
Weakly-Supervised Modeling of Contextualized Event Embedding for
Discourse Relations

I-Ta Lee, Maria Leonor Pacheco, Dan Goldwasser
Department of Computer Science

Purdue University
West Lafayette, IN, USA

{lee2226, pachecog, dgoldwas}@purdue.edu

Abstract

Representing, and reasoning over, long narra-
tives requires models that can deal with com-
plex event structures connected through mul-
tiple relationship types. This paper suggests
to represent this type of information as a narra-
tive graph and learn contextualized event repre-
sentations over it using a relational graph neu-
ral network model. We train our model to cap-
ture event relations, derived from the Penn Dis-
course Tree Bank, on a huge corpus, and show
that our multi-relational contextualized event
representation can improve performance when
learning script knowledge without direct super-
vision and provide a better representation for
the implicit discourse sense classification task.

1 Introduction

Representing world knowledge, and reasoning over
it, to help improve language understanding is one
of the longest standing AI goals. Structured knowl-
edge representations such as scripts (Schank and
Abelson, 1977) capture temporal relations between
events to describe human-level representations of
common scenarios. For example, the Restaurant
Script captures the fact that food is first ordered
and only then paid for. Initial works relied on
manual script construction, a labor-intensive task
that is hard to scale to the number of possible
scenarios. More recent works focus on extract-
ing this knowledge directly from text, using sym-
bolic event representations (Chambers and Juraf-
sky, 2008) or more recently, exploiting represen-
tation learning advances and representing events
using dense vectors, learned from data (Pichotta
and Mooney, 2016a; Granroth-Wilding and Clark,
2016; Wang et al., 2017; Lee and Goldwasser,
2018; Li et al., 2018). While these works differ
in the way the internal structure of the event is rep-
resented, broadly speaking, the resulting models
resemble word-embedding approaches (Mikolov

et al., 2013), representing event co-occurrence in a
low-dimensional vector space, and as a result use
vector similarity over their embedding to measure
their relationship.

In this paper, we follow the observation that
many natural language understanding tasks require
a more expressive representation that can capture
the context in which events appear (Goldwasser
and Zhang, 2016) and consider multiple relations
between events (Lee and Goldwasser, 2019), and
going beyond simple event similarity to represent
relations. To help explain the intuition behind it,
consider the following example, consisting of a
short story and a Multiple-Choice Narrative Cloze
(MCNC) question (Granroth-Wilding and Clark,
2016), the standard evaluation for such models.

Example 1: Jenny gets coffee
Jenny woke up very early and had some time to kill. She

went outside and noticed that it was raining, so she went

inside her favorite coffee-shop. She greeted the waiter ...

What happened next?

(a) she bought a new car.

(b) she ordered a steamy latte.

(c) she ordered a large breakfast

(d) she asked about open positions.

Events typically correspond to predicate-
argument structures, and the narrative cloze task
is modeled as ranking event pairs based on their
similarity, using consecutive events as positive ex-
amples. Based on this approach, identifying that
(a) is not a reasonable option is straight-forward,
however, the task of separating between (b), (c)
and (d) is much harder, and requires models that
can reason about the broader context in which an
event occurs, capturing the cause of entering the
coffee-shop (i.e., killing time) and the activity most
associated with it (i.e., ordering coffee).

To meet this challenge we suggest a multi-
relational contextualized representation of events,
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Figure 1: Narrative Graph extracted for Example 1.
Some edges are omitted for clarity.

generalizing ideas from contextualized word repre-
sentations (Peters et al., 2018; Devlin et al., 2018)
to multi-relational narrative representation. Similar
to contextualized word representations, we suggest
learning an event representations which captures
the narrative it is a part of. For example, the event

“she went inside the coffee-shop” would be repre-
sented differently given different context, such as
different weather conditions (“it was sunny and
warm”), different time of the day (“it was almost
noon when she woke up”) or if the protagonist
needed employment. In each one of these cases,
the relationship between the contextualized event
representation and the answer candidates would be
different. Unlike contextualized word embedding
models, our challenging settings require dealing
with complex internal event structure (associations
between the predicate and the entities, and their
semantic roles), long narrative text, often beyond
the length that can be effectively represented using
these models, as well as representing complex re-
lationships between events, beyond co-occurrence.
To identify the association between the question
and the correct answer, (b), the contextualized
event representation should capture the reason for
entering the coffee-shop, in this case indicated by
the discourse connective “so”.

We propose using Narrative Graph (NG) to rep-
resent the text, consisting of nodes, corresponding
to events, and edges representing observed rela-
tions between events. These relations capture the
sequential order of event occurrence, represented
using the Next relationship, events sharing a coref-
erenced entity are connected via the CNext rela-
tionship. In addition, we represent discourse re-
lations corresponding to six relations defined in
the Penn Discourse Tree Bank (PDTB) (Prasad
et al., 2007), which include Before, After, Sync.,
Contrast, Reason and Result. We rely on the
discourse connectives associated with each rela-

tions to add these relations to the NG. Figure 1
provides an example of a partial narrative graph
corresponding to the example above. We define the
contextualized event embedding over this graph,
by using a Relational Graph Convolution Network
(R-GCN) (Schlichtkrull et al., 2018), a relational
variant of the Graph Convolution Network archi-
tecture (GCN) (Kipf and Welling, 2016), which
creates contextualized node representations by un-
folding the graph structure recursively into a tree
structure and learns a composition function, similar
to a tree-based Recursive NN. This architecture al-
lows us to take into account the narrative structure
and the different discourse relations connecting
events when embedding the event node.

We associate the event text, along with its local
context, with each node, and use BERT (Devlin
et al., 2018) to encode its initial representation,
contextualized locally. During training, the error
is back-propagated over the graph to train the nar-
rative relationships’ composition parameters, and
then to BERT, to train the NG-contextualized rep-
resentation of the individual event.

We define an unsupervised learning process,
learning to recover removed edges from a given
narrative graph and capture incorrect associations
between event nodes and edges. This process al-
lows the model to learn the association between the
missing information and the observed context in
the narrative graph. We use the New York Times
section of English Gigaword (Parker et al., 2011)
for training the model. We evaluate the model on
MCNC and its relational variants, as well as the
popular, and challenging, implicit discourse classi-
fication task (Xue et al., 2016).

2 Related Work

Statistical script learning is an unsupervised learn-
ing problem addressing the probabilities of event
co-occurrence. Chambers and Jurafsky (2008)
started the early work, using Pairwise Mutual
Information (PMI) -based models to calculate
the conditional probability distribution. In re-
cent years, neural-based learning frameworks
emerged, leading to a wave of model evolution.
Granroth-Wilding and Clark (2016) combine Skip-
Gram (Mikolov et al., 2013), a word embedding
model, with neural networks for learning event
representations. Pichotta and Mooney (2016b)
built a Long Short Term Memory (LSTM) net-
work to learn the next relation along coreferent



event chains, modeling relationships over event
sequences. Weber et al. (2017) constructed a high-
dimensional tensor-based neural network, inspired
by Computer Vision models, to learn event repre-
sentations. Lee and Goldwasser (2018) and Wang
et al. (2017) showed that adding event features,
such as entity animacy, sentiments, or event order
information, help commonsense inference. Li et al.
(2018) started using graph structures, beyond pair-
wise or sequential models, to capture event context.
Lee and Goldwasser (2019) made a multi-relational
model capturing different relation types between
events with translating-based objective functions,
which is the closest work to this paper. In this pa-
per, the NG model uses two-level (word and event)
contextualizations, built on top of a pre-trained lan-
guage model–BERT, coupled with multi-relational
graph structures, to learn event representations.

In the literature, the definitions of events can
be categorized in two ways: entity-centric or
predicate-centric. Early works (Chambers and Ju-
rafsky, 2008) operated on the entity-centric events,
following coreference chains of a specific en-
tity to model sequences of events. Predicate-
GR (Granroth-Wilding and Clark, 2016) was a
widely adopted event definition here, consisting
of a pair of dependency type, such as subject or
object, and predicate token, such as verbs. Recent
works (Pichotta and Mooney, 2014; Lee and Gold-
wasser, 2018, 2019) moved to the predicate-centric
events (also called multi-argument events). Each
event was anchored at a predicate and considered
related entity mentions and modifiers as context
to the event. Other works focusing on event ex-
traction (Walker et al., 2006) or relation extrac-
tion (Han et al., 2019) also adopted this definition,
as it tends to capture more comprehensive view of
events’ semantics, aggregating information from
multiple entities. In this paper, we also choose
this definition, since our goal is to utilize events’
context to model event relationships.

Graph neural models are often applied in Knowl-
edge Base Completion. Early works used random-
walk-based methods, aiming to build scalable neu-
ral models, such as DeepWalk (Perozzi et al.,
2014), node2vec (Grover and Leskovec, 2016),
LINE (Tang et al., 2015) and GraphSAGE (Hamil-
ton et al., 2017). Graph Convolution Networks
(GCN) introduced by Kipf and Welling (2016)
provide an efficient way of aggregating features
from neighboring nodes. Several GCN variants

followed, Relational Graph Convolution Networks
(R-GCN) (Schlichtkrull et al., 2018) added relation
type information to address the multi-relational
knowledge bases. Graph Attention Networks
(GAT) (Veličković et al., 2017) manipulated atten-
tion layers for aggregating neighboring messages.
Gated mechanisms (Marcheggiani and Titov, 2017;
Dauphin et al., 2017) were proposed for mitigating
the impact of data noise. GCN were also used for
NLP applications, to represent structure (Marcheg-
giani and Titov, 2017) and social information (Li
and Goldwasser, 2019). In this paper, we adopt
R-GCN for NG, as modeling different types of
relationships is crucial for event commonsense in-
ference, as attested by Lee and Goldwasser (2019).

Discourse relations are crucial aspects for com-
pleting language understanding. Early works fo-
cused on identifying explicit and implicit discourse
relations under supervised settings (Zhou et al.,
2010; Park and Cardie, 2012; Biran and McKeown,
2013; Xue et al., 2016), while recent works mined
discourse connectives to refine sentence representa-
tions unsupervisedly (Malmi et al., 2017; Nie et al.,
2019; Sileo et al., 2019). Our work learns discourse
relations between events by leveraging the fact that
some explicit connectives and their categories are
relatively easy to identify. We build a simplified
discourse annotator that can be used to extract dis-
course relations between events without suffering
from high noise.

3 Model

3.1 Overview

We propose a learning framework for constructing
event embeddings, contextualized by a relational
event graph. The proposed approach can be used
for many discourse and narrative analysis tasks,
that go beyond the sentence level.

The framework consists of two levels of hier-
archical contextualizations. The first, defined at
the word level, uses contextualized word embed-
dings, such as BERT (Devlin et al., 2018), which
was applied successfully to various Natural Lan-
guage Understanding (NLU) tasks. The second
level, which is the main novelty of this paper, con-
textualizes event. Similar to words, events in dif-
ferent scenarios can have different meanings, e.g.,
a smile can mean positive or negative signs. As
contextualized word embeddings tend to focus on
local information, failing to capture high-level con-
ceptual transitions, such as discourse relations, we



Relation Types between Events

Complete Name Abbrev. #relations.

Next Next 274M
Coreferent Next CNext 66M
Temporal.Async.Precedence Before 1.63M
Temporal.Async.Succession After 1.52M
Temporal.Synchrony Sync. 0.55M
Comparison.Contrast Contrast 0.91M
Contingency.Cause.Reason Reason 0.22M
Contingency.Cause.Result Result 2.41M

Table 1: Statistics of event relations extracted from
New Youk Times section of English Gigawords (Parker
et al., 2011). 1.42M documents are used after exclud-
ing documents that are too long or too short.

suggest a new data structure to represent the input,
called Narrative Graph (NG), which represents a
document using its events and their relationships.

3.2 Preprocessing
Event Extraction We define events as verb pred-
icates that have at least one dependency link to
entity mentions. The dependency links include
subject (nsubj), direct object (dobj), indirect ob-
ject (iobj), prepositional words or noun modifiers
(nmod)1. Along with the verb predicates, we take
the sentence they appear in as their local (word-
level) context. To further differentiate the represen-
tations of the events appearing in the same sentence,
we take into account their predicate position as in-
puts. Each event appears in a NG as a node, and
edges between nodes represent event relationships.

Relation Extraction The relation is defined as a
triplet (eh, r, et), where eh and et are head and tail
events, and r is the relation type. We extract eight
types of relations, including two narrative relations,
CNext and Next, and six discourse relations. All
relations are directional. Table 1 summarizes statis-
tics of the relations we extracted from the corpus
English Gigaword (Parker et al., 2011). We explain
each relation type as follows:

(1) The CNext relation stands for Coreferent
Next relation, inspired by (Chambers and Jurafsky,
2008), capturing narrative relationships between
events with shared entities on coreference chains1.
Based on the procedure proposed by (Lee and Gold-
wasser, 2019), we first identify all possible events
and connect pairs of the events with a CNext rela-
tion if they have entity mentions appearing in the
same coreference chain. For example, “Jim shot

1Stanford CoreNLP (Manning et al., 2014) pipeline is used
for extracting dependency trees and coreference resolutions.

John. John died.” shot and died have the CNext re-
lation (shot, CNext, died) because the entity John is
the participant to both events in a sequential order.

(2) The Next relation is defined between events
appearing in the neighboring sentences. It aims to
capture the event relationship where two events are
relevant but do not have shared participants. For
example, “The weather turned bad. The rain started
falling.” has the relation (turned, Next, falling).
These two events have no shared participant but are
clearly related.

(3) The six discourse relations (the last six rows
in Table 1) are selected from PDTB for capturing
transitions between events. For example, “Jenny
fell asleep, because she was tired.” has a relation
Reason and the argument spans (ARG1 and ARG2)
are the two clauses. Instead of having relations
over arguments spans, we adapt the relation def-
inition to the event level, where eh comes from
ARG1 and et comes from ARG2. Note that when
getting sentence context for event predicates, we
mask the discourse connective, such as “because”,
from the model, because we want the model to
learn relationships between events, rather than a
simple decision function of key words. More de-
tailed relation definitions can be found in the PDTB
annotation manual (Prasad et al., 2007).

Since the relations annotated in PDTB are not
enough for generalizing event embeddings, we con-
struct a rule-based discourse annotator. We first
compile a list of discourse connectives by looking
at the annotated relations in PDTB. To reduce the
noise, only highly indicative connectives are con-
sidered. For example, “however” indicates Con-
trast relation and “in the meanwhile” denotes Sync.
relation. We then search for the discourse connec-
tives (CONN) in documents, and use three patterns
to locate the argument spans:

1. {ARG1}. {CONN} {ARG2}.

2. {ARG1}, {CONN} {ARG2}.

3. {CONN} {ARG2}, {ARG1}.

where the first pattern has a discourse relation
across two sentences while the other two have it
in one sentence with multiple clauses. Since each
argument span could have multiple events, we use
all possible pairs. While the extracted relations are
noisy, we demonstrate that they help in learning
event representations in experiments.

Narrative Graph The extracted events and rela-
tions from a document form a NG. The NG is an



event-level abstraction of the document, as depicted
in Figure 1, describing typed relational transitions
between events. In this paper, the NG is modeled
with a graph neural network. We have to limit the
graph size, as there are physical memory limitation
when training the network. The size is controlled
by two hyperparameters: smin and smax, standing
for the minimum and maximum numbers of nodes.

3.3 Neural Architecture

We define two contextualized embedding functions:

e = fword(p, loc(p), ctx(p)),

e′ = fevent(e, g(e)), (1)

where p is the target event predicate; loc(p) is
the token offset of the predicate in the sentence;
ctx(.) is the local context function; fword(.) en-
codes p and get its contextualized word embed-
ding e, representing the event with the local con-
text; g(.) is the event context function, retriev-
ing all events and relations in the document, i.e.,
g(e) = {e∗, r|e∗ ∈ doc(e), r ∈ doc(e)}; lastly,
fevent(.) encodes the event, along with its NG, and
outputs the contextualized event embedding e′.

In this paper, we use BERT (Devlin et al., 2018)
for fword, Relational Graph Convolution Network
(R-GCN) (Schlichtkrull et al., 2018) for fevent, and
NG for the event context function g(.). The follow-
ing subsections will explain more in details. Note
that this architecture setting is for demonstrating
purposes. Our framework retains the flexibility of
adopting other embedding and context functions.

Word-Level Contextualization Figure 2 visual-
izes the NG model. The input tokens are the event
predicate along with its sentence context. We use
BERT as the local (word-level) encoder. It has three
embedding tables to represent the input, which are
token embedddings, position embeddings, and to-
ken type embeddings. The token type embeddings
were originally used for distinguishing input sen-
tences for BERT’s next-sentence pre-training task.
Recent work (Han et al., 2019) has shown that an
effective way to fine-tuned BERT for events is to en-
code special tokens, such as event predicates, with
the token type (token type id). We adopt this idea
and use the token type inputs to mark event predi-
cates, i.e., token type id = 1 for predicate tokens
and token type id = 0 otherwise. This method
emphasizes predicates when encoding events and

generates slightly different contextualized repre-
sentations for different emphases, even in the same
sentence. For the rest of this paper, unless mention
explicitly, we encode events with BERT in this way.
In our training procedure, we initialize our model
with pre-trained BERT and fine-tune it, and repre-
sent each event with its predicate word embeddings
output from BERT.

Event-Level Contextualization Graph Convo-
lution Networks (GCN) (Kipf and Welling, 2016)
were designed to process graph structures by prop-
agating messages between local neighboring nodes
through graph convolution. R-GCN (Schlichtkrull
et al., 2018) adds relational considerations so that
it can operate on multi-relational graphs2. The net-
work is defined as follows:

hl+1
i = ReLU

(∑
r∈R

∑
u∈Nr(vi)

1

ci,r
W l

rh
l
u

)
, (2)

where hl+1
i is the hidden representation for the

node vi at layer l+1; Nr(vi) is the set of neighbor-
ing nodes under the r relation; ci,r is the normaliza-
toin factor; W l

r is the relation-specific parameters
for layer l; and R is the set of relation types (in our
case, the eight types denoted in Table 1).

The R-GCN is connected to BERT on top, taking
only predicate word embedding to represent each
event node. The node representations are contex-
tualized by local neighbors according to NG. The
number of R-GCN layers lrgcn is a hyperparameter
to control the order of neighbors to be considered.

Negative Sampling As the NG model is contex-
tualized over NG, we have to create negative graphs
by removing some edges and predict them. To do
so, we first determine a set of hyperparameters: the
number of truncated graphs nneg g created for each
NG, the proportion of edges to be removed rneg e

for each truncated graph, and the number of nega-
tive edges nneg e to be sampled for each removed
edge. Once they are determined, we sample the
edges to be removed by their relation type, based
on a smoothed distribution, where we sample Next,
CNext, and each discourse relation with probabili-
ties 0.5, 0.2 and 0.05 respectively. The reason why
we smooth the distribution is to avoid undersam-
pling the rare relation types. For each sampled
edge, we truncate its eh, r, and et uniformly.

2We also have experimented with gated mecha-
nism (Marcheggiani and Titov, 2017) for R-GCN to mitigate
the noise from parsing errors. However, the performance is
slightly worse.



Pre-trained BERT

Input Tokens
p1 p2 p3 p4

Word-Level

Contextualization

Result

Next

CNext Reason

CNext
R-GCN

Event-Level

Contextualization

Before

?

Link Prediction
Scoring

Event Predicates

Event 

Embeddings

Word 

Embeddings

Figure 2: Neural architecture for the Narrative Graph model.

Objective There are two common objectives re-
searchers have been using for optimizing graph-
ical networks: node classifications and link pre-
dictions (Schlichtkrull et al., 2018). We select the
latter one, as our goal is to capture structural tran-
sitions between events. However, it is possible to
train for both objectives jointly within our frame-
work, and we leave it for future work.

We score a target link (triplet) with a modified
version of DistMult (Chang et al., 2014), an effec-
tive scoring function designed for knowledge base
completion. The function is defined as follows:

f(h, r, t) = eThWret, (3)

where eh and et are the representations for head
and tail events of the triplet, and Wr ∈ Rd×d are
relation-specific parameters. The original DistMult
restricts Wr to a diagonal matrix to account for the
huge amount of relation types existing in knowl-
edge bases. We relax this as we need to address
more fine-grained differences between relations,
such as directionality3.

The final loss function is the Cross-Entropy Loss
with weighted classes:

L = − 1

|T |
∑

(h,r,t,y)∈T

y log(σ(wrf(h, r, t)))

+(1− y) log(1− σ(wrf(h, r, t))),
(4)

where T is the set of sampled triplets with labels;
σ(.) is the logistic sigmoid function; wr is the class
weight depending on relation type distributions;
and y is the binary label.

3We have also tried other scoring functions, such as TransE
families (Bordes et al., 2013), but DistMult outperforms them.

4 Evaluations

Our evaluation consists of two parts. The first part
conducts intrinsic evaluation, evaluating the basic
characteristics of the NG model. In the second part
extrinsic evaluation is performed, by using the NG
event embedding for a downstream task–Implicit
Discourse Relation Sense Classification (Xue et al.,
2016), from CoNLL 2016. The source code and
models used in this paper are publicly available4.

4.1 Data and Experiment Settings

For pretraining and intrinsic evaluations, we use the
NYT section of English Gigaword (Parker et al.,
2011), which contains about 2M newswire doc-
uments. We filter out extremely short and long
documents by limiting the number of graph nodes
between 20 and 350 (smin = 20 and smax = 350).
This leaves us 1.42M documents, and about 345M
relations are extracted (see Table 1). The data
splits follow (Granroth-Wilding and Clark, 2016)’s
setting, dividing the documents into train/valida-
tion/test sets. Other hyperparameters are listed as
follows: the number of R-GCN layers lrgcn = 2,
the number of truncated graphs nneg g = 4, the ra-
tio of edges to be removed rneg e = 0.05, the num-
ber of negative edges per removed edge nneg e =
20, the hidden layer size d = 128, the class weights
in the loss function are inversely proportional to
the class distribution given in Table 1.

For training the model, we use AdamW op-
timizer (Loshchilov and Hutter, 2017) with ini-
tial learning rate 0.0002. No warm-up steps are

4https://github.com/doug919/narrative_
graph_emnlp2020

https://github.com/doug919/narrative_graph_emnlp2020
https://github.com/doug919/narrative_graph_emnlp2020


used. The BERT encoder is initialized with BERT-
Tiny (Turc et al., 2019), a distilled compact version
of BERT to accommodate the large graph structure,
and fine-tuned during training. We experiment with
dropout rates {0, 0.1, 0.2, 0.4} and use the model
that achieves the best result in the validation set.
The number of model parameters is 4812168. We
search the hyperparameter for about 30 trials using
a month, and use F1-macro score over Triplet Clas-
sification task (Table 5) for selecting the model.
The expected validation performance is 58.89% F1-
macro score. The final model is trained on four
NVIDIA 1080Ti GPUs for 5 days.

For extrinsic evaluation, the data is from
the CoNLL 2016 shared task, using their data
splits (Xue et al., 2016).

4.2 Intrinsic Evaluation
The intrinsic evaluation consists of four tasks.
The first task is Multiple-Choice Narrative Cloze
(MCNC), proposed by Granroth-Wilding and Clark
(2016), which measures the models’ ability to re-
cover a missing event given its coreferent event
chain. The second evaluates the models’ ability to
identify the tail event, given the head event and rela-
tion, i.e., (eh, r, ?). The third evaluates the models’
ability to detect the correct relations between two
given events, i.e., (eh, ?, et). The fourth evaluation
is a binary triplet classication, inspired by knowl-
edge base completion, where a test triplet is given
and the binary classifier identifies it is true or false.

Baselines Six baseline models are considered.

1. Random: makes random predictions.

2. EventComp-BERT: is an implementation
of EventComp (Granroth-Wilding and Clark,
2016) but replace the event encoder with
BERT. It uses a feed-forward neural network
to compose a coherence score for event pairs
based on coreference chains. It is a single-
relational model that only considers CNext.

3. EventLSTM-BERT: is an attention-based
LSTM model that captures event coreference
chains. It is also a single-relational model
(CNext). We follow (Wang et al., 2017)’s
architecture and settings but use BERT for en-
coding events and remove the dynamic mem-
ory component.

4. EventTransE-BERT: is an implementation
of EventTransE (Lee and Goldwasser, 2019),
but replace the event encoder with BERT. It

is a strong uncontextualized event embedding
model, outperforming various models on the
MCNC task. It trains on multi-relational data
and a translating-based loss (TransE) is used
for scoring event triplets.

5. Event-BERT-sim: uses the pre-trained BERT
model without fine-tuning and scores event
pairs with cosine similarity, which simply
measures the embedding similarity between
events. The relation type is not taken into ac-
count. This baseline gives the idea about how
much performance gain can be acquired from
word-level contextualization.

6. Event-BERT-ft: is fine-tuned (ft) using the
same objective and data as the NG. However,
the event-level contextualization, i.e., R-GCN
layer, is skipped, so it is a pairwise event mod-
els powered by BERT. It is a multi-relational
model and the loss function is identical to NG.

Multiple-Choice Narrative Cloze We begin
with the popular benchmark–MCNC, which pre-
dicts the next event, given its preceding events. It
was originally proposed by Chambers and Juraf-
sky (2008) as a ranking problem, which ranks all
possible events given an event chain. However, the
ranking metric over a huge set of event vocabu-
laries is not easy to interpret for model compar-
isons. Granroth-Wilding and Clark (2016) thus
adapted it to a multiple-choice setup, rendering a
clear performance metric. (Lee and Goldwasser,
2019) further generalized it to the multi-relational
setting. In this task, we follow (Granroth-Wilding
and Clark, 2016)’s set-up. Each question has an
input sequence of 8 events that are connected with
CNext, and the target event has 4 negative and 1
positive choices. Since the question set released by
previous works does not contain document infor-
mation required by our NG model, we re-sample
the question set with document information. 10000
test instances are sampled from the test split.

Table 2 lists the result. The first row shows
the random baseline for 5 choices. The follow-
ing three rows are single-relational models that
only consider event co-occurrence with CNext
relation. Event-BERT-sim uses event similarity
without fine-tuning, which gives the basic perfor-
mance. EventComp-BERT fits to the event pairs
with CNext relation and perform better. The se-
quential model EventLSTM-BERT preforms very
well, since this task set-up is perfect for sequential



Methods Type Validation Test

Random - 20.00 20.00
Event-BERT-sim S 40.18 41.24
EventComp-BERT S 54.12 53.86
EventLSTM-BERT S 62.78 62.62
Event-BERT-ft M 47.22 47.20
EventTransE-BERT M 57.92 58.35

NG M 65.86 63.59

Table 2: Accuracy scores (%) for MCNC. The task asks
models to predict the target event, out of 5 choices,
given a sequence of events with CNext relation. The
model type S means single-relational models and M
means multi-relational models.

Methods Accuracy

Random 10.00
Event-BERT-sim 32.43
EventComp-BERT 55.16
Event-BERT-ft 50.10
EventTransE-BERT 58.16

NG 60.94

Table 3: Accuracy scores (%) over 10-choice MC-
questions for CNEXT relation. Each question has the
form (eh, r, ?), where the head event eh and relation r
are given and the model predicts the correct tail event.

models like LSTM. However, EventLSTM-BERT
does not have the ability to digest multi-relational
data. The rest three models are multi-relational
models. NG outperforms EventLSTM-BERT sig-
nificantly, since it encodes the narrative graph struc-
ture and other relation types. If we compare NG
with Event-BERT-ft (NG without R-GCN), we can
see that the graph structure improves the result with
a large margin (18.64% absolute accuracy improve-
ment in the test set), making NG the best performer
over all the single- and multi-relational models.

Predict Coreferent Next Event In this task, we
predict the tail event of a CNext relation. Unlike
MCNC, where a sequence of coreferent events are
given, we only take one event as the input and pre-
dict the other. We also adopt the multiple-choice
setting, and to strengthens the evaluation, we in-
crease the number of candidates to 10 to make the
task more challenging. 5000 test instances are ran-
domly sampled from the test split.

Table 3 shows the task result. We can see that
even under this more challenging setting, NG can
still outperforms all the models. Event-BERT-ft
can be interpreted as “NG without R-GCN”. We
can see that without the event-level contextualiza-
tion, the performance drops significantly (-10.84%

Methods Acc. F1 MRR Recall@3

Random 16.67 - - -
EventTransE-B 44.65 29.33 64.59 81.05
Event-BERT-ft 59.24 55.42 75.27 91.26

NG 80.27 79.68 88.05 95.74

Table 4: Predicting the discourse sense, out of 6 candi-
dates, between two given events, i.e., (eh, ?, et).

Methods Precision Recall F1

Event-BERT-sim 3.45 74.04 6.59
EventTransE-BERT 30.17 53.61 38.62
Event-BERT-ft 49.19 36.79 42.09

NG 68.20 66.21 67.19

Table 5: Binary classification for a given triplet
(eh, r, et). The scores are macro-averaged over the mi-
nority class. The validation performance is 56.91%.

absolute accuracy). The result denotes that as the
high-level structure over events are contextualized
in the embeddings, the NG model can make better
predictions for events in various scenarios. The
EventTransE-BERT is a strong competitor here, as
it also benefits from multi-relational modeling, but,
again, without the event-level contextualization, it
performs worse than NG. This again attests the im-
portance of encoding the narrative graph structure.
Note that the EventLSTM-BERT cannot be applied
here, as it requires a fixed length input.

Predict Discourse Sense In this task, the mod-
els predict the discourse sense for a given pair of
events. It is a multi-class classification problem
over 6 discourse senses used in this paper.

Table 4 shows the result with four different met-
rics, including accuracy, F1-macro score, Mean
Reciprocal Rank (MRR), and Recall@3. The later
two metrics evaluate models’ ranking ability. We
compare three multi-relational models in this task.
The NG outperforms EventTransE-BERT, which
means that the DistMulti objective for the other
two models is more sensitive to relation types than
TransE. The NG also outperforms Event-BERT-ft.
Both models achieve high Recall@3, which means
that over 90% of correct relations are ranked on the
top half. The main difference between the two mod-
els is the event-level contextualization (R-GCN
component), which brings in 21.03% absolute ac-
curacy improvement. The NG model can both rank
and select the answer with the most confidence.

Triplet Classification Table 5 shows the result
for triplet classifications, where a triplet is given



NG

Precision Recall F1 #pos. / #neg.

NEXT 59.53 89.86 71.62 149k / 2343k
CNEXT 46.80 40.38 43.36 59k / 1027k

Before 62.45 69.34 65.72 4.9k / 223k
After 82.18 58.31 68.22 4.5k / 217k
Sync. 73.35 59.08 65.45 1.9k / 179k

Contrast 67.97 76.15 71.83 6.2k / 244k
Reason 73.24 76.87 75.01 2.9k / 192k
Result 80.08 59.72 68.42 0.6k / 159k

macro-avg 68.20 66.21 67.19 -

Table 6: Triplet classification breakdown for NG. The
scores are macro-averaged over the minority class.

and the task is to predict it is true or false. There
are 229k positive and 4584k negative triplets, sam-
pled with the smoothed class distribution described
in the Negative Sampling section. Event-BERT-
sim does not consider relation types, so it only
measures event similarity based on BERT embed-
dings. The low precision and high recall shows
that most events are similar if we do not take the
relation type into account. Again, the big perfor-
mance gain of NG over Event-BERT-ft is due to
the NG-contextualized event embeddings, which
offers high-level summary of documents.

Table 6 shows triplet classification results by
type. Given the low positive-to-negative examples
ratio, we report the F1 score over the minority class,
and the macro-average over all these scores. We
note the difficulty of predicting CNext, although
it has the second highest number of examples. We
attribute this to the noise generated by the coref
resolution solver, as other relations have clearer
signals for learning, and the fact that CNext is the
only relation that connects two events that could
be far away from each other in text. We leave this
issue for future work.

4.3 Extrinsic Evaluation

The last evaluation is over a downstream task, Im-
plicit Discourse Sense Classification, a subtask
from CoNLL 2016 shared task (Xue et al., 2016).
The task is a multi-class classification task with 15
discourse classes, including explicit and implicit
relations. The explicit relations mean that the dis-
course connective, such as “because”, exists in the
text, providing clues for the sense prediction, while
the implicit one does not have it. We only evaluate
on the subtask for implicit relations as it is both
challenging and useful for language understanding.

Several baseline models are chosen from the

Methods Test Blind

PurdueNLP (Pacheco et al., 2016) 34.45 29.10
ecnucs (Wang and Lan, 2016) 40.91 34.18
ttr (Rutherford and Xue, 2016) 36.13 37.67
ELMo (Peters et al., 2018) 37.65 36.72
EvTransE* (Lee and Goldwasser, 2019) 39.05 38.35

NG* 42.84 43.91

Table 7: F1-micro scores for Implicit Discourse Sense
Classifications. EvTransE is abbreviated for Event-
TransE. The start signs mean that its event representa-
tion is concatenated with ELMo word embeddings. The
validation performance for NG is 46% F1 score.

leader board of the shared task, including the best
and median systems (the first three rows). Fol-
lowing (Lee and Goldwasser, 2019)’s experiment
setting, ELMo (Peters et al., 2018) is used as the
basic features for the supervised classification. The
input features feed to a self-attention layer and
then two fully-connected hidden layers, with di-
mensions 256 and 128, are added on top for classi-
fications. The EventTransE baseline concatenates
its event representation with ELMo and feeds to
the same network architecture. The NG model
applies its event embeddings in the same way as
EventTransE, and achieves the best performance.

5 Conclusions

We propose the Narrative Graph embedding model
to learn contextualized event representations for
disambiguating discourse relations. We use weak
supervision, provided by the predictions of off-the-
shelf NLP tools and a rule-based discourse annota-
tor, to learn event representations capturing world
knowledge useful for downstream tasks. Our model
considers multiple discourse relations types, such
as “contrast” or “cause”. We evaluate our model
on three intrinsic tasks, including triplet classifica-
tion and event/relation predictions, as well as an
extrinsic task–discourse relation classification. Our
results show that the model can outperform com-
petitive systems. In the future we intend to apply
our model to discourse analysis tasks which require
modeling long-range dependencies.
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