for different representations is better than combining representations using the
neural architecture only, even when just using inference. The best results for this task are obtained
when using global learning, demonstrating the advantage of having a globally normalized model
using the structured loss.

3 Conclusion
This paper presents DRAIL1, a declarative framework for learning dependencies in relational domains
using deep learning architectures. We have demonstrated the flexibility of our framework, which
can be used for quick prototyping and evaluation of the interplay between representation complexity
and structural complexity. Our current work looks into learning representations using DRAIL
through multitask learning, and by explicitly defining embedding objectives, as well as incorporating
approximate inference algorithms into the framework to address computational constraints.

1Demo: https://gitlab.com/purdueNlp/DRaiL_Public

4

https://gitlab.com/purdueNlp/DRaiL_Public


References
Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta, Kuzman Ganchev,

Slav Petrov, and Michael Collins. Globally normalized transition-based neural networks. In ACL,
pages 2442–2452, 2016.

Stephen H. Bach, Matthias Broecheler, Bert Huang, and Lise Getoor. Hinge-loss markov random
fields and probabilistic soft logic. Computing Research Repository, arXiv:1505.04406, 2015.

Danqi Chen and Christopher Manning. A fast and accurate dependency parser using neural networks.
In Proceedings of the 2014 conference on empirical methods in natural language processing
(EMNLP), pages 740–750, 2014.

Pedro Domingos, Daniel Lowd, Stanley Kok, Aniruddh Nath, Hoifung Poon, Matthew Richardson,
and Parag Singla. Unifying logical and statistical ai. In Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS ’16, pages 1–11, New York, NY, USA, 2016.
ACM.

Greg Durrett and Dan Klein. Neural crf parsing. In ACL, pages 302–312, 2015.

Eliyahu Kiperwasser and Yoav Goldberg. Simple and accurate dependency parsing using bidirectional
lstm feature representations. TACL, 2016.

Guillaume Lample, Miguel Ballesteros, Kazuya Kawakami, Sandeep Subramanian, and Chris Dyer.
Neural architectures for named entity recognition. In NAACL, pages 1–10, 2016.

Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents. In Proceedings
of the 31st International Conference on International Conference on Machine Learning - Volume
32, ICML’14, pages II–1188–II–1196. JMLR.org, 2014.

Kar Wai Lim and Wray L. Buntine. Bibliographic analysis with the citation network topic model.
CoRR, abs/1609.06826, 2016.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S Corrado, and Jeffrey Dean. Distributed Repre-
sentations of Words and Phrases and their Compositionality. In Advances in Neural Information
Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013.,
2013.

Shirui Pan, Jia Wu, Xingquan Zhu, Chengqi Zhang, and Yang Wang. Tri-party deep network
representation. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial
Intelligence, IJCAI’16, pages 1895–1901. AAAI Press, 2016.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representa-
tions. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’14, pages 701–710, New York, NY, USA, 2014. ACM.

5



A ILP Formulation

In this section we define our 1-0 ILP formulation. For each rule grounding i, we introduce rule
variables ri. Each ri has an associated score si ∈ R. The objective function can then be expressed as:

arg max
ri

∑
i si · ri

subject to C ∀i; ri ∈ {0, 1} (4)

Then, we introduce head variables hj for each different head predicate j (and its negation (h̄j)) to
indicate the activation of the variable. As in the case of rule variables, head variables can exclusively
take values of 0 or 1 (∀j;hj ∈ {0, 1}). Note that in the objective function, we do not assign any
weight to head variables, as their values are entirely determined by constraints that ensure consistency.

In order to enforce consistency between variable assignments and dependencies among them, the
following five types of constraints are taken into consideration.

negation constraints They ensure exclusive activation of a head predicate or its negation at the
same time. For example, hHasLabel(a,b) + h̄HasLabel(a,b) = 1.

implied constraints Each rule template defines the dependency between body and head. This
dependency is reflected between the rule grounding variable and the head variables in
the body. For example, consider a rule grounding i: Edge(a,b) & HasLabel(b,c) ⇒
HasLabel(a,d), where a and b are observed nodes, and c and d are labels. In this case,
the constraint ri ≤ hHasLabel(b,c) is needed, as the whole rule is true only when the body is
activated.

rule/head constraints One head predicate can be associated with multiple rule grounding variables.
Let ri ∈ ruleset(j) denote the rule variables associated with the same head variable
hj , where ruleset(j) is the set of rule groundings that share the same head predicate
j. Activation of any rules in ruleset(j) ensures the activation of the head variable, i.e.
hj ≥ ri,∀i ∈ ruleset(j). On the other hand, the activation of the head variable ensures the
activation of at least one of its corresponding rule variables, i.e. hj ≤

∑
i ri.

binary/multi-class/multi-label constraints In many problems, we are facing multi-class or multi-
label decisions. DRAIL allows us to express this and add suitable constraints. For instance,
in the multi-class case, among all head variables hj ∈ decision(d) on the same entity (e.g.
all possible labels assignments for a single node), only one of them is activated while the
others remain inactive, i.e.

∑
j hj = 1. Note that the constraints for binary predicates can

be covered by the negation constraints mentioned above.
hard constraints from rule definitions Users can define hard constraints in the rule templates,

which usually infuse prior knowledge and thus improve the prediction capacity. Rule
groundings of these templates are dealt differently as the activation of such a rule de-
pends on the activation of all body predicates. In this paper, we showed two exam-
ples of such constraints: 1) InDebate(p,d) & InDebate(o,d) & SameAuthor(p,o)
& HasStance(p,x) ⇒ HasStance(o,x), to enforce authors to have consistent
opinions across posts in a debate, and 2) InDebate(p,d) & InDebate(o,d) &
!SameAuthor(p,o) & HasStance(p,x) ⇒ !HasStance(o,x), to enforce debating
users to have opposing opinions in a debate.

6



B Neural Architectures

The following architectures were used in this paper. The feed-forward architecture on Figure 1 was
used for all factors in the collective classification tasks. Figures 2, 3 and 4 show the architectures
used for the Zero-Shot debate stance prediction task.

Figure 1: Feed-Forward Network
Figure 2: N2(User+Title⇒ Stance)

Figure 3: N1(Post+Title⇒ Stance)

Figure 4: N3(Post+User+Title⇒ Stance)

C Other Results

Node Macro F1
Papers Users

Doc2Vec 0.522 0.551
DeepWalk 0.394 0.551

Doc2Vec + DeepWalk 0.585 0.556
TriDNR 0.690 -

Table 3: Baseline representations for predicting paper topics and user stances,
using neural architecture in Appendix B, Figure 1 and no inference

7


	DRaiL Overview
	Model and Evaluation
	Collective Classification
	Zero-Shot Debate Stance Prediction

	Conclusion
	ILP Formulation
	Neural Architectures
	Other Results

