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Abstract

This paper proposes an Entity-based Narrative
Graph (ENG) to model the internal-states of
characters in a story. We explicitly model
entities, their interactions and the context in
which they appear, and learn rich represen-
tations for them. We experiment with dif-
ferent task-adaptive-pretraining objectives, in-
domain training, and symbolic inference to
capture dependencies between different deci-
sions in the output space. We evaluate our
model on two narrative understanding tasks:
predicting character mental states, and desire
fulfillment, and conduct a qualitative analysis.

1 Introduction

Understanding narrative text requires modeling the
motivations, goals and internal states of the char-
acters described in it. These elements can help
explain intentional behavior and capture causal con-
nections between the characters’ actions and their
goals. While this is straightforward for humans,
machine readers often struggle as a correct anal-
ysis relies on making long range common-sense
inferences over the narrative text. Providing the ap-
propriate narrative representation for making such
inferences is therefore a key component. In this pa-
per we suggest a novel narrative representation and
evaluate it on two narrative understanding tasks,
analyzing the characters’ mental states and moti-
vation (Abdul-Mageed and Ungar, 2017; Rashkin
et al., 2018), and desire fulfillment (Chaturvedi
et al., 2016; Rahimtoroghi et al., 2017).

We follow the observation that narrative under-
standing requires an expressive representation cap-
turing the context in which events appear and the
interactions between characters’ states. To clarify,
consider the short story in Fig. 1. The desire ex-
pression appears early in the story and provides
the context explaining the protagonist’s actions.
Evaluating the fulfilment status of this expression,
which tends to appear towards the end of the story,

Cindy really likes apples. 
 
She wanted to try something 
new with them. 
 
She decided to try to make 
baked apples for the first time. 
 
She gathered everything she 
needed and began cooking. 
 
It's now her favorite apple dish! 

Desire Expression: try something 
new with them 
Motivation (Reiss): Curiosity  
Emotion (Plutchik): Joy, 
Anticipation 

Desire Fulfilled! 
Motivation (Reiss): Independence 
Emotion (Plutchik): Joy 

Figure 1: Narrative Example

requires models that can reason over the desire ex-
pression (“trying something new”), its target (“ap-
ples”) and the outcome of the protagonist’s actions
(“it’s now her favorite apple dish!”). Capturing
the interaction between the motivation underlying
the desire expression (in Fig. 1, CURIOSITY) and
the emotions (in Fig. 1, ANTICIPATION) likely to
be invoked by the motivation can help ensure the
consistency of this analysis and improve its quality.

To meet this challenge we suggest a graph-
contextualized representation for entity states. Sim-
ilar to contextualized word representations (Peters
et al., 2018; Devlin et al., 2019), we suggest learn-
ing an entity-based representation which captures
the narrative it is a part of. For example, in “She de-
cided to try to make baked apples for the first time”
the mental state of “she” would be represented dif-
ferently given a different context, such as a differ-
ent motivation for the action (“Her mother asked
her to make an apple dish for a dinner party”). In
this case, the contextualized representation would
capture the different emotion associated with it
(e.g., FEAR of disappointing her mother). Unlike
contextualized word embedding models, our chal-
lenging settings require dealing with complex inter-
nal event structure (associations between the pred-
icate and the entities, and their semantic roles),
long narrative text, often beyond the length that
can be effectively represented using these models.
Furthermore, we exploit the event structure, and in-
corporate constraints ensuring consistency between



the mental state attributes of the characters.
We begin by generating an Entity-based Narra-

tive Graph (ENG) representation of the text. Unlike
other graph-based narrative representations (Lehn-
ert, 1981; Goyal et al., 2010; Elson, 2012) which
require intensive human annotation, we empha-
size simplicity and shift the focus from symbolic
graph representations of nuanced information to
their learned embedding. In our representation
nodes correspond to events and edges represent
observed relations between events. These relations
capture the sequential order of event occurrence,
represented using the Next relationship. Events
sharing a coreferenced entity are connected via the
CNext relationship. We also represent discourse
relations corresponding to six relations defined in
the Penn Discourse Tree Bank (PDTB) (Prasad
et al., 2007), which include Before, After, Sync.,
Contrast, Reason and Result.

We define the contextualized event embedding
over this graph, by using a Relational Graph Con-
volution Network (R-GCN) (Schlichtkrull et al.,
2018), a relational variant of the Graph Con-
volution Network architecture (GCN) (Kipf and
Welling, 2016), which creates contextualized node
representations by unfolding the graph structure
recursively into a tree structure and learning a com-
position function. This architecture allows us to
take into account the narrative structure and the dif-
ferent discourse relations connecting events when
embedding the event node.

We first define a self-supervised pre-training pro-
cess for embedding the narrative graph, by learn-
ing to recover removed edges and capture incor-
rect associations between event nodes and edges.
We apply our the learned graph representation to
two challenging narrative analysis tasks, predict-
ing characters’ psychological states (Rashkin et al.,
2018) and desire fulfilment (Rahimtoroghi et al.,
2017) and show that our model can outperform
competitive transformer-based representations of
the narrative text. Our code and trained models will
be publicly available in the camera-ready version.

2 Related Work

Tracking entities and modeling their properties
has proven successful in a wide range of tasks,
including language modeling (Ji et al., 2017), ques-
tion answering (Henaff et al., 2017) and text gen-
eration (Bosselut et al., 2018). In an effort to
model complex story dynamics in text, Rashkin

et al. (2018) released a dataset for tracking emo-
tional reactions of characters in stories. In their
dataset, each character mention is annotated with
three types of mental state descriptors: Maslow’s
“hierarchy of needs” (Maslow, 1943), Reiss’ “ba-
sic motives” (Reiss, 2004), that provide a more
informative range of motivations, and Plutchik’s
“wheel of emotions” (Plutchik, 1980), comprised
of eight basic emotional dimensions (e.g. joy, sad-
ness, etc). In their paper, they showed that neural
models with explicit or latent entity representa-
tions achieve promising results on this task. Paul
and Frank (2019) approached this task by extract-
ing multi-hop relational paths from ConceptNet,
while Gaonkar et al. (2020) leveraged semantics
of the emotional states by embedding their textual
description and modeling the co-relation between
different entity states. Rahimtoroghi et al. (2017)
introduced a dataset for the task of desire fulfill-
ment. They identified desire expressions in first-
person narratives and annotated their fulfillment
status. They showed that models that capture the
flow of the narrative perform well on this task.

Representing the narrative flow of stories using
graph structures and multi-relational embeddings
has been studied in the context of script learning (Li
et al., 2018; Lee and Goldwasser, 2019; Lee et al.,
2020). In these cases, the nodes represent predicate-
centric events, and entity mentions are added as
context to the events. In this paper, we use an entity-
centric narrative graph, where nodes are defined
by entity mentions and their textual context. We
encode the textual information in the nodes using
pre-trained language models (Devlin et al., 2019;
Liu et al., 2019), and the graph structure with a
relational graph neural network (Schlichtkrull et al.,
2018). To learn the representation, we incorporate
a task-adaptive pre-training phase. Gururangan
et al. (2020) showed that further specializing large
pre-trained language models to domains and tasks
within those domains is effective.

3 Entity-based Narrative Graph

3.1 Framework Overview

Many NLU applications require understanding en-
tity states in order to make sophisticated infer-
ences (Sap et al., 2018; Bosselut et al., 2019;
Rashkin et al., 2018). In this work, we propose
a learning framework that includes task-adaptive
pretraining (TAPT) and downstream task training
to train an entity-based narrative graph (ENG), a



graph neural model designed to capture implicit
states and interactions between entities. We extend
the narrative graph proposed by Lee et al. (2020),
which models event relationships, and adapt it for
entity mentions. Although ENG has the flexibil-
ity to be applied in various entity-based tasks, we
demonstrate and explain it through a target down-
stream task, StoryCommonsense (Rashkin et al.,
2018).

Our framework consists of four main compo-
nents: Node Encoder, Graph Encoder, Learning
Objectives, and Symbolic Inference, outlined in
Figure 2. The node encoder is a function used
to extract local information about the target en-
tity mention corresponding to the uncontextualized
node representation. The graph encoder uses a
graph neural network to contextualize the node rep-
resentations within a document, generating entity-
context-aware representations. The learning objec-
tives use this representation for several learning
tasks, such as node classification, link prediction,
and document classification. Finally, we include a
symbolic inference procedure to capture dependen-
cies between output decisions.

We introduce a training pipeline, containing pre-
training and downstream training, following recent
evidence suggesting that task-adaptive pretraining
is potentially useful for many NLU tasks (Guru-
rangan et al., 2020). We experiment with three
pretraining setups, including the common whole-
word-masking pretraining (Liu et al., 2019), and
two newly proposed unsupervised pretraining ob-
jectives based on ENG. We then evaluate two
downstream tasks: StoryCommonsense and De-
sireDB (Rahimtoroghi et al., 2017). StoryCommon-
sense aims at predicting three sets of mental states
based on psychological theories (Maslow, 1943;
Reiss, 2004; Plutchik, 1980), while DesireDB’s
goal is to identify whether a target desire is satisfied
or not. Solving these tasks requires understanding
entities’ mental states and their interactions.

3.2 Node Encoder

Each node in our graph captures the local context
of a specific entity mention (or character mention).
Following Gaonkar et al. (2020), we format the in-
put information to feed into a pretrained language
model. For a given character c and sentence s, the
inputs to the node encoder consist of three com-
ponents (s, ctx(c), L), where s is the sentence in
which c appears, ctx(c) is the context of c (all the

f(s, ctx(c), L)

sentence storycharacter labels

Node

Encoder

Graph

Encoder

Learning

Objectives


Document 
Classification

Link 
Prediction

Node 
Classification

g(V, E)

Symbolic

Inference label2label1 label3 label4

Figure 2: Overview of the ENG framework.

sentences that the character appears in), and L is a
label sentence. The label sentence is an artificial
sentence of the form “[entity name] is [label 1],
[label 2], ..., [label k].” The k labels correspond to
the targets in the downstream task. For example, in
StoryCommonsense, the Plutchik state prediction
task has eight labels characterizing human emo-
tions, such joy, trust, and anger. Gaonkar et al.
(2020) show that self-attention is an effective way
to let the model take label semantics into account,
and improve performance1.

Our best model uses RoBERTa (Liu et al.,
2019), a highly-optimized version of BERT (De-
vlin et al., 2019), to encode nodes. We convert
the node input (s, ctx(c), L) to RoBERTa’s two-
sentence input format by treating s as the first
sentence, and the concatenation of ctx(c) and
L as the second sentence. After forward propa-
gation, we take the pooled sentence representa-
tion (i.e., <s >for RoBERTa, CLS for BERT), as
the node representation v. This is formulated as
v = froberta(s, ctx(c), L).

3.3 Graph Encoder
The ENG is defined as ENG = (V,E), where V
is the set of encoded nodes in a document and E
is the set of edges capturing relationships between
nodes. Each edge e ∈ E is a triplet (v1, r, v2),
where v1, v2 ∈ V and r is an edge type (r ∈ R).
Following Lee et al. (2020), we use eight relation
types (|R| = 8) that have been shown to be use-
ful for modeling narratives. NEXT denotes if two
nodes appear in neighboring sentences. CNEXT

expresses the next occurrence of a specific entity
following its co-reference chain. Six discourse rela-
tion types, used in (Lee et al., 2020) and defined in
Penn Discourse Tree Bank (PDTB) (Prasad et al.,
2007), are also used in this work, including BE-

1Our preliminary experiments also confirm this.



FORE, AFTER, SYNC., CONTRAST, REASON, RE-
SULT. Their corresponding definition in PDTB and
can be found in Appendix A. Following Lee et al.
(2020), we use the Stanford CoreNLP pipeline2

(Manning et al., 2014) to obtain co-reference links
and dependency trees. We use them as heuristics
to extract the above relations and identify entities
for TAPT3. Details of this procedure can be found
in (Lee et al., 2020). Note that although we share
the same relation definitions, our nodes are defined
over entities, instead of predicates.

For encoding the graph, we use a Re-
lational Graph Convolution Network (R-
GCN) (Schlichtkrull et al., 2018), which is
designed for Knowledge Base Completion. This
architecture is capable of modeling typed edges
and is resilient to noise. R-GCN is defined as:

hl+1
i = ReLU

(∑
r∈R

∑
u∈Ur(vi)

1

zi,r
W l

rh
l
u

)
, (1)

where hli is the hidden representation for the i-th
node at layer l and h0i = vi (output of the node
encoder); Ur(vi) represents vi’s neighboring nodes
connected by the relation type r; zi,r is for normal-
ization; and W l

r represents trainable parameters.
Our implementation of R-GCN propagates mes-

sages between entity nodes, emulating the interac-
tions between their psychological states, and thus
enriching node representations with context. Note
that our framework is flexible, and alternative node
and graph encoders could be used.

3.4 Output Layers and Learning Objectives
We explore three learning problem types.

Node Classification For node classification, we
use the contextualized node embeddings coming
from the graph encoder, and plug in a k-layer feed-
forward neural network on top (k = 2 in our case).
The learning objectives could be either multi-class
or multi-label. For multi-class classification, we
use the weighted cross-entropy loss (CE). For multi-
label classification, we use the binary cross-entropy
(BCE) loss for each label4:

CE = − 1

N

N∑
i=1

αiyi log(S(g(f(xi)))), (2)

2Stanford CoreNLP v4.0 with default annotators.
3For StoryCommonsense, since the entity names are anno-

tated, we simply use them.
4We tried weighted an unweighted BCE, and selected the

unweighted one for our final model.

where S(.) is the Softmax function, f(.) is the
graph encoder, g(.) is the node encoder, xi is the
input including the target node i ((s, ctx(c), L))
and all other nodes in the same document (or ENG),
yi is the label, and αi is the weight.

Link Prediction This objective tries to recover
missing links in a given ENG. We remove a small
portion of edges (20% in our case) and learn to
predict them. To obtain negative examples, we
sample edges by truncating either end of the posi-
tive edges, based on the relation type distribution
given in Table 3, taken from the training set. Fol-
lowing Schlichtkrull et al. (2018), we score each
edge sample with DistMult (Chang et al., 2014):

D(i, r, j) = hTi Wrhj , (3)

where Wr is a relation-specific trainable matrix
(non-diagonal) and hi and hj are node embeddings
coming from the graph encoder. A higher score in-
dicates that the edge is more likely to be active. To
learn this, we reward positive samples and penalize
negative ones, using an adapted CE loss:

L = − 1

T

∑
(i,r,j,y)∈T

y log(σ(εrD(i, r, j)))

+(1− y) log(1− σ(εrD(i, r, j))), (4)

T is the sampled edges set, y = {0, 1}, σ(.) is the
Sigmoid function, and εr is the edge type weight,
based on the edge sampling rate (Append. A).

Document Classification For such tasks, such
as DesireDB, we aggregate the node representa-
tions from the entire ENG to form a single repre-
sentation. To leverage the relative importance of
each node, we add a node attention layer. We calcu-
late the attention weight for each node by attending
on a target embedding. In DesireDB, we use the
sentence embedding for the desire expression.

ai = ReLU(Wa[hi;ht] + ba)

zi = exp(ai)

αi =
zi∑
k zk

; hd =
∑
i

αihi (5)

, where hi is the i-th node representation, ht is the
target embedding (e.g, the desire expression), Wa

and ba are trainable parameters, and hd is the final
document representation. We then feed hd to a two-
hidden-layer classifier to make predictions. We use
the loss function specified in Eq. 2.



3.5 Task-Adaptive Pretraining

Recent studies demonstrate that downstream tasks
performance can be improved by applying the self-
supervised pretraining task on the text of the target
domain (Gururangan et al., 2020), we refer to this
step as Task-Adaptive Pre-Training (TAPT). We
investigate whether different TAPT objectives can
provide different insights for the target task. We
empirically set our target task as StoryCommon-
sense, and since StoryCommonsense is based on
RocStories (Mostafazadeh et al., 2016), we run
TAPT on all the RocStories text (not including the
validation and testing sets). We use the learning
parameters suggested by Gururangan et al. (2020)
and explore three different TAPT settings:

Whole-Word Masking: Randomly masks a
subset of words and asks the model to recover them
from their context (Radford et al., 2019; Liu et al.,
2019). We perform this task over RoBERTa, initial-
ized with roberta-base.

ENG LinK Prediction: Weakly-supervised
TAPT over the ENG. The setup follows Sec.
3.4(Link Prediction) to learn a model that can re-
cover missing edges in the ENG.

ENG Node Sentiment Classification: Per-
forms weakly-supervised sentiment TAPT. We use
the Vader sentiment analysis (Hutto and Gilbert,
2014) tool to annotate the sentiment polarity for
each node in the ENG, based on its sentence. The
setup follows Sec. 3.4 (Node Classification).

3.6 Symbolic Inference

In addition to modeling the narrative structure in
the embedding space, we add a symbolic inference
procedure to capture structural dependencies in the
output space for the StoryCommonsense task. To
model these dependencies, we use DRaiL (Pacheco
and Goldwasser, 2020), a neural-symbolic frame-
work that allows for defining probabilistic logical
rules on top of neural network potentials.

Decisions in DRaiL are modeled using rules,
which can be weighted (i.e., soft constraints), or
unweighted (i.e., hard constraints). Rules are for-
matted as horn clauses: A⇒ B, where A is a con-
junction of observations and predicted values, and
B is the output to be predicted. Weighted rules are
associated with a neural architecture, used to learn
the rule weights. The collection of rules represents
the global decision, and the solution is obtained by
performing MAP inference. In DRaiL, parameters
are trained using the structured hinge loss.

We used feed-forward networks over the node
embeddings obtained by the objectives outlined in
Sec. 3.4 and 3.5, without back-propagating to the
full graph. We model the following rules:

Weighted rules We score each state, as well as
state transitions to capture the progression in a
character’s mental state throughout the story.

Entity(ei) ⇒ State(ei, li)

State(ei, li) ∧ HasNext(ei, ej) ⇒ State(ej, lj)

Where ei and ej are two different mentions of
the same character, and HasNext is a relation be-
tween consecutive sentences. State can be either
Maslow, Reiss or Plutchik.

Unweighted rules There is a dependency be-
tween Maslow’s “hierarchy of needs’ and Reiss
“basic motives” (Rashkin et al., 2018). We intro-
duce logical constraints to disallow mismatches in
the Maslow and Reiss prediction for a given men-
tion ei. In addition to this, we model positive and
negative sentiment correlations between Plutchik
labels. To do this, we group labels into positive (e.g.
joy, trust), and negative (e.g. fear, sadness). We
refer to this set of rules as inter-label dependencies.

Maslow(ei, mi) ∧ ¬Align(mi, ri) ⇒ ¬Reiss(ei, ri)
Reiss(ei, ri) ∧ ¬Align(mi, ri) ⇒ ¬Maslow(ei, mi)
Plut(ei, pi) ∧ Pos(pi) ∧ ¬Pos(pj) ⇒ ¬Plut(ei, pj)

Given that the DesireDB task requires a single
prediction for each narrative graph, we do not em-
ploy symbolic inference for this task.

4 Evaluations

Our evaluation includes two downstream tasks and
a qualitative analysis. We report the results for
different TAPT schemes and symbolic inference on
StoryCommonsense. For the qualitative analysis,
we visualize and compare the contextualized graph
embeddings and contextualized word embeddings.

4.1 Data and Experiment Settings
For TAPT, we use RocStories, as it has a decent
amount of documents (90K after excluding the val-
idation and testing sets) that share the text style
of StoryCommonsense. For all tasks, we use the
train/dev/test splits used in previous work.

All the RoBERTa models used in this paper are
initialized with roberta-base, and the BERT models
with bert-base-uncased. The maximum sequence
length for the language models is 160; for large



Maslow Reiss Plutchik

Group Models Precision Recall F1 Precision Recall F1 Precision Recall F1

G1 RANDOM 7.45 49.99 12.96 1.76 50.02 3.40 10.35 50.00 17.15
TF-IDF 29.79 34.56 32.00 20.55 24.81 22.48 22.71 25.24 23.91
GLOVE 27.02 37.00 31.23 16.99 26.08 20.58 19.47 46.65 27.48
LSTM 30.34 40.12 34.55 21.38 28.70 24.51 25.31 33.44 28.81

CNN 29.30 44.18 35.23 17.87 37.52 24.21 24.47 38.87 30.04
REN 26.85 44.78 33.57 16.73 26.55 20.53 25.30 37.30 30.15
NPN 26.60 39.17 31.69 15.75 20.34 17.75 24.33 40.10 30.29

G2 SA-ELMo 34.91 32.16 33.48 21.23 16.53 18.59 47.33 40.86 43.86
SA-RBERT 43.58 30.03 35.55 24.75 18.00 20.84 46.51 45.45 45.97

LC-BERT 43.05 41.31 42.16 29.46 28.67 29.06 49.36 52.09 50.69
LC-RBERT 43.25 47.17 45.13 39.62 29.75 33.98 47.87 53.41 50.49

G3 ENG 43.87 51.13 47.22 37.66 36.20 36.92 48.96 56.07 52.27
ENG+Mask 44.27 53.54 48.47 39.29 33.93 36.41 49.64 56.93 53.03
ENG+Link 43.47 52.80 47.68 37.17 37.18 37.18 50.62 54.48 52.48
ENG+Sent 45.29 50.89 47.93 36.69 36.14 36.41 49.48 57.12 53.03

G4 ENG+IL 40.90 58.03 47.98 31.67 41.19 35.81 49.93 74.95 59.93
ENG+IL+ST 40.47 58.43 47.82 31.80 40.58 35.66 51.19 72.60 60.04

Table 1: Results for the StoryCommonsense task, including three multi-label tasks (Maslow, Reiss, and Plutchik),
for predicting human’s mental states of motivations or emotions.

ENGs, we set the maximum number of nodes to
60; all the hidden layer have 128 hidden units; and
the number of layers for R-GCN is 2.

For learning parameters in TAPT, we set the
batch size to 256 through gradient accumula-
tions; the optimizer is Adam (Kingma and Ba,
2014) with an initial learning rate of 1e− 4, ε =
1e− 6, β = (0.9, 0.98), weight decay 0.01, and
warm-up proportion 0.06. We run TAPT for 100
epochs. For the downstream tasks, we conduct a
grid search of Adam’s initial learning rate from
{2e− 3, 2e− 4, 2e− 5, 2e− 6}, 5000 warm-up
steps, and stop patience of 10. Model selection
is done on the validation set. We report results
for the best model. For learning the potentials for
symbolic inference with DRaiL (Pacheco and Gold-
wasser, 2020), we use local normalization with a
learning rate of 1e-3, and represent neural poten-
tials using 2-layer Feed-Forward Networks over
the ENG node embeddings. All hidden layers con-
sist of 128 units. The parameters are learned using
SGD with a patience of 5, tested against the val-
idation set. For more details, refer to (Pacheco
and Goldwasser, 2020). Note that while it would
be possible to back-propagate to the whole graph,
this is a computationally expensive procedure. We
leave this exploration for future work.

4.2 Task: StoryCommonsense

StoryCommonsense consists of three subtasks:
Maslow, Reiss, and Plutchik, introduced in Sec.

2. For each task, for each sentence-character pair
in a given story, conduct multi-label classifications
for each subtask. Each story was annotated by
three annotators and the final labels were deter-
mined through a majority vote. For Maslow and
Reiss, the vote is count-based, (i.e., if two out of
three annotators flag a label, then it is an active
label). For Plutchik, the vote is rating-based, where
each label has an annotated rating, ranging from
{0, 5}. If the averaged rating is larger or equal
to 2, then it is an active label. This is the set-up
given in the original paper (Rashkin et al., 2018).
Some papers (Gaonkar et al., 2020) report results
using the count-based majority vote, resulting in
scores that are not comparable to ours. Therefore,
we re-implement two recent strong models pro-
posed for this task–the Label Correlation model
(LC (Gaonkar et al., 2020)) and the Self-Attention
model (SA (Paul and Frank, 2019)) and evaluate
them under the same set of hyper-parameters and
model selection strategies as our models.

We briefly explain all the baselines, as well as
our model variants shown in Table 1. The first
group (G1) are the baselines proposed in the task
paper. TF-IDF uses TF-IDF features, trained on
RocStories, to represent the target sentence s and
character context ctx(c), and uses a Feed-Forward
Net (FFN) classifier; GloVe encodes the sentences
with the pretrained GloVe embeddings and learns
uses a FFN; CNN (Kim, 2014) replaces the FFN
with a Convolutional Neural Network; LSTM is



a two-layer bi-directional LSTM; REN (Henaff
et al., 2017) is a recurrent entity network that
learns to encode information for memory cells; and
NPN (Bosselut et al., 2018) is an REN variant that
includes a neural process network.

The second group (G2) of baselines are based on
two recent publications–LC and SA–that showed
strong performance on this task. We re-implement
them and run the evaluation under the same setting
as our proposed models. They originally use BERT
and ELMo, respectively. To provide a fair compar-
isons, we also train a RoBERTa variant for them
(LC-RBERT and SA-RBERT).

The third (G3) and fourth (G4) groups are our
model variants. ENG is the model without TAPT;
ENG+Mask, ENG+Link, and ENG+Sent are the
models with Whole-Word-Masking (WM), Link
Prediction (LP), and Node Sentiment (NS) TAPT,
respectively. In the last group, ENG(Best) + IL
and ENG(Best) + IL + ST are based on our best
ENG model with TAPT and adding inter-label de-
pendencies (IL) and state transitions (ST) using
symbolic inference, described in Sec. 3.6.

Table 1 reports all the results. We can see that
Group 2 generally performs better than Group 1 on
all three subtasks, suggesting that our implemen-
tation is reasonable. Even without TAPT, ENG
outperforms all baselines, rendering 2− 3% abso-
lute F1-score improvement. With TAPT, the per-
formance is further strengthened. Moreover, we
find that different TAPT tasks offer different levels
of improvement for each subtask. The WM helps
the most in Maslow and Plutchik, while the LP
and NS excel in Reiss and Plutchik, respectively.
This means that different TAPTs embed different
information needed for solving the subtask. For ex-
ample, the ability to add potential edges can be key
to do motivation reasoning (Reiss), while identify-
ing sentiment polarities (NS) can help in emotion
analysis (Plutchik). This observation suggests a
direction of connecting different related tasks in a
joint pipeline. We leave this for future work.

Lastly, we evaluate the impact of symbolic in-
ference. We perform joint inference over the rules
defined in Sec. 3.6. On Table 1, we can appreciate
the advantage of modeling these dependencies for
predicting Plutchik labels. However, the same is
not true for the other two subtasks, where symbolic
inference increases recall at the expense of preci-
sion, resulting in no F1 improvement. Note that
labels for Maslow and Reiss are sparser, account-

ing for 55% and 42% of the nodes, respectively. In
contrast, Plutchik labels are present in 68% of the
nodes.

4.3 Task: DesireDB
DesireDB (Rahimtoroghi et al., 2017) is the task
of predicting whether a given desire expression is
fulfilled or not, given its prior and post context.
It requires aggregating information from multiple
parts of the document. If a target desire is “I want
to be rich”, and the character’s mental changed
from “sad” to “happy” along the text, we can infer
that their desire is likely to be fulfilled.

We use the baseline systems described in
(Rahimtoroghi et al., 2017), based on SkipThought
(ST) and Logistic Regression (LR), with manually
engineered lexical and discourse features. We train
a stronger baseline by encoding the prior and post
contexts, as well as the desire using BERT. Then,
we add an attention layer (Eq. 5) for the two con-
texts over the desire expression. The resulting three
representations (the weighted prior and post repre-
sentations, and the desire representation) are then
concatenated. For ENG, we add an attention layer
over the nodes to form the ENG document represen-
tation. We compare BERT and BERT+ENG docu-
ment representations by feeding each of them in to
a two-layer FFN for classfications, as described in
Sec. 3.4 (Doc. Classification).

Table 2 shows the result. The BERT baseline out-
performs other baselines with a large gap, 4.27%
absolute increase in the averaged F1-score. Fur-
thermore, BERT+ENG forms a better document
summary for the target desire, which further in-
crease another absolute 3.23% on the avg. F1-
score, which illustrates that ENG can be used in
various settings for modeling entity information.

4.4 Qualitative Analysis
We conduct qualitative analysis by measuring and
visualizing distances between event nodes corre-
sponding to six verbs and their Maslow labels. We
project the node embeddings, based on different
encoders, to a 2-D space using t-SNE (Maaten and
Hinton, 2008). We use shapes to represent verbs
and colors to represent labels. In Fig. 3b and
3c, RoBERTa, pretrained on Whole-Word-Masking
TAPT, was used. Node are word-contextualized,
receiving the whole story (W-CTX-STORY) or the
target sentence (W-CTX-SENT) as context. In these
two cases, event nodes with the same verb (shape)
tend to be closer. In Fig. 3a, we use ENG as the



Fulfilled Unfulfilled Average

Models Precision Recall F1 Precision Recall F1 Precision Recall F1

ST-BOW 78.00 78.00 78.00 57.00 56.00 57.00 67.50 67.00 67.50
ST-ALL 78.00 79.00 79.00 58.00 56.00 57.00 68.0 67.50 68.00

ST-DISC 80.00 79.00 80.00 58.00 56.00 57.00 68.00 67.50 68.00
LR-BOW 69.00 65.00 67.00 53.00 57.00 55.00 61.00 61.00 61.00

LR-ALL 79.00 70.00 74.00 52.00 64.00 58.00 65.50 67.00 66.00
LR-DISC 75.00 84.00 80.00 60.00 45.00 52.00 67.50 64.50 66.00

BERT 81.75 75.90 78.72 57.95 66.23 61.82 69.85 71.06 70.27
BERT+ENG 81.99 83.06 82.52 65.33 63.64 64.47 73.66 73.35 73.50

Table 2: Results for the DesireDB task: identifying if a desire described in the document is fulfilled or not.

(a) ENG-CTX (b) W-CTX-STORY (c) W-CTX-SENT

Figure 3: t-SNE visualization of embeddings based on ENG and RoBERTa.

encoder to generate graph-contextualized embed-
dings (ENG-CTX). We observe that nodes with the
same label (color) tend to be closer. In all cases,
the embedding was trained using only the TAPT
tasks, without task specific data. The ENG embed-
ding are better at capturing entities’ mental states,
rather than verb information, as the graph structure
is entity-driven.

Figure 4: Cluster Purity and KNN Classification results
for graph- and word-contextualized embeddings.

Figure 4 makes this point quantitatively. We
use 10-fold cross validation and report averaged
results. The proximity between verbs and between
labels are measured in two ways: cluster purity and
KNN classification. For the cluster purity (Man-
ning et al., 2008), we cluster the events using K-

Means (K = 5), and calculate the averaged clus-
ter purity, defined in Appendix B. For the graph
contextualization, we can see that the labels have
higher cluster purity than the verbs, while for the
word contextualization, the verbs have higher clus-
ter purity. This result aligns with our visualization.
The KNN classification uses the learned embed-
ding as a distance function. The KNN classifier
performs better when classifying labels using the
graph-contextualized embeddings, and the vice-
versa when classifying verbs, demonstrating that
ENG helps capture entities’ states better.

5 Conclusions

We propose a ENG model that can capture the im-
plicit states of entities by multi-relational graph
contextualization. We study three types of weakly-
supervised TAPTs for ENG and their impact to
downstream tasks. The evaluation includes two
psychological commonsense inference tasks. The
results shows that ENG can outperform other
strong baselines, and can be benefit from differ-
ent types of TAPT for different tasks. In future
work, we want to connect different TAPT schemes
and downstream tasks, and explore constrained rep-
resentations.



References
Muhammad Abdul-Mageed and Lyle Ungar. 2017.

Emonet: Fine-grained emotion detection with gated
recurrent neural networks. In Proceedings of the
55th annual meeting of the association for compu-
tational linguistics (volume 1: Long papers), pages
718–728.

Antoine Bosselut, Omer Levy, Ari Holtzman, Corin En-
nis, Dieter Fox, and Yejin Choi. 2018. Simulating
action dynamics with neural process networks. In
6th International Conference on Learning Represen-
tations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net.

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-
tanya Malaviya, Asli Celikyilmaz, and Yejin Choi.
2019. Comet: Commonsense transformers for auto-
matic knowledge graph construction.

Kai-Wei Chang, Wen-tau Yih, Bishan Yang, and
Christopher Meek. 2014. Typed tensor decomposi-
tion of knowledge bases for relation extraction. In
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 1568–1579.

Snigdha Chaturvedi, Dan Goldwasser, and Hal
Daumé III. 2016. Ask, and shall you receive? under-
standing desire fulfillment in natural language text.
In Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, pages 2697–2703.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. pages 4171–4186.

David Elson. 2012. Dramabank: Annotating agency in
narrative discourse. In LREC, pages 2813–2819.

Radhika Gaonkar, Heeyoung Kwon, Mohaddeseh
Bastan, Niranjan Balasubramanian, and Nathanael
Chambers. 2020. Modeling label semantics for pre-
dicting emotional reactions. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4687–4692, Online. As-
sociation for Computational Linguistics.

Amit Goyal, Ellen Riloff, and Hal Daumé III. 2010.
Automatically producing plot unit representations
for narrative text. In Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Language
Processing, pages 77–86.

Suchin Gururangan, Ana Marasović, Swabha
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A Event Relation Types and PDTB
Relations

See Table 3.

Abbrev. PDTB Distr.

NEXT – 50%
CNEXT – 20%
BEFORE Temporal.Async.Precedence 5%
AFTER Temporal.Async.Succession 5%
SYNC. Temporal.Synchrony 5%
CONTRAST Comparison.Contrast 5%
REASON Contingency.Cause.Reason 5%
RESULT Contingency.Cause.Result 5%

Table 3: Alignment between PDTB relations and the
abbreviations used in this paper. The third column in
the sampling distribution.

B Cluster Purity

1

N

∑
c∈C

max
d∈D
|c ∩ d|, (6)

where C is the set of clusters and D is either the
set of labels or verbs.


