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Abstract

Statistical script learning is an effective way to acquire world
knowledge which can be used for commonsense reasoning.
Statistical script learning induces this knowledge by observ-
ing event sequences generated from texts. The learned model
thus can predict subsequence events, given earlier events. Re-
cent approaches rely on learning event embeddings which
capture script knowledge.
In this work, we suggest a framework for injecting event em-
bedding with fine grained information. We suggest a gen-
eral learning model–Featured Event Embedding Learning
(FEEL). In addition to capturing the dependencies between
subsequent events, our model can take into account higher
level abstractions of the input event which help the model
generalize better and account for the global context in which
the event appears.
We evaluated our model over three narrative cloze tasks, and
showed that our model can outperform the current state-of-
the-art. We also show that our resulting embedding can be
used as a strong representation for advanced semantic tasks
such as discourse parsing.

Introduction
Many natural language understanding tasks rely on world
knowledge. Such knowledge can help support common
sense reasoning and provide the context needed for disam-
biguating text. Scripts, introduced by (Schank and Abelson
1977), are structured knowledge representations capturing
the relationships between prototypical event sequences and
their participants. Scripts model our expectations about the
relevant causal relationships between events, and as a result
can be used to infer how events will unfold in a given sce-
nario. For example, given the event John shot Jim with a gun,
we can infer that he got arrested by police is more probable
than he fell asleep. Scripts provide the foundation for auto-
matically making such inferences, supporting semantic tasks
such as co-reference resolution, discourse parsing and ques-
tion answering.

As the example above suggests, predicting “what happens
next?”, also known as the narrative cloze task (Chambers
and Jurafsky 2008; Granroth-Wilding and Clark 2016), is the
preferred way of evaluating such models. In this paper, we
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propose a generalization of this task highlighting the impor-
tance of evaluating inferences over chains of future events.
We look into two variants of this task, the first predicts future
events (one or more), and the second predicts an explana-
tion, connecting the beginning and end of a longer narrative
chain. The following example describes a simplified version
of these tasks.

Narrative Cloze
Jenny went to a restaurant and ordered a lasagna plate.
Jenny liked the food and felt satisfied.

Which of the following events could happen next?

a) She scolded the server.

b) She fell asleep.

c) She left a big tip.

d) She ran out of battery.

Narrative Explanation
Jenny went to a restaurant and left a big tip.

Which of the following events chains explain what
happened?

a) She ordered her food and liked it.

b) She hated the food and left angry.

c) She walked to a bus station and got on a bus.

Humans can easily identify that c) and a) would be the cor-
rect answers. However, for machines, making such infer-
ences requires understanding the events, their properties and
their implications.

While early works focused on manual construction of
script knowledge, the difficulty of scaling these methods to
realistic domains, has ignited considerable interest in statis-
tical script learning methods (Chambers and Jurafsky 2008;
Modi and Titov 2014; Rudinger et al. 2015; Pichotta and
Mooney 2016b; Peng and Roth 2016; Granroth-Wilding and
Clark 2016; Modi et al. 2017).

We build on the work of (Chambers and Jurafsky 2008)
which used pairs of event predicates and dependency in-



formation (corresponding to the subject/object dependency
links) to represent events and formed event chains based
on co-reference relationships between these pairs. Their
model assumed a discrete event representation, and com-
puted the Pairwise Mutual Information (PMI) between event
pairs, in order to support inference tasks. Following the
surge of interest in distributed representations of discrete ob-
jects (Mikolov et al. 2013), most recent approaches repre-
sent events using dense continuous vectors, known as event
embedding. For example, (Pichotta and Mooney 2016a;
Granroth-Wilding and Clark 2016) both proposed a neural
network model that composes event embeddings with their
predicate, dependency, and argument information (subject,
object, and prepositional object), either using a feed-forward
architecture defined over pairs of events, or using a Recur-
rent architecture (in this case an LSTM) to capture the de-
pendencies between longer sequences of events.

In this paper we contribute to this body of work, and in-
troduce FEEL - Featured Event Embedding Learning. Our
model is designed to capture fine-grained event properties,
that can be exploited to reduce ambiguity when inferring fu-
ture events. For example, the sentiment polarity of a given
event (e.g., “Jenny liked the food” implies positive senti-
ment), can impact the probability of options for future events
(e.g., the probability of negative-sentiment events, such as a)
should decrease). The animacy of the event’s arguments can
also provide valuable information, as some actions can only
be performed by living entities, and some events change
meaning when taking inanimate objects as arguments (e.g.,
“this song is sick!” vs. “this person is sick!”). In our exam-
ple above, option d) can be ruled out based on this informa-
tion.

We focused on these two types of features, however there
are many other event properties which can be useful for lan-
guage understanding. Our goal is to provide a general frame-
work for including such information. Specifically, our model
makes three contributions.

(1) Novel Neural Architecture for Event Learning. We
suggest to set up learning for event-embedding as multi-task
representation learning. The joint objective function com-
bines both intra-event learning objectives (for example, rep-
resenting prototypical connections between arguments and
predicates, such as policeman and arrest), and an inter-event
learning objective which captures prototypical connections
between event chains.

(2)Features Enriched Event Embedding Our architecture
provides a highly flexible framework for injecting world
knowledge and relevant contextual information needed to
accurately represent events. This information is injected into
the embedding function learning step, resulting in a richer
event representation. We specifically looked into higher
level abstractions of events - the overall sentiment of the
event and animacy information of the event arguments.

(3)Structured Event Chains Evaluation We evaluated our
model in several settings, using both intrinsic and extrin-
sic tasks. We followed the evaluation settings of (Granroth-
Wilding and Clark 2016), and showed that using the same
resources, our architecture leads to improved performance.
Our feature-enriched model resulted in further improve-

ment. Since looking at single event transitions can fall short
of evaluating full scripts, we also defined two additional nar-
rative inference tasks over event sequences. Finally, we eval-
uated our model by using the generated representation as
features for two semantic prediction tasks.

Related Work
Early works conducted in the 1970s defined a script as a
sequence of structured events organized in temporal order
(Schank and Abelson 1977). While these early works pro-
vided us with the core concepts of script knowledge, the
manual methods employed were difficult to scale to com-
plex domains. Interest in script learning was revived by
(Chambers and Jurafsky 2008)’s work, which introduced
a statistical approach to obtaining script knowledge. This
work proposed an unsupervised framework to model event
sequences. Using existing NLP tools, such as a Corefer-
ence resolution system and a dependency parser, narrative
event chains following mentions of an entity in narrative
text were automatically extracted, and relationship between
events was computed using the Point-wise Mutual Informa-
tion (PMI) model. The model’s ability to capture common-
sense knowledge was evaluated using the Narrative cloze
task– trying to recover a missing event given a sequence
of preceding events. More recent works (Chambers 2017;
Rudinger et al. 2015) extend the definition of events to in-
clude more information.

The narrative cloze task was refined by (Granroth-
Wilding and Clark 2016) to include a closed set of options
for replacing the missing event. In this paper, we recreate
their settings, but also introduce to additional intrinsic eval-
uation tasks–MCNS and MCNE. These tasks were designed
to evaluate the model’s ability to infer longer events se-
quences, which better account for narrative structures. This
evaluation approach joins other recent attempts to include
reasoning over narrative structures as part of script knowl-
edge evaluation (Modi et al. 2017).

Multiple neural-network-based models were proposed to
improve the quality of modeling commonsense event pat-
terns. These works suggest replacing the symbolic event rep-
resentation used by (Chambers and Jurafsky 2008) with a
dense vector representation. (Granroth-Wilding and Clark
2016) applied Word2Vec (Mikolov et al. 2013) and a com-
positional neural network to learn event embeddings on nar-
rative event chains, where each event token in the chain is
either a predicate word or an argument word. (Pichotta and
Mooney 2016a) proposed a Long Short Term Memory Re-
current Neural Networks (LSTM-RNN), coupled with Beam
Search algorithm, which conditions the event representation
on longer sequences of previous events.

The fact that argument information is very useful to
learn better event embeddings was implicitly agreed in these
works. Other works such as (Ahrendt and Demberg 2016)
explicitly identified this fact (the term ”participants” is used
in their work instead of ”arguments”). This inspires us to
find richer event properties, such as arguments, sentiment,
and animacy, or event event time and location information,
can potentially improve event representations. These can act



as event modifiers and should be considered in script learn-
ing models. Our multi-task learning approach to embedding
has been previously explored when constructing social em-
bedding(Li, Ritter, and Jurafsky 2015),where the authors
learned embeddings for users co-located in a network graph
and their properties. FEEL follows this direction and devel-
ops such extensions for general statistical script learning,
which can take rich event properties into consideration.

Model
Model Overview
From a high level perspective, learning for narrative event
models can be broken down into two phases.

First, large amounts of narrative text are preprocessed
and event chains are extracted. Early systems (Chambers
and Jurafsky 2008) used a dependency parser (for con-
necting verbs and their typed arguments, resulting in a
(predicate, dependency type) event representation) and a
co-reference resolution system (for forming chains with the
same protagonist). For example, “Jessie killed a man. She
was arrested.” has an event chain (kill, subj), (arrest, obj)
for the protagonist Jessie. Later systems (Granroth-Wilding
and Clark 2016; Pichotta and Mooney 2016a) also included
the argument words, as well as prepositional phrases.

Second, these chains are used for training statistical
script models. Initially by computing the PMI between
events (Chambers and Jurafsky 2008) capturing event co-
occurrence statistics. Later systems constructed event em-
bedding, connecting event tokens with their argument infor-
mation to form the event representation.

FEEL follows this setup, but also adds an event property
extraction step in between, which helps inform the training
process. In the following subsections we describe the three
phases, (1) Narrative Event Chain Extraction, (2) Event
Property Extraction, and (3) Model Training, in FEEL.

Narrative Event Chain Extraction
We first preprocess the text using Stanford CoreNLP (Man-
ning et al. 2014), extract dependency parses and co-
reference chains. We follow the co-reference chain to form
the event chains, by associating each entity mention in the
chain with an event defined as a tuple (tok(e), subj(e), obj(e),
prep(e)), where tok(e) = (predicate, dependency type) is a
token generated by concatenating the predicate and its de-
pendency relation to the protagonist of the event e; subj(e),
obj(e), prep(e) are the subject word, object word, preposi-
tional object word respectively of the event e.

All the words are in lower-case and lemmatized, and we
represent multi-word noun phrases, using their head word.
For example the chain associated with Jenny in the sentence
“Jenny went to a restaurant and ordered a lasagna plate”,
will be (go, subj, jenny, NONE, restaurant), (order, subj,
jenny, plate, NONE)

Several additional detailed processes are listed below:
• Predicates are not limited to verbs, and include predicative

adjectives, that can provide important causal information.
For example, Jame was hungry. He ate a burger.

• Verbs such as go, have and get, are too weak to express nu-
anced event semantics. We address this issue by including
their particles and clausal complements (xcomp) in the
predicate representation. For example, go to sleep will be
represented as one token go to sleep.

• We include negation in the predicate representation.
For instance, didn’t enjoy hiking is represented as
not enjoy hike.

• The possible dependencies d(e) are limited to subject, ob-
ject, and indirect object.

• To avoid that frequent events dominate the distribution,
we remove the 10 most frequent predicates and their
events from the extracted event chains.

Event Property Extraction
Feel provides a general framework for including event prop-
erties into its representation. Our first step is to include the
argument information as a type of event properties, how-
ever the true strength of the model is in modeling higher
level abstractions of events. In this work we focused on two
abstractive properties, sentiment which captures the overall
tone surrounding the event, and argument animacy informa-
tion which can help identify nuanced language use, such as
idiomatic expressions. Our results show that the contribution
of the different properties depends on the specific task. We
designed our framework to incorporate additional types al-
lowing users to adapt their embedding to their specific task.

To incorporate sentence level sentiment information, we
use Vader sentiment analyzer (Hutto and Gilbert 2014) from
NLTK (Bird, Klein, and Loper 2009). The raw sentiment
scores range from -1 (negative) to 1 (positive). We discretize
the scores into sentiment labels–Negative, Neutral, and Pos-
sitive–by setting up two thresholds on -0.5 and 0.5. Animacy
information is added by observing the animacy of the argu-
ment associated with the event token. There are three possi-
ble animacy types: animate, inanimate, or unknown.

When adding the two event properties, the event 4-tuple
is re-written as a 6-tuple (tok(e), subj(e), obj(e), prep(e)),
f1(e), f2(e), where f1(.) refers to the event sentiment and f2
refers to the event animacy.

Model Training
As illustrated in Fig. 1 FEEL uses a hierarchical multi-
task model for constructing the event representation. FEEL
jointly learns for an inter-event (contextual) objective and
several intra-event (local) objectives.

The inter-event objective, defined over two events e1 and
e2, captures the dependencies between subsequence events
in a given narrative. This objective can capture the relation-
ship between the object of stab and the subject of injured.

The intra-event objective defined over the event proper-
ties, namely tok(.), sub(.), obj(.), prep(.), f1(.), and f2(.)
are the extractors for event tokens, subjects, objects, prepo-
sitional objects, sentiments, and animacy respectively. Each
will learn an embedding, represented in the bottom embed-
ding layer in Fig. 1. This formulation allows the different
properties and the event token to share information.

The inter-event and intra-event objectives are combined
in a global objective function.
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…

Inter-Event 
Objective

P(fn(e2) | tok(e2))P(sub(e2) | tok(e2)) …

P(tok(e1) | tok(e2))

Figure 1: FEEL Model Objectives

We use the Skip-gram objective function (Mikolov et al.
2013) to learn the inter-event objective, defined as follows:

p(C(e)|e) =
∏

e′∈C(e)

p(e′|e)

=
∏

e′∈C(e)

exp(ve′ · ve)∑
e∗∈E exp(e

∗ · e)
, (1)

where e is the current event, C(e) is the context events in a
pre-defined window size k, E is all event vocabularies, and
ve is the vector representation of the event e. This probabil-
ity can be learned by minimizing the margin-based ranking
loss:

LC(e) =
∑

e′∈C(e)

∑
e∗ /∈C(e)

max(0, δ − ve · ve′ + ve · ve∗),

(2)

where δ is the margin. The (e, e′) pair can be regarded as
a positive example pair and (e, e∗) can be regarded as nega-
tive example pair. The amount-of, and proportion-between,
positive and negative pairs is a hyperparameter defined by
the window size k and the negative sampling ratio r respec-
tively1.

The intra-event objectives model local information for
each event independently. Each property is trained with the
base event token tok(e), which bias the learned embeddings
to become more similar if the property tends to occur to-
gether with the event.

The loss function for that objective is similar to Equation
(2), but now the e′ refers to a positive event property while
the e∗ refers to an sampled negative property.

FEEL jointly learns for all the objectives by taking a
weighted summary:

L(e) =
∑

i∈{C,S,O,P,T,A}

λiLi(e) + λr‖p‖2, (3)

where LC(e) means the inter-event (context) objective of
the event e. LS , LO and LP refer to the intra-event objec-
tives between the e and its subject, object and prepositional
object, respectively. LT refers to the local objective between
e and sentence-level sentiment and finally, LA refers to the
local objective between the e and the entity animacy. The

1In our experiment, k = 5 and r = 10

hyperparameter λr is the weight for the ‖.‖ regularization
and p refers to all the trainable parameters 2.

In addition to embedding the event token (i.e., (predicate,
dependency) pair), our model constructs an embeddings for
each event property. Users can determine how to aggregate
these embeddings. For simplicity, to show the model’s ef-
fectiveness, we simply concatenate all of the embeddings
generated by an event tuple.

Experiments
We train our event embedding model over the New York
Times (NYT) section of English Gigaword3. It contains
about 2M documents of newswire text data and about 1.4M
words. We replicate the experimental set up described in
(Granroth-Wilding and Clark 2016), and split the data into
training/dev/testing accordingly4. For FEEL, we use a 300
dimension space to embed each event property. Our full
model which includes subject, direct object, indirect object,
sentiment, and animacy information, is 1800 dimensional.

The FEEL embeddings are evaluated over three intrinsic
tasks: (1) Multi-Choice Narrative Cloze (MCNC), (2) Muiti-
Choice Narrative Sequences (MCNS), and (3) Multi-Choice
Narrative Explanation (MCNE); and two extrinsic tasks:
(2) Semantic Relatedness on Sentences Involving Composi-
tional Knowledge (SICK), and (3) Implicit Discourse Sense
Classification.

Multi-Choice Narrative Event Cloze (MCNC)
MCNC task is a multiple-choice variant of the Narrative
Cloze task proposed by (Chambers and Jurafsky 2008).We
follow the evaluation settings proposed in (Granroth-
Wilding and Clark 2016), which randomly sampled four ex-
tra choices from the vocabulary (the random guess baseline
will have a 20% accuracy). The question sets they used are
not explicitly released, instead we sampled question sets us-
ing the same data splits as theirs. This might lead to differ-
ences in the resulting scores , to mitigate it, we run each
experiment for 10 times and report the average score.

2For simplicity, λi and λr are fixed to 1 in this paper.
3English Gigaword https://catalog.ldc.upenn.

edu/ldc2011t07
4The data splits can be downloaded from their website http:

//stackoverflow.com/



The event chains and question sets can be downloaded
from http://anonymized˜url

Accuracy MRR
Granroth-Wilding et al., 2016 0.4957 -
PredDep 0.4232 0.6271
PredDep+Args 0.5135 0.6827
PredDep+Args+S 0.5166 0.6844
PredDep+Args+A 0.5503 0.7096
PredDep+Args+S+A 0.5418 0.7031

Table 1: The results of multi-choice narrative cloze test. Ac-
curacy and Mean Reciprocal Rank (MRR) score are both
reported for measuring the quality of ranking.

Table 1 shows the accuracy and Mean Reciprocal Rank
(MRR) scores of the test. The first row lists the best score
reported in (Granroth-Wilding and Clark 2016), and the rest
describe the results obtained by the variants of our model.
PredDep is the model with the context (inter-event) ob-
jective only; PredDep+Args is the model that includes the
arguments (subject, object, prepositional objects) into the
objective; PredDep+Args+S and PredDep+Args+A further
include the sentence-level sentiment information and pro-
tagonist’s animacy respectively; and PredDep+Args+S+A
contains all the information mentioned. The results show
that PredDep performs worse than Granroth-Wilding et al.,
2016, this is not surprising as it does not model the event
argument information. When this information is used (Pred-
Dep+Args), our model outperforms Granroth-Wilding et
al.’s model. Moreover, when additional properties are used,
our model’s performance is improved, most significantly
when using the animacy information.

Interestingly, the results show that including too many
properties might hurt performance. As illustrated in the last
row. We hypothesize that this is because different proper-
ties bias the predictions but some of them have conflicts in
making the decisions. Therefore, carefully choosing the ap-
propriate properties for the target application is important.
We leave advanced learning protocols that can help resolve
such conflicts to future work.

Multi-Choice Narrative Sequences (MCNS)
MCNC evaluates the model’s ability to infer an event form
its context. A natural generalization of this task is to con-
sider inferences over longer sequences of events, as these
can better account for narrative structure, rather than pair-
wise event relationships. We propose a new evaluation task
script learning, Multi-Choice Narrative Sequences (MCNS).

We set up this task by following these steps –
1. We subsampled n questions of length l from the test set

of MCNC.
2. We generated an extra x choices for each event, except the

first event. Note the difference from the MCNC setting,
as a multiple-choice question is associated with each time
stamp.

3. We modeled each event chain as a Markov Chain with l
time stamps and x+1 states at each time stamp, where the

first time stamp only contains the starting state. We used
an inference algorithm (Viterbi (Viterbi 1967)) to identify
the highest scoring event chain.
This task evaluates the model’s ability to make longer

commonsense inference, instead of just predicting one
event. In this paper we used a simple inference algorithm (a
sequence model), but we consider incorporating advanced
reasoning algorithms as a very promising direction for fu-
ture work. In order to evaluate this approach, we used this
algorithm over all of our script models. We also replaced the
inference algorithm with a simple greedy baseline and per-
fect skyline.
• Skyline: Break down a sequence of predictions into in-

dividual decisions, and give the correct previous state for
each decision.

• Baseline: No inference. Instead of Viterbi, for each time
stamp, greedily pick the best transition and move to the
next time stamp.
We also included a strong baseline text similarity model.

The popular word embedding model–GloVe (Pennington,
Socher, and Manning 2014)–is used to score the transitions
between events by computing the similarity between the av-
eraged vectors of the event words.

We measure the contribution of the embedding generated
by FEEL by observing the performance difference when
these embedding are concatenated with the base Glove event
representation.

In this experiment, 1000 (n = 1000) length-5 questions
with 4(x = 4) extra choices at each time stamp are sam-
pled. Accuracy is used as the evaluation metric. The three
columns of Table. 2 show the results, which show that in
all cases FEEL embeddings offer performance gains when
added to GloVe, even when only the event token informa-
tion (PredDep) is provided. Both the sentiment and animacy
property provide helps in this task.

The best model (GloVe+PredDep+Args+S) brings the
performance up to 0.411 from 0.331 using Viterbi.

Similar to the MCNC results, using all event properties
jointly (GloVe+PredDep+Args+S+A) does not improve per-
formance.

Multi-Choice Narrative Explanation (MCNE)
We suggest an additional extension to the MCNC task. The
Multi-Choice Narrative Explanation (MCNE) task is also
designed to evaluate reasoning over longer event sequences,
similarly to MCNS. However, instead of just providing the
initial event as input, in the MCNE task both the starting and
the ending events are provided, and the prediction task is to
infer what happened in between. Human commonsense can
build an explanation that connects the two points. For exam-
ple, given a beginning ”Jenny went to a restaurant” and an
ending ”She felt satisfied”, can you figure out what might
happen in the restaurant? We might guess that ”she liked the
food” is more likely than ”she waited for an hour”. MCNE
provides a platform for script models to demonstrate such
deeper understanding of world knowledge. The setup is ex-
actly the same as MCNS, except leaving for the prediction
at the final time stamp that is given as an input.



MCNS-Viterbi Baseline Skyline MCNE-Viterbi
GloVe 0.353 0.297 0.356 0.385
GloVe+PredDep 0.359 0.302 0.362 0.389
GloVe+PredDep+Args 0.332 0.366 0.434 0.37
GloVe+PredDep+Args+S 0.416 0.385 0.460 0.448
GloVe+PredDep+Args+A 0.399 0.396 0.465 0.429
GloVe+PredDep+Args+S+A 0.365 0.383 0.452 0.403

Table 2: Results of MCNS (left) and MCNE (right) using Viterbi, the skyline, and the baseline as inference models on FEEL and
GloVe embeddings. PredDep, Args, S, A respectively mean that the event token, argument, sentiment, and animacy information
are included in the training. The + operators means vector concatenations.

We use the same models as in MCNS. Note that when
calculating the accuracies we did not include the ending state
in both MCNS and MCNE, so the same baseline and skyline
used in MCNS are applicable for this task. The right-most
column of Table 2 summarizes the results.

We observe a very similar trend in the results to MCNS’s,
but with higher overall accuracies, since additional informa-
tion is provided to the model during inference. The results
also show our models’ ability to improve commonsense rea-
soning using inference. Similar to MCNS, both the senti-
ment and animacy information help inferences, while the
all-featured model result in a small performance drop. We
hypothesize the reason is the same as before.

Semantic Relatedness on Sentences Involving
Compositional Knowledge (SICK)
We also evaluate our embedding model as a feature repre-
sentation for the SICK task.

This dataset was used as popular shared task in SemEval-
2014 5. It measures the semanitc relatedness of a given sen-
tence pair. The gold relatedness score is averaged across
ten human-annotated scores for each sentence pair, ranging
from 1.0 to 5.0, where 1.0 means completely unrelated and
5.0 means very related. The training/dev/testing splits are
available on the task website.

Our goal in these experiments is to evaluate whether the
event embedding can help capture the structural properties
of sentence. To evaluate this property we augment a base-
line system, which uses the GloVe word embedding, with
our event embedding, and compare the performance over
different variants of our embedding model.

Obtained a performance improvement over GloVe is not
trivial. Glove leverages global matrix factorization and lo-
cal context windows methods to build general-purpose word
embeddings, which have been shown to have better per-
formance than the other popular word embedding model–
word2vec (Mikolov et al. 2013)–in word similarity tasks.
We use the 300-dimension version, pre-trained on Gigaword
and Wikipedia, available on their website6.

To construct the input sentence representation for both
GloVe and FEEL, first, all the available embeddings in
the input sentences are extracted and summed (word and

5http://alt.qcri.org/semeval2014/task1/
6Glove https://nlp.stanford.edu/projects/

glove/

event embedding separately). Second, these representations
are fed into a neural-network-based regression model (Tai,
Socher, and Manning 2015) for predicting the related scores.
The network architecture is designed for text similarity tasks
and is shown below:

h∗ = vs1 ⊗ vs2
h4 = |vs1 − vs2|
h = h∗ ⊕ h4
p = softmax(W · h),

where vs1 ∈ Rk and vs2 ∈ Rk are vector representations of
the first and second inputs respectively; ⊗ means element-
wise multiplication;⊕ is the vector concatenation ooperator;
W ∈ R5×2k is the weight matrix to be trained; the 5 softmax
outputs corresponds to scores 1-5. The cross-entropy loss
function and mini-batch Adam (Kingma and Ba 2014) are
used to optimize the model. The final score is calculated by
taking the expectation value of the 5 softmax outputs.

Table 3 shows Pearson Correlation Scores between the
gold and predicted scores. The first row denotes the clas-
sification quality with using Glove-only. It turns out that this
simple representation is sufficient to provides a reasonably
good result (Pearson Correlation of 0.71). Using FEEL alone
does not lead to the optimal results (Predicate+Args+S
has the best result among the variants, which is 0.68). We
suspect that this is because when constructing FEEL event
embeddings, some input components that are not consid-
ered. This simplifies model training by modeling only high-
level event concepts while incurs losing some details. How-
ever, this does help FEEL captures more ”structured” event
semantics. The third row of the table indicates the result
of using both Glove and FEEL together, by concatenating
them to form the input representations. The results of the
combined model are far better than the previous two repre-
sentations and go up to 0.77 if the animacy information is
included.

We also observe that while animacy information was very
useful, the sentiment information generally does not provide
additional information for this task. This might be due to the
word embedding already capturing this information. Also,
since many examples in this dataset have neutral sentiment
this contribution of this proprety is likely to be small. This
is not always the case, as we can see in our next task.



Pearson PredDep PredDep+Args PredDep+Args+S PredDep+Args+A PredDep+Args+S+A
GloVe 0.7102
FEEL 0.4452 0.6574 0.6791 0.6714 0.6714
GloVe+FEEL 0.7382 0.7572 0.7518 0.7676 0.7604

Table 3: Pearson scores of SICK task using a well-known word embeddings–Glove–and the event embeddings–FEEL

Implicit Discourse Sense Classification (IDSC)
Our final evaluation task is the CONLL 2016 Shared Task
(Xue et al. 2016) on discourse parsing. The original goal
is twofold: (1) locate discourse connectives and their ar-
guments and (2) classify discourse senses. In this evalua-
tion, we consider focus on the highly challenging Implicit
Discourse Sense Classifications (IDSC) task. Unlike ex-
plicit discourse senses, where discourse connectives, e.g.,
because, but, and however, provide strong cues that help
identify the correct sense, implicit discourse senses can only
be inferred from the two given argument spans, and as a re-
sult relies very heavily on modeling the semantic relation-
ships between them.

The dataset used is based on the Penn Discourse Tree
Bank (PDTB) (Prasad et al. 2007), where all the arguments,
connectives, and senses are annotated. We used the same set-
tings as the CoNLL shared task: the data splits include train-
ing, development, test, and blind test sets; four relation types
(non-explicit) and fifteen valid sense classes are used. More
detailed information can be found in (Prasad et al. 2007).

Similar to the SICK task, GloVe and FEEL are evaluated
together. We use the same method for building the sentence
representations. For GloVe and FEEL, the embeddings of
the words and events in each argument are summed up re-
spectively. A two-hidden-layer neural network is then used
to trained a multi-class classifier. The network structured is
formulated as below:

v = va1 ⊕ va2
h1 = g(W1 · v)
h2 = g(W2 · h1)
p = softmax(W3 · h2),

where va1 ∈ Rk and Va2 ∈ Rk are the representations of
the first and second arguments; k is the dimension of in-
put representations; ⊕ is the vector concatenation operator;
W1 ∈ Rn1×2k, W2 ∈ Rn2×n1 , and W3 ∈ R15× n2; n1
and n@ are the sizes of the first and second hidden layers;
g(.) is the rectified linear unit activation function. The cross-
entropy loss function and mini-batch Adam (Kingma and Ba
2014) are used for optimizing the parameters.

Table 4 shows the micro average F1 scores across all the
senses. Like SICK task, GloVe performs reasonably well
here, as it captures general semantics at the word level.

We can observe the performance improvement obtained
by adding event properties introduced by FEEL to GloVe.
Specifically the the most complex event representation
GloVe+PredDep+Args+S+A, performs the best over both
the test and blind test sets. This suggests that the benefit of
using specific properties to enrich the event representation

Micro Average F1 Test Blind Test
GloVe 0.2982 0.2815
GloVe+PredDep 0.2921 0.2886
GloVe+PredDep+Args 0.2983 0.2862
GloVe+PredDep+Args+S 0.2996 0.3102
GloVe+PredDep+Args+A 0.3063 0.3111
GloVe+PredDep+Args+S+A 0.3174 0.3111

Table 4: Micro average F1 scores across all the discourse
senses under the setting of CONLL 2016 shared task.

is task specific and when used appropriately it can capture
more fine-grained semantics.

Conclusion and Future Work
In this paper, we present a feature-enriched script learning
model, FEEL. Our model learns robust event embeddings by
jointly conditioning the event representation on neighboring
events and the inner properties of the event. This highly flex-
ible approach can easily be adapted to the specific needs of
different end applications.

The trained event embeddings are evaluated on three in-
trinsic tasks, including two newly proposed tasks highlight-
ing the importance of evaluating narrative inferences. We
also evaluate our model over two extrinsic tasks, by using
it as a learning representation. Our results show that FEEL
can indeed utilize event properties and better account of the
structured event semantics.

We currently consider several directions for future work.
First, we plan to incorporate advanced learning architec-
tures such as the Attention mechanism, to improve our script
learning model. This mechanism has shown promise in im-
proving sequence model learning and reasoning. The atten-
tion model can also be used to find out soft alignments be-
tween objects (for example when used for Neural Machine
Translation). These alignments can help support event rea-
soning tasks which we highlighted in this paper.
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