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Abstract

Online debates can help provide valuable information about various perspectives on a wide range
of issues. However, understanding the stances expressed in these debates is a highly challenging
task, which requires modeling both textual content and users’ conversational interactions. Cur-
rent approaches take a collective classification approach, which ignores the relationships between
different debate topics.

In this work, we suggest to view this task as a representation learning problem, and embed the
text and authors jointly based on their interactions. We evaluate our model over the Internet
Argumentation Corpus, and compare different approaches for structural information embedding.
Experimental results show that our model can achieve significantly better results compared to
previous competitive models.

1 Introduction

In recent years, social media platforms play an increasingly important role in shaping political discourse.
Online debate forums allow users to voice their opinions and engage with other users holding different
views. Understanding the interactions between the users on these platforms can help provide insight
into current political discourse, argumentation strategies and can help gauge public sentiment on policy
issues on a large scale. The importance of understanding debate dialog has motivated significant research
efforts (Somasundaran and Wiebe, 2010; Anand et al., 2011; Ghosh et al., 2014; Walker et al., 2012b;
Hasan and Ng, 2013; Sridhar et al., 2015; Mohammad et al., 2016; Dong et al., 2017).

In this paper, we focus on stance prediction, automatically identifying the stance expressed in debate
posts on various issues. For example, Figure 1 describes a short debate dialog about marijuana legal-
ization between three users (denoted a1, a2, a3). The content associated with each user is classified as
supportive of legalization (PRO), or not (CON).

“There are no deaths related to the actual 
use for marijuana this past year”

“There are many things that are harmful.    
Alcohol is more harmful than marijuana. 

“But that doesn't mean marijuana should be 
made legal because the other two are.“a2

a3

“Whether it kills people or not, it still is 
harmful to your body.”

a2

a1

“If we were to make everything illegal because 
it was harmful we would be living with nothing.“a3

Pro

Con

Pro

Con

Pro

Author Discussion Text Stance

Figure 1: Example of excerpts from a debate between three users about marijuana legalization.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.



3729

Early work took a text classification approach (Somasundaran and Wiebe, 2010; Anand et al., 2011),
classifying individual posts using a rich feature set. Since debate posts are not written in isolation, but
rather express the conversational interactions between users, modeling these interactions can help allevi-
ate some of the difficulty of this task. More recent work take a collective classification approach (Hasan
and Ng, 2013; Sridhar et al., 2015), which models the dependencies between authors and their content
and captures the debate structure. For example, the interactions between users can express agreements
(or disagreements), which would entail a similar (or different) stance prediction associated with their
content. The stance decision can also be considered as a user level decision, as users tend to maintain the
same stance throughout the debate, forcing stance agreement between all of their posts. Unfortunately,
despite these efforts, stance classification remains a challenging problem.

In this paper we suggest a new approach for representing the structural dependencies of debate dialogs,
by taking a structured representation learning approach. Intuitively, our system is designed to exploit
the advantages of collective relational classification methods (often discussed in the context of graphical
models) and distributed representation learning (often discussed in the context of deep learning and
embedding). We suggest a method for combining the two approaches in a single framework that can
exploit their complimentary strengths.

Our key intuition is that the embedding function can be trained to respect the relevant structural depen-
dencies. We jointly embed all the debate objects (i.e., authors, stances and textual posts), by considering
the relationships between these objects. For example, we model stance classification as a relationship
between a post and a given stance label, by measuring the similarity between their embedded represen-
tations. We can also model the relationships between input objects; the similarity between the represen-
tations of two posts would entail agreement between the labels associated with them, thus allowing us
to perform collective classification over all the input instances. Specifically, we define the factor graph
corresponding to the dependencies between stance predictions in a debate thread, and use the similarity
between the embedded representation of objects as a scoring function for the factors. We explain this
process in more detail in Section 3.

The main strength of distributed representations is in their ability to share information between the
represented objects. We exploit this property, and show that by adding additional information to the
embedding space, the overall performance of the model improves, even if this information is not directly
relevant to the classification task. We demonstrate this fact by comparing stance prediction performance,
when trained over the multiple topic separately or jointly (thus allowing the model to share information
between the representations of multiple debate topics).

We evaluate our approach over the Internet Argument Corpus (Walker et al., 2012a; Abbott et al.,
2016), collected from two debate websites,CREATEDEBATE and 4FORUMS. We conduct several exper-
iments, both using in-domain data and out-of-domain data (when we train and test on different debate
topics). Our experiments show that formulating the problem as structured representation learning indeed
allows debate entities to share information and generalize better, resulting in even larger improvements
when multiple stances (corresponding to different output labels) are trained jointly. Furthermore, we
show that by using inference over the relationships between the learned representations we can outper-
form traditional collective classification methods.1

Our contributions include (1) joint relational embedding for debate entities, allowing the model to
share information between related topics and underlying ideologies (2) suggest a collective classification
approach, defined over the embedding space, and using it to cast representation learning as a structured
prediction problem, and (3) an extensive experimental study in which we evaluate several different mod-
eling choices and information sharing scenarios.

2 Related Work

Stance prediction in online debates is an important subjectivity classification task. Early work viewed
the problem as a binary classification task and focused on feature representations (Somasundaran and
Wiebe, 2010; Anand et al., 2011), while later work took a collective approach (Walker et al., 2012b;

1Please refer to https://github.com/BillMcGrady/StancePrediction for data and source code.
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Figure 2: Overall Learning and Inference Processes

Hasan and Ng, 2013; Sridhar et al., 2015). Stance prediction is not limited to online debates, as was also
studied in the context of congressional speeches (Bansal et al., 2008; Burfoot et al., 2011) and social
media outlets, such as Twitter (Johnson and Goldwasser, 2016; Augenstein et al., 2016; Ebrahimi et al.,
2016), including a recent SemEval-16 task (Mohammad et al., 2016). While most work view the task as
supervised classification tasks, several work suggest exploiting the interactions between users as a form
of distant supervision (Johnson and Goldwasser, 2016; Dong et al., 2017). This task is broadly related to
argumentation mining (Ghosh et al., 2014) and stance reason classification (Hasan and Ng, 2014).

Our technical work relies on exploiting distributed representations (i.e., embedding), building on
highly influential work on embedding words (Mikolov et al., 2013b; Pennington et al., 2014), sen-
tences (Kiros et al., 2015) and even full documents (Le and Mikolov, 2014). Our work explores the
connections between text, users and attributes, attempting to create a common representation for the
them. The closest to our work is (Li et al., 2015), that jointly integrates different kinds of cues (text,
attribute, graph) into a single latent representation to get user embeddings.

Our work is also broadly related to deep learning methods that capture the structural dependencies
between decisions. This can be done either by modeling the dependencies between the hidden represen-
tations of connected decisions using RNN/LSTM (Vaswani et al., 2016; Katiyar and Cardie, 2016), or
by explicitly modeling the structural dependencies between output predictions (Durrett and Klein, 2015;
Lample et al., 2016; Andor et al., 2016). Unlike these work, we formulate our problem as a structured
representation learning problem, which to our knowledge is the first work to identify the ties between the
two problems.

3 Model Overview

In this paper we suggest casting stance classification as a structured representation learning task. Our
approach revolves around two key ideas.

First, stance classification can be done by embedding both the input objects (i.e., posts) and the output
labels in the same space. The actual classification is performed by comparing the similarity between the
embedded representations of an input object and the competing output labels.

Second, we can augment this representation with additional structural constraints, capturing relevant
domain information, such as the connection between posts by the same author, the disagreements be-
tween debate participants.

To help clarify these ideas intuitively, consider the debate dialog in Figure 1. Our learning approach
uses the structural and textual information in the dialog in three ways, as shown in the process depicted
in Figure 2.

1. Joint Representation Learning The embedding learning objective is designed to represent relevant
relational information, allowing the representation of different input objects to share information. For
example, stances on different topics may share a similar ideology. Figure 3a demonstrates the joint
embedding space. The relationship between authors and their posts is preserved by the proximity of
their embedded representations. Similar relationships between posts and their corresponding stances and
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underlying ideologies are also represented. To accomplish this goal we define a joint objective function
over different relations.

“..make everything 
illegal because it was 
harmful .. “

a1

a3

LT1:Con

LT1:Pro

“Yes, there are no deaths 

related to the actual use…”

“... Smoking cigarettes 
is harmful to the body 
and is still legal..”

“..that doesn't mean 
marijuana should be made legal because the other two are..“

“..To say something should 

be made legal because it is 

less harmful is ridiculous.”

a2

L:Liberal

L: Conservative

LT2:Con

“Marriage is between 
a man and a woman”

a4

“Love is love, no 
difference!

LT2:Pro

(a) Relational embedding representing authors, stances
and posts on various topics in the same embedding space

…

La1

La2

La3

La1

La2

La3

La1

La2

La3

Lt(a1
3)

Lt(a1
2)

Lt(a2
2)

Lt(a1
1)

…

Lt(a1
3)

Lt(a2
2)

(b) Collective decision over debate thread structure and
authors

Figure 3: Model Overview Demonstration

The model is trained to maximize the similarity between corresponding entities (positive examples)
compared to irrelevant ones (negative examples). We define the positive examples based on relational
information, and negative examples to capture disagreements between authors and posts. We explain this
process in detail in Section 5.

2. Global MAP Inference (Collective Classification) Representing the input objects and their labels
in the same embedding space allows us to reason about the relationships between them. We view the
prediction task as a collective classification, in which all the posts in one or more given debate threads
are decided together. We model inference required for the MAP assignment using a factor graph. For
example, the graph described in Figure 3b, contains nodes corresponding to author level stance decisions
(denoted Lai), their posts levels stance decision (denoted L

t(aji )
). We score these decisions using the

learned embedding. For example, scoring the output assignment PRO to the post corresponding to L
t(aji )

will be done by observing the similarity (dot product) between their vectorized representations vPRO and
v
t(aji )

.
Factor nodes can either have a degree of 1 (scoring the similarity between an author or post and an

output label), or 2 (scoring the relationship between consecutive posts in a debate discussion thread). We
also allow hard constraints (light gray factors in Figure 3b), which force the model to produce consistent
assignments.We explain this process in detail in Section 4.

3. Global Representation Learning A natural extension is to combine the previous two steps, and
adopt a global training approach that uses joint prediction during training. In this case the loss function
used when learning the embedding is defined with respect to the structural dependencies imposed by
the factor graph. This approach is similar in spirit to deep structured learning approaches (Andor et al.,
2016), however, in this case the structured learning process is defined directly over the embedding space.
This process is explained in Section 5.5.

4 Collective Classification

Our joint embedding model maps authors, attributes, and text into the same space. Thus it allows us
to compute the similarity between any pair of authors, texts, attributes, or their combination. This is a
very useful property, as information from all aspects can now be used for predicting the target of interest.
For example, more information are available for identifying the stance of a post by using its author
and neighboring posts comparing to the post’s embedding alone. We exploit this property by defining
the classification as a global inference process, enforcing the constraints and preferences on all of the
predictions.
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ILP Formulation We exploit the dependencies described above, using joint prediction over the dif-
ferent aspects. We formulate the decision as an Integer Linear Programming (ILP) which allows us to
enforce the consistency or preferences between decisions. The ILP objective function is defined over
the similarity scores between objects’ vector representation in the joint embedding space. Since integer
linear constraints over 0-1 variables can represent logical constraints, we define the ILP constraints using
both representations to help improve readability.

In the stance prediction task, all the posts from multiple debate threads that potentially share authors
form a single ILP instance. The ILP global optimization objective is defined over authors ai, the tex-
tual content (posts) {t0i , ..., tki } associated with ai, and other textual posts {tpm, ..., tql }, responding to or
responded by ai’s posts.

We create different types of boolean decision variables corresponding to the decision tasks above.
We assign a boolean variable AuthorLabel(ai,rj) to represent author ai has attribute rj (i.e., its
stance), and associate a score sim(eai , erj ) with that variable. Similarly, we assign a boolean variable
TextLabel(tki ,rj) to represent that the text tki is labeled with an attribute rj , and associate a score
sim(etki

, erj ) with that variable.
To ensure the consistency of the predicted variables, we define two types of constraints.

1. Single output value on a debate topic:

∀i
∑

j AuthorLabel(ai,rj) = 1

∀i, k
∑

j TextLabel(t
k
i ,rj) = 1

2. Output consistency:

∀i, j, k AuthorLabel(ai, rj) = TextLabel(tki , rj)

Note that in the debate domain, this constraint forces agreement between all the posts by the same author.
We also add variables capturing the dependencies between connected posts. For debate threads, a

boolean variable Disagree(tpi , t
q
l ) is created for any two posts tpi , t

q
l when tql is a response to tpi , and

associate a score disagree parameter with that variable. This score is a hyper-parameter for local
models, capturing the preference towards disagreement between consecutive posts in a debate. It is set
according to the training set. When using global learning, it is also included in training, such that simi-
larity scores of consecutive posts will be adjusted appropriately (similar intuition as a margin constraint).

∀tpi , t
q
l Disagree(tpi , t

q
l )∧TextLabel(t

p
i,rj)→ ¬TextLabel(t

q
l ,rj)

The set of all possible decisions for the three set of variables are denoted as A for AuthorLabel, B
for TextLabel, Γ for Disagree.

Given these variables, our prediction function can be define as follows -

arg max
α,β,γ

∑
α∈A

α · score(α) +
∑
β∈B

β · score(β) +
∑
γ∈Γ

γ · score(γ)

Subject To C

Where C is a set of constraints defined above.

5 Representation Learning

5.1 Embedding Perspectives

Let A and T denote the set of all authors and text respectively, let R denote the set of all attributes for
those authors and text. Stance on various topics are the major attributes considered in this paper. For
each topic, we have an embedding vector for the Pro stance and another vector for the Con stance, such
as Proabortion and Conabortion. We train our embedding over multiple views of the data, each view
connecting users and their content.

Author vs. Text: This objective is to predict text tj linked with author ai given the author representation.
Each post is a text unit in our experiments.
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LAT =
n∑
i=1

textai∑
j=1

logP (tj |ai) (1)

Author vs. Attribute: This objective is to predict attribute rj linked with author ai given the author
representation. Stance on different topics and user profile information form the attributes set in debate
datasets. Each user attribute value (e.g. male or female in gender attribute) is represented by a vector.

LAR =
n∑
i=1

attriai∑
j=1

logP (rj |ai) (2)

Text vs. Attribute: This objective is to predict attribute rj of the text given text ti. In our experiments,
we only used the stance label as attributes of text. However, it may also be possible to inherit attributes
from the author of the text.

LTR =

m∑
i=1

attriti∑
j=1

logP (rj |ti) (3)

Text vs. Text: This objective is to predict text tj given the text ti that share the same attribute. It is used
to promote similarity between posts sharing the same stance on a certain topic.

LTT =

m∑
i=1

textti∑
j=1

logP (tj |ti) (4)

All the conditional probabilities can be computed using a softmax function. Taking P (tj |ai) as an
example:

P (tj |ai) =
exp(eTaietj )∑
k∈T exp(e

T
aietk)

5.2 Embedding Initialization

In our model, the embedding for each author and attribute can be randomly initialized. The text is a
special case since there are complex structures involved. One way to capture this is to use an pre-trained
text embedding model to get an initial representation, and then learn an neural network to map it to one
in the shared space. Note that this also allows our model to generate embedding for unseen text in the
new space.

Specifically, for a text input x, we can compute its embedding e using M hidden layers li, i = [0,M−
1]. The first hidden layer l0 is computed from the input x:

l0 = f(W0x+ b0)

Subsequent layers are computed recursively:

li = f(Wili−1 + bi), i = 1, ...,M−1

Then the output from the final layer produces the embedding:

e = lM−1

f is the non-linear activation function. We used hyperbolic tangent (tanh) in our experiments.
Note that our model offers the flexibility to use more complex neural network structures, including

CNN and RNN, to learn a mapping from the initial word embedding sequences of the text to an embed-
ding in the joint space.
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5.3 Joint Embedding Learning

Our objective is to learn a semantic embedding for authors, text and attributes associated with them so
that they are close in the embedding space if they are semantically close to each other.

Joint Embedding Loss Function: We can combine these embedding losses from Equations 1-4 into a
joint training objective:

LJoint(A, T,R) =
∑

i∈(AT,AR,TR,TT )

λiLi (5)

where λi is the coefficient for each view, indicating the relative importance in the loss function. We
set all λi to the default value 1 in all our experiments.

This is the general framework. Additional views may be added or removed for a certain dataset. For
example, we can add a term representing the author vs. author view in the loss function if links between
them are available.

5.4 Model Optimization

We train our model using mini-batch Adam optimizer to minimize the loss in Eq.5. However, computing
gradient for Eq.1, and Eq.4 is expensive due to the size of the authors or text. To address this problem,
we refer to the popular negative sampling approach (Mikolov et al., 2013a), which reduce the time
complexity to be proportional to the number of positive example pairs.

5.5 Global Embedding Learning

Although different views of the data are captured in our joint loss function, it does not ensure that the
information they provide at inference time will be “cooperative”, i.e., it will result in consistent global
prediction over all the debate outputs. One potential problem is that examples associated with one view
will dominate the training and skew the prediction, when constraints are applied. To handle this issue,
we included the inference procedure during training. Instead of making sure the loss for each local view
is minimized, the global objective promotes the rank of all the gold predictions jointly. For instance,
at training, posts, together with their author and neighboring posts (if available) are used to infer their
stance based on the inference procedure described in section 4. Then structured hinge loss can be used
to define the prediction loss as in Eq.6.

Lpred =
∑

i∈instances
max(0,maxy∈Y (∆(y, ti) + score(xi, y))− score(xi, ti)) (6)

where xi and ti are the problem instances and corresponding gold predictions, Y denotes all possible
predictions, and score(·) is the inference score function. ∆(·, ·) is the hamming loss. It measures the
difference between two predictions and is used to create a margin between gold and other predictions.

The loss function used for updating the parameters in the global model is defined as follows.

LGlobal = λpredLpred + λATLAT + λTTLTT (7)

The coefficients for different terms in the global loss function can adjust the contribution of prediction
objective (Lpred) versus information sharing objective (LAT and LTT ). Again, we set all λ to the default
value 1 in experiments of this paper. We leave the exploration of different coefficient settings to future
work. Since the inference is used during global training, the scores for text stance and author stance are
part of the inference scores. So they will get updated according to Lpred. Therefore we do not include
LAR and LTR explicitly in the global loss function.

In our experiments, a mini-batch of debate threads is regarded as an instance during training. To
reduce the computational cost, we used the parameters learned with the joint embedding loss function as
the starting point for the global training.
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Dataset Topic Posts Users

CREATEDEBATE

Abortion 1741 340
Gay Rights 1376 370
Marijuana 626 258

Obama 985 278

4FORUMS

Abortion 7937 342
Evolution 6069 311

Gay Marriage 6897 296
Gun Control 3755 281

Table 1: Data Statistics for 4FORUMS and CREATEDEBATE

6 Experiments

To evaluate the different properties of our model and demonstrate their advantages, we evaluate the
quality of our structured embedding model on two datasets 4FORUMS and CREATEDEBATE for
stance classification tasks at post level, consisting of eight topics in total. The datasets are taken from the
Internet Argumentation Corpus (Abbott et al., 2016). Table 1 shows statistics about these datasets.

Experimental Design Our experiments are designed to evaluate the different properties of our model.
To accomplish that, we compare different variations of the model, corresponding to (1) only the joint
embedding (denoted Joint), (2) using inference at test time, over the joint embedding (denoted Inference),
and (3) using global training (denoted Global), which also uses inference during training. We report the
results of these experiments in the two datasets in Tables 2 and 3.

Our second set of experiments are designed to evaluate the joint embedding model’s ability to share
information between the representations of different objects. In this case we compare the performance
of the Joint and Inference models when additional information is available. We compare three settings
(1) In-Domain, when the available training and testing data are from the same domain (2) In+Out Do-
main, where we augment the In-Domain training data with additional debate threads from other topics.
In this case the model can represent the relationships between stances on different topics and potentially
generalize better. Finally, (3) User-Attribute, where we augment the author attributes with profile infor-
mation extracted from the debate website. We conduct all of these experiments over the CREATEDEBATE

dataset, and report the results in Table 4.

6.1 Experimental Settings:
We used PyTorch (Paszke et al., 2017) to implement the embedding model and Gurobi (Gurobi Op-
timization, 2016) as our ILP solver. Each debate post is initially represented using the Skip-Thought
Vectors (Kiros et al., 2015), and then mapped to an embedding in the shared space through one hidden
layer. We do not add more layers as both datasets are relatively small. Hyperbolic tangent (tanh) is used
as non-linear activation function. All other embeddings are randomly initialized following a normal dis-
tribution with variance 1/

√
dim. The embedding size dim for all experiments is 300. For the training of

the neural network, we used mini-batch Adam optimizer to update parameters. Dropout with probability
0.7 is used as regularization. The termination criteria is convergence on training loss. Five epoch of non-
improvement on loss is considered as convergence for joint models, and one epoch for global models.
Other parameters in our model includes negative sample size k=5, mini-batch size b=10.

6.2 Results
Our results on stance classification are described in Table 2 and Table 3. The results are computed using
5-fold cross-validation. For the CREATEDEBATE dataset, We used the same five data folds as in (Hasan
and Ng, 2013) to ensure our results are directly comparable with theirs. For the 4FORUM dataset, we
randomly divided debate threads into five folds since the data split is not available in (Sridhar et al.,
2015). We regarded the same user in the training and test folds as different ones to avoid leaking label
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Model Abortion Gay Marijuana Obama Average
Rights

Majority 56.2 64.5 72.0 56.1 62.2
NB (Hasan and Ng, 2013) 73.3 67.0 72.4 67.0 70.0

CRF (Hasan and Ng, 2013) 74.7 69.9 75.4 71.1 72.8
PSL (Sridhar et al., 2015) 66.8 72.7 69.1 63.7 68.1

Joint 62.1 63.1 69.2 57.4 63.0
Inference(AC) 70.4 62.7 66.3 62.2 65.4

Inference(Consecutive) 67.2 65.0 66.8 61.0 65.0
Inference(Both) 81.1 75.6 75.0 64.7 74.1

Global 81.0 77.2 77.6 64.8 75.2

Table 2: Average Accuracy on CREATEDEBATE dataset

Model Abortion Evolution Gay Gun Average
Marriage Control

Majority 56.8 65.8 66.0 67.8 64.1
PSL (Sridhar et al., 2015) 77.0 80.3 80.5 69.1 76.7

Joint 64.1 67.2 68.5 66.5 66.6
Inference(AC) 72.9 66.8 68.6 68.4 69.2

Inference(Consecutive) 67.5 67.7 72.3 69.6 69.3
Inference(Both) 85.9 80.9 88.1 81.6 84.1

Global 86.5 82.2 87.6 83.1 84.9

Table 3: Average Accuracy on 4FORUMS dataset

information from training to test. NB and CRF stands for the best local and collective models in (Hasan
and Ng, 2013). Note that their system also uses the author constraints, as well as a highly engineered
feature set and additional weakly-supervised data that we did not use. Despite that fact, our global model
significantly outperforms their model with the exception of Obama domain. In the 4FORUM experiments
we compare our models to result with PSL based model (Sridhar et al., 2015) which performs similar
collective classification defined over a feature-rich representation. In this case as well, our Global model
achieves the best overall performance.

We evaluate the contribution of two constraints sets, Author constraints (AC) enforce author and their
posts share the same stance. Consecutive will encourage disagreement in stance between neighboring
posts as introduced in section 3. The addition of these two constraints leads to significant increase in
performance when used together. This is because AC and Consecutive add agreement and disagreement
constraints between test posts, grouping them into clusters and making it easier to be predicted correctly.
For instance, given multiple posts from the same author, the model can make correct decisions on all of
them even if the prediction based on each individual post may be wrong. Finally, we observe that struc-
tured representation learning (i.e., Global) leads to a performance improvement compared to inference
over the joint embedding objective (Inference). This shows the effectiveness of the global learning.

Table 4 shows the result on CREATEDEBATE when additional information is available. We extracted
user profile information (User-Attribute) from the website2, consisting of five attributes (Gender, Marital
Status, Political Party, Religion, and Education). Clearly richer user information results in a better repre-
sentation, both for users and as a result, also for the text they author, leading to improved performance.
A similar trend occurs when out-of-domain data is available (In+Out Domain). Stances over different
debate topics impact the text and author representations. Interestingly, when this data is available, our
model is able to outperform the collective approach of (Hasan and Ng, 2013) in all debate topics, showing
that our model can indeed exploit the information shared by the underlying ideologies.

2www.createdebate.com
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Model Abortion Gay Marijuana Obama Average
Rights

CRF 74.7 69.9 75.4 71.1 72.8

In-Domain
Joint 62.1 63.1 69.2 57.4 63.0

Inference 81.1 75.6 75.0 64.7 74.1

In-Domain + User-Attribute
Joint 63.9 63.6 69.5 59.9 64.2

Inference 81.0 80.0 75.6 65.7 75.6

In+Out Domain
Joint 63.0 62.9 70.3 61.8 64.5

Inference 79.0 74.5 77.1 76.2 76.7

In+Out Domain + User-Attribute
Joint 63.3 65.3 71.0 57.7 64.3

Inference 79.9 80.2 75.1 77.4 78.2

Table 4: Average Accuracy on CREATEDEBATE dataset with additional information

7 Conclusions and Future Work

We study the problem of stance prediction, a challenging text classification problem, which requires con-
necting textual content analysis, conversational interactions and author information. Traditionally, this
is done using a graphical model, which learns a scoring function for each aspect, over a fixed feature
representation. We follow the observation that all of these problems are connected, and allow the model
to capture these dependencies by allowing it to learn a representation for all these aspects jointly, rather
than using a fixed representation. We show that by formulating the decision problem over the representa-
tion directly, and requiring the representation to respect the global dependencies between these aspects,
our model can generalize better and exploit additional information even when it is not directly relevant.

To the best of our knowledge, this work is the first to cast representation learning as a structured
prediction problem, we believe that this approach is applicable to many other domains where the input
has complex inter-connected structure. Such domains can include other conversation analysis tasks,
shared representations of text and images and information networks such as citations graphs and social
network analysis. In the future we intend to study additional domains and evaluate whether including
additional aspects, can help provide better generalization. Providing sufficient supervision is one of the
main bottlenecks of NLP, we intend to apply our approach in weakly and distantly supervised settings,
to help alleviate this difficulty.
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