
Proceedings of the First Workshop on Interactive Learning for Natural Language Processing , pages 46–53
August 5, 2021. ©2021 Association for Computational Linguistics

46

Tackling Fake News Detection by Interactively Learning Representations
using Graph Neural Networks

Nikhil Mehta
Department of Computer Science

Purdue University, West Lafayette, IN
mehta52@purdue.edu

Dan Goldwasser
Department of Computer Science

Purdue University, West Lafayette, IN
dgoldwas@purdue.edu

Abstract

Easy access, variety of content, and fast
widespread interactions are some of the rea-
sons that have made social media increasingly
popular in today’s society. However, this has
also enabled the widespread propagation of
fake news, text that is published with an in-
tent to spread misinformation and sway beliefs.
Detecting fake news is important to prevent
misinformation and maintain a healthy society.

While prior works have tackled this problem
by building supervised learning systems, auto-
matedly modeling the social media landscape
that enables the spread of fake news is chal-
lenging. On the contrary, having humans fact
check all news is not scalable. Thus, in this pa-
per, we propose to approach this problem inter-
actively, where human insight can be continu-
ally combined with an automated system, en-
abling better social media representation qual-
ity. Our experiments show performance im-
provements in this setting.

1 Introduction

Over the last decade, an increasing number of peo-
ple access news online (Amy Mitchell, 2016), of-
ten using social networking platforms to engage,
consume and propagate this content in their social
circles. Social networks provide easy means to dis-
tribute news and commentary, resulting in a sharp
increase in the number of media outlets (Ribeiro
et al., 2018), and a rapid spread of content. In par-
ticular, false news stories tend to spread at lightning
speeds, and due to the volume, cannot be checked
manually. An alternative to fact-checking claims,
which is arguably easier to scale, is to focus on
their source, and ask who can you trust?

Prior works have formulated this as a traditional
classification problem using techniques such as
feature-based SVM’s (Baly et al., 2018, 2020),
and more recently Graph Neural Networks (GNNs)

(Li and Goldwasser, 2019; Shu et al., 2019; Han
et al., 2020; Nguyen et al., 2020), which create a
better representation of social media interactions.
Graphs often consist of nodes corresponding to
news sources (associated with a discrete factuality
level - high, low, or mixed), the articles they release,
and their social context, corresponding to social
media users engaging and sharing information in
their networks. GNNs can utilize this information
by using edge interactions to create node represen-
tations contextualized by their graph neighbours.
This leads to a stronger representation of the com-
plex information landscape on social media that
enables fake news to spread, allowing it to be better
detected. For this reason, we adopt graphs as our
automated framework (1).

Despite the success of these works, fake news
detection is still a challenging research problem
and human performance is significantly higher
than fully automated systems (Shaar et al., 2020).
Clearly, having humans fact check every informa-
tion source is not scalable. Thus, our goal in this pa-
per is to explore a different form of interaction with
humans, where they can provide advice (Mehta
and Goldwasser, 2019) to the automated system.
Advice corresponds to localized judgements (pro-
vided through natural language) that help charac-
terize the content and social interactions associated
with sources. These judgements, associated with
article and social media user nodes, are then prop-
agated through the information graph using the
GNN, allowing the system to take advantage of
it to improve it’s representation. As advice is not
providing source labels directly, which is a time-
consuming process requiring a global view of the
source’s interactions, it is scalable.

For example, one challenging aspect of the prob-
lem is that low-factuality (“fake news”) sources
may not always propagate false information (some
of the articles they publish may be factual), and

47

Figure 1: Information Graph capturing interactions
between news sources, articles, and engaging users.
Advice is added to the information graph by adding
new nodes/edges(teal) based on the advice type (news
spreader or relevant claims). Advice then provides in-
formation that can useful to clear up the complex social
space the graph is modeling.

vice-versa (leading to model confusion). Human
interaction, in the form of advice, can help clean
up some of this uncertainty, by identifying claims
containing egregious falsehoods. The model could
then use this information and trust sources making
these claims less. We refer to this form of advice,
mapping a specific article to known falsehoods as
relevant claim advice. In another case, referred to
as news spreader advice, a human could inform the
system that a user that is spreading a sources’ arti-
cles frequently spreads lies, which would increase
the likelihood that that source and any other source
this user spreads articles from are fake. Fig 1 shows
how both of these advice types can be seamlessly
added to an information graph.

In this work, we show that our protocol in which
humans iteratively provide these types of advice by
interacting with the model (even after it is trained)
improves overall fake news detection performance.
In summary, we formulate fake news source detec-
tion as a reasoning problem over an information
graph. We then suggest an interactive learning
based approach for incorporating human knowl-
edge as advice to clean up uncertain graph deci-
sions, which allows us to better learn and reason on
this graph. Finally, we perform experiments that
demonstrate that this setup leads to performance
improvements on fake news source detection.

2 Model

2.1 Graph Creation and Training
We start with defining our social context informa-
tion graph. It consists of sources (S), articles they
publish (A), and Twitter users that interact with
sources/articles (U). Our goal is fake news source
factuality classification. Each node in the graph
is represented by a high dimensional feature vec-
tor, (similar to prior work (Baly et al., 2018, 2020;
Nguyen et al., 2020)) to provide knowledge to the
model that can be utilized when learning the graph
embedding. Source and user feature vectors are cre-
ated by concatenating embeddings based on their
Twitter profiles (SBERT + features, details in Ap-
pendix A.2.1). Sources also can include YouTube
profile embeddings. Articles are represented by the
encoding text into a SBERT RoBERTa embedding.

Our graph is formed by first adding all the
sources as individual nodes. We then scrape and
add up to 300 articles (ai) for each source, connect-
ing each with an edge to the source that published
it (e = {si, aj}). Next, we add social context to the
graph via Twitter users that interact with sources.
We add up to 5000 users that follow sources, and
users that tweet links to any articles in the graph
within a 3 month period of the article being pub-
lished (e = {si, uj}, e = {ai, uj}). Users that
follow/engage with sources are likely to be aligned
with/propagating the view of the sources, and mod-
eling this can be useful. Finally, in order to capture
the social interactions between users in the graph,
which is critical to capturing fake news propagation
on social media, we scrape up to 5000 followers of
each Twitter user and make an edge between a pair
of existing users if one user follows another.

In order to learn the information captured by
our information graph, we train a GNN to learn
an initial embedding, on top of which we will ap-
ply the interactive protocols (Sec 2.2). As a node
embedding function, we utilize Relational Graph
Convolutional Networks (R-GCN) (Schlichtkrull
et al., 2018) (they can handle the social media re-
lationships well). We achieve meaningful repre-
sentations and capture factuality of the different
nodes in our graph by optimizing the Node Clas-
sification (NC) objective of Fake News Detection.
After obtaining the source representations os from
the R-GCN, we pass them through the softmax ac-
tivation function σ and then train using categorical
cross-entropy loss: Lnc = −

∑C
i=1 yilog(σ(os))

where the C classes for yi are either high, mixed,

48

or low factuality, and s is the current source.

2.2 Advice Protocols
We now describe the two advice protocols we uti-
lize in this paper. As mentioned in the introduction,
in this work, we define advice as a form of human
provided judgement (typically provided through
natural language) about intermediate relationships
in the information graph, that cleans up the space of
complex judgements made by the GNN, allowing
us to better capture the challenging landscape on so-
cial media that enables fake news to spread (Fig 1).
Advice is provided by humans interactively and
continuously, so that the process is scalable (not
many judgements are needed, and they can always
be provided, even after the system is deployed).
In this way, our advice protocols provide a mech-
anism for humans to interact with the automated
graph system. We use two forms of advice:

2.2.1 Relevant Claim Advice
When a human provides relevant claim advice, they
have some prior knowledge about a certain claim
(or news statement), and are telling this information
(the claim and what their belief about its’ factuality
is) to the model . For example, a human may know
that a certain claim is not factual (perhaps many
users on social media spread it and thus the human
has seen it before). The human would then pro-
vide this claim and a message about its factuality
through natural language.

Once a human has provided advice in the form
of a claim that may be relevant, the model must de-
cide which articles (if any) the claim is relevant for.
Once it does so, it can add a new node in the graph
for the claim (represented similar to the article text
node with SBERT RoBERTa embedding), and con-
nect it to the relevant article(s), allowing the advice
knowledge to easily propagate through the graph
(either by re-training the GNN or using the trained
GNN to embed the advice node appropiately →
we evaluate both setups in Sec 3). This automated
setup allows for minimal effort needed from the
human, making the advice simple to provide.

To do this, first, the model filters a subset of
sources (a process which we call filtering), whose
articles could be candidates to receive advice. As
mentioned earlier, advice cleans up complexities
in the information graph, so these sources are ones
which the model predicts the label of with low con-
fidence (we rank Softmax scores for this). Then,
for each filtered source’s article, the model decides

if the claim provided by the human is relevant, by
analyzing content in two ways. (1) First, a heuris-
tic is used to determine if the advice and article
are talking about the same event. To do this, the
model extracts the entities from the advice claim
and the article (we use the FLAIR tagger (Akbik
et al., 2019)), and determines if any of them over-
lap. If they do, the model also checks the date the
advice claim was made, and makes sure it is within
a one week period of the article being published.
(2) Then, to further check content relevance, we
use an entailment model (Parikh et al., 2016) and a
sentence selection model (Nie et al., 2019) to check
if any sentences from the article (chosen by the sen-
tence selection model) entail the advice claim. If
they do, the chance that the two are talking about
similar content is higher. If there is an entailment,
the advice statement d node is connected to the arti-
cle a with an edge. All advice is also connected to
a special label node h, m, or l, representing ‘high’,
‘low’, or ‘mixed’ factuality, based on the advice
label (which is provided by the human), so that the
model can easily represent that information.

In our interactive process, which we evaluate in
Sec 3.2, a human can continuously provide relevant
claims (through natural language) based on knowl-
edge they posses as advice, and through the process
described above, the model can determine which
articles to use it for (thus connecting the advice in
the graph). In this way, the human interacts with
the system to clear up potential confusion about
certain articles, which propagates via the graph
through sources and users, to lead to better fake
news detection performance.

2.2.2 News Spreader Advice
When providing news spreader advice, the human
informs the system that a certain user is a bad ac-
tor, meaning that they frequently spread lies. This
knowledge would increase the likelihood that arti-
cles this user tweets, and other users they interact
with, are also non-factual. The user is then con-
nected via an edge to a special ‘low’ factuality
node, signifying to the model the set of users that
are deemed to not be trusted.

2.2.3 Simulating Advice
In this preliminary work, we simulate the two pre-
vious forms of human provided advice by collect-
ing data from fact-checking websites (PolitiFact,
Snopes, USA Today, The Washington Post) and
Twitter (details in Appendix A.1). For relevant

49

Model Performance
Acc Macro F1 # of Advice

M1 : Majority class 52.43 22.93 -
M2 : Best Model from (Baly et al., 2020) 71.52 67.25 -
M3 : Our replication of (Baly et al., 2020) 69.38 63.63 -
M4 : Node classification (NC) 65.76 55.97 -
M5 : Relevant Claim All Advice 69.02 61.89 29,673
M6 : Relevant Claim Advice Filtering 25% 68.09 60.28 17,305
M7 : Relevant Claim Advice Selection 70.54 62.61 4,106
M8 : Relevant Claim Advice Filtering + Selection 50% + 50% 68.56 60.80 4,106
M9 : Relevant Claim All Advice Match Label 76.36 70.89 8,677
M10 : News Spreader Only Bad 67.40 59.57 2,643
M11 : News Spreader Bad 50% 65.91 58.65 1,350
M12 : News Spreader Bad 50% + 50% 66.35 58.26 2,643

Table 1: Final results.

claim advice, we scrape all claims fact-checked by
these websites and their factuality scores, and use
that. This simulates humans providing advice in
the real world, as a claim and some factuality in-
sight about it are given. For news spreader advice,
we use the Twitter API to determine all users that
have been suspended since we initially collected
our dataset, and use them as our news spreaders.
Twitter manually suspended most of these users af-
ter the storming of the US capitol, so using this data
allows us to accurately simulate human advice.

Although in this work we did not explicitly ask
users to provide advice based on our learned graph
model, our approximation of human advice that we
collected was provided by human experts, and is
thus relatively close to real advice that a human
could provide. Relevant claims advice is based on
real news claims that experts have associated factu-
ality labels with, and Twitter manually suspended
the users we used for news spreader advice.

3 Experiments

3.1 Dataset and Collection

To evaluate our model’s ability to predict the factu-
ality of news medium, we used the Media Bias/Fact
Check (MBFC) dataset (Baly et al., 2018, 2020)
(859 sources, each labeled on a 3-point scale based
on their factuality: low, mixed, and high). We pro-
vide graph statistics in App. A.

3.2 Fake News Classification

Table 1 shows our results. We average our mod-
els on all 5 data splits released by (Baly et al.,
2020), using 20% of the training set sources as a

development set, and report results on accuracy
and Macro F1-score for fake news source classifi-
cation. We compare our advice protocol models
to the baseline-graph based model trained only on
node classification (NC - no advice provided, M4).
For completeness, we included the results of the
SOTA (Baly et al., 2020) (M2), as well as replication
of their setup using the data we scraped (and their
code). Our results are worse than their released
performance, so we hypothesize that their data on
our setup may lead to better overall performance.

For relevant claim advice, we evaluate settings
in which we provide all the advice we scraped
(29,673 statements - M5), where we provide advice
only to the bottom 25% of sources that our model
is not confident on during train/dev/test time (M6,
all advice that passes the event filter is used →
at least one entity in the articles title matches the
advice claim and the dates are within one week
of each other), and where we provide advice to
all sources and make sure articles pass the event +
entailment + sentence selection criteria (M7 - full
setup in Sec 2.2.1). In all these setups, the advice
is provided on the best model in M4, and then pa-
rameters are reset and the model is re-trained to
learn how to incorporate the advice. M8 is different
and more interactive, as advice is first provided on
the bottom 50% of confident sources based on the
protocol in Sec 2.2.1, then the model is re-trained.
Then, the rest of the advice is provided as in M7,
except this time the model isn’t retrained. This
simulates advice being continuously provided in-
teractively by the human in the real world, and
performance still improves. In this setting, as no
re-training of the model is necessary, advice can be

50

quickly utilized. All setups improve performance
from the baseline, and using the filtering + sen-
tence selection approach (M7) leads to the best per-
formance, showing that the content of the advice
matching the article matters. Thus, in the future
when humans provide advice that is more likely to
match the content of the articles, it is likely that we
will see further performance improvements. Fur-
ther, it is likely that less advice will need to be
provided to see improvements.

For completeness, in M9 we also evaluate an up-
per bound, where advice provided by the human
would be 100% accurate, i.e. the human would
only provide advice that matched the article label
(article label based on the label of the source).

Finally, we evaluate news spreader advice, first
when all news spreaders are told to the model (M10),
then when only 50% are (M11), and finally when
50% are told, the model is retrained, and then the
rest are provided (M12, simulating true interaction).

In all advice models, performance improves
from the NC baseline, showing that these types
of advice can be helpful to the model. Furthermore,
once the advice is provided, we can add more (M8,
M12), and still see performance improvements with-
out having to retrain the model, demonstrating a
true interactive scenario, where a human can contin-
uously be interacting with an automated system. In
addition, providing advice as a localized judgement
is simple and easier than labelling an entire source,
so large amounts of advice can be collected from
different experts to improve results. In the future,
when we experiment with humans providing advice
that is more content relevant (not simulating), the
amount of advice needed could also decrease.

3.3 How Does Advice Help?

In this section, we analyze a few specific cases of
how relevant claim advice is used by the model to
improve performance. In one case, an article from
a news source labeled as spreading fake news was
discussing how a Democratic leader would become
Vice President if the President was impeached. Our
model incorrectly predicted the factuality of this
source. However, an advice claim from Snopes
stating that the 25th amendment would not lead
to this Democratic candidate immediately becom-
ing Vice President was able to push the prediction
of the source in the appropriate direction. In an-
other case, advice that a specific former President
was the first to speak against the current President

was provided through PolitiFact with a False label,
pushing a different source towards the fake news
label.

4 Summary and Future Work

In this paper, we proposed an approach to tackle
fake news detection interactively by designing a
protocol for a graph based system to continuously
solicit human advice, and take advantage of it
to improve overall information quality, which en-
ables better fake news detection performance. We
showed the benefits of two forms of advice (rele-
vant claims and news spreaders), provided either
all at once or continuously. In the future, we plan
to have humans actually provide this advice, and
explore other advice types.

5 Acknowledgments

We thank the anonymous reviewers of this paper
for all of their vital feedback. This works was
partially supported by an NSF CAREER award IIS-
2048001. Any opinions, findings and conclusions
or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect
the views of the NSF.

6 Ethics Statement

To the best of our knowledge no code of ethics
was violated throughout the experiments done in
this paper. We reported all hyper-parameters and
other technical details necessary to reproduce our
results. For space constraint we moved some of
the technical details to the Appendix section which
is submitted with this manuscript. The results we
reported supports our claims in this paper and we
believe it is reproducible. Any qualitative result
we report is an outcome from a machine learning
model that does not represent the authors’ personal
views. Any results that we discussed on the data
we used did not include account information and
all results are anonymous. We anonymized the
Twitter, article, and advice (Politifact, Snopes, USA
Today, The Washington Post) data we collected to
respect the privacy policy of the various websites
and user data. While our overall approach does rely
on user insights, each advice statement provided
does not directly affect the final prediction, so a
system receiving advice for fake news detection
can not be easily manipulated.

51

References
Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif

Rasul, Stefan Schweter, and Roland Vollgraf. 2019.
Flair: An easy-to-use framework for state-of-the-art
nlp. In NAACL 2019, 2019 Annual Conference of
the North American Chapter of the Association for
Computational Linguistics (Demonstrations), pages
54–59.

Michael Barthel Elisa Shearer Amy Mitchell, Jef-
frey Gottfried. 2016. The modern news consumer.
Pew Research Center.

Ramy Baly, Georgi Karadzhov, Dimitar Alexandrov,
James Glass, and Preslav Nakov. 2018. Predict-
ing factuality of reporting and bias of news media
sources. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing,
EMNLP ’18, Brussels, Belgium.

Ramy Baly, Georgi Karadzhov, Jisun An, Haewoon
Kwak, Yoan Dinkov, Ahmed Ali, James Glass, and
Preslav Nakov. 2020. What was written vs. who
read it: News media profiling using text analysis and
social media context. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, ACL ’20.

Felix Hamborg, Norman Meuschke, Corinna Bre-
itinger, and Bela Gipp. 2017. news-please: A
generic news crawler and extractor. In Proceedings
of the 15th International Symposium of Information
Science, pages 218–223.

Yi Han, Shanika Karunasekera, and Christopher
Leckie. 2020. Graph neural networks with continual
learning for fake news detection from social media.
arXiv preprint arXiv:2007.03316.

Chang Li and Dan Goldwasser. 2019. Encoding so-
cial information with graph convolutional networks
forpolitical perspective detection in news media. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2594–
2604.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Nikhil Mehta and Dan Goldwasser. 2019. Improving
natural language interaction with robots using ad-
vice. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
1962–1967.

Van-Hoang Nguyen, Kazunari Sugiyama, Preslav
Nakov, and Min-Yen Kan. 2020. Fang: Leveraging
social context for fake news detection using graph
representation. In Proceedings of the 29th ACM
International Conference on Information & Knowl-
edge Management, pages 1165–1174.

Yixin Nie, Haonan Chen, and Mohit Bansal. 2019.
Combining fact extraction and verification with neu-
ral semantic matching networks. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 6859–6866.

Ankur P Parikh, Oscar Täckström, Dipanjan Das, and
Jakob Uszkoreit. 2016. A decomposable attention
model for natural language inference. arXiv preprint
arXiv:1606.01933.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Py-
torch: An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084.

Filipe N Ribeiro, Lucas Henrique, Fabricio Ben-
evenuto, Abhijnan Chakraborty, Juhi Kulshrestha,
Mahmoudreza Babaei, and Krishna P Gummadi.
2018. Media bias monitor: Quantifying biases of
social media news outlets at large-scale. In Twelfth
International AAAI Conference on Web and Social
Media.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem,
Rianne Van Den Berg, Ivan Titov, and Max Welling.
2018. Modeling relational data with graph convolu-
tional networks. In European semantic web confer-
ence, pages 593–607. Springer.

Shaden Shaar, Alex Nikolov, Nikolay Babulkov, Firoj
Alam, Alberto Barrón-Cedeno, Tamer Elsayed,
Maram Hasanain, Reem Suwaileh, Fatima Haouari,
Giovanni Da San Martino, et al. 2020. Overview of
checkthat! 2020 english: Automatic identification
and verification of claims in social media. Cappel-
lato et al.[10].

Kai Shu, Suhang Wang, and Huan Liu. 2019. Beyond
news contents: The role of social context for fake
news detection. In Proceedings of the twelfth ACM
international conference on web search and data
mining, pages 312–320.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei
Li, Xiang Song, Jinjing Zhou, Chao Ma, Lingfan Yu,
Yu Gai, et al. 2019. Deep graph library: A graph-
centric, highly-performant package for graph neural
networks. arXiv preprint arXiv:1909.01315.

https://doi.org/10.5281/zenodo.4120316
https://doi.org/10.5281/zenodo.4120316
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

52

A Supplemental Material

In this section, we provide implementation details
for our models. The dataset we use has 859 sources:
452 high factuality, 245 mixed, and 162 low, and
was released publicly by (Baly et al., 2020)1. The
dataset does not include any other raw data (articles,
sources, etc.), so we must scrape our own.

A.1 Data Collection

For each source, we attempted to scrape news arti-
cles using public libraries (Newspaper3K 2, Scrapy
3, and news-please 4 (Hamborg et al., 2017)). In
the cases where the web pages of the source news
articles was removed, we used the Wayback Ma-
chine 5. Overall, our sources have an average of
109 articles with a STD of 36.

For Twitter users, we used the Twitter API6 to
scrape 5000 followers for each Twitter account
we could find (72.5% of the sources, identical to
(Baly et al., 2020). In the graph, we then connected
these users to the sources they follow. In addition,
we used the Twitter Search API to search articles
on Twitter and find any Tweets that mention the
article title or URL within 3 months of the article
being published. We then downloaded the users
that make these Tweets as well, and added them
to our graph, linking them to the respective article
they talk about. Finally, to increase the connectivity
of the graph and accurately capture the interactions
between the users, we also scraped the followers of
every Twitter user. We then made sure to only add
users to our graph that either interact with multiple
sources (through source or article connections) or
another user, so that every node would be inter-
connected.

We did not scrape YouTube accounts, but rather
used the same ones as the ones released by (Baly
et al., 2020). They found YouTube channels for
49% of sources.

For collecting relevant claim advice from news
sources (PolitiFact, Snopes, USA Today, and the
Washington Post), we used the Google FactCheck
tool7, along with scraping the PolitiFact website.
We downloaded 29,673 claims in total.

1https://github.com/ramybaly/News-Media-Reliability
2https://github.com/codelucas/newspaper
3https://github.com/scrapy/scrapy
4https://github.com/fhamborg/news-please
5https://archive.org/web/
6https://developer.twitter.com/en/docs
7https://toolbox.google.com/factcheck/explorer

A.2 Experimental Settings

A.2.1 Initial Embeddings
Our initial Twitter embedding for each source and
engaging user was a 773 dimensional vector con-
sisting the SBERT (Reimers and Gurevych, 2019)
(RoBERTa (Liu et al., 2019) Base NLI model) rep-
resentation of their bio concatenated with the fol-
lowing numerical features: a binary number repre-
senting whether the source is verified, the number
users a source follows and the number that follow
it, the number of tweets it makes, and the number
of favorites/likes its’ tweets have received. For,
YouTube, the embedding we used was the average
of the number of views, dislikes, and comments
for each video the source posted. Sources that
did not have a YouTube channel had a random
YouTube embedding. For articles, we used the
SBERT (Reimers and Gurevych, 2019) RoBERTa
(Liu et al., 2019) model to generate an embedding
for each article. For relevant claims advice, we
used the same SBERT (Reimers and Gurevych,
2019) RoBERTa (Liu et al., 2019) model to gener-
ate an embedding for each advice claim.

We also mentioned special factuality nodes in
Sec 2.2.1 that are added into the graph and con-
nected to advice claims, to allow the model to easily
represent the advice label (either the claim label or
the fact that a Twitter user is spreading bad news).
These nodes are initialized randomly with a 768
dimensional embedding that is then learned when
the graph is re-trained after the initial set of advice
is added.

A.3 Graph Statistics

We downloaded an average of 109 articles per
source, with a STD of 36, and user-engagements
(talking about articles, following sources/other
users) via the Twitter API 8(sources have an av-
erage of 27 users directly connected to them or to
their articles). Using this data we construct the
graph as described in Sec 2.1, which consists of
69,978 users, 93,191 articles, 164,034 nodes, and
7,196,808 edges. Details about the model setup we
utilized when training our graph (chosen using the
development set), and our scraping protocol are in
Appendix A.

A.3.1 Model Setup
Our models are built on top of PyTorch (Paszke
et al., 2019) and DGL (Deep Graph Library) (Wang

8https://developer.twitter.com/en/docs

53

et al., 2019) in Python. The R-GCN we use con-
sists of 5 layers, 128 hidden units, a learning rate
of 0.001, and a batch size of 128 for Node Clas-
sification. Our initial source, article, and advice
embeddings have hidden dimension 768, while the
user one has dimension 773.

We choose parameters using the development set
(20% of train sources) for one of the training data
splits, and then apply them uniformly across all the
splits, when training the final models. We choose
the stopping point for the best performing models
on which to apply advice on top of based on the
dev set. In the setups where we did not apply all
the advice at once, we determined all the advice
that could be relevant and then randomly chosen
which ones to apply based on the percentage of the
total the experiment required.

Our models were trained on a 12GB TITAN XP
GPU card and training each data split for Node
Classification takes approximately 4 hours, while
training Link Prediction Pre-training and the com-
bined initialization step takes 24 hours.

A.3.2 Replication of Prior Work
To replicate (Baly et al., 2020) (M3), we used their
released code with our features. Specifically, we
used our article, Twitter profile, Twitter Follower,
and YouTube embeddings. This setup consists of
all the data in our graph, and also provided the best
performance in (Baly et al., 2020).

