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Abstract

While national politics often receive the spot-
light, the overwhelming majority of legisla-
tion proposed, discussed, and enacted is done
at the state level. Despite this fact, there is
little awareness of the dynamics that lead to
adopting these policies. In this paper, we take
the first step towards a better understanding
of these processes and the underlying dynam-
ics that shape them, using data-driven methods.
We build a new large-scale dataset, from multi-
ple data sources, connecting state bills and leg-
islator information, geographical information
about their districts, and donations and donors’
information. We suggest a novel task, predict-
ing the legislative body’s vote breakdown for
a given bill, according to different criteria of
interest, such as gender, rural-urban and ide-
ological splits. Finally, we suggest a shared
relational embedding model, representing the
interactions between the text of the bill and
the legislative context in which it is presented.
Our experiments show that providing this con-
text helps improve the prediction over strong
text-based models.

1 Introduction

Despite the fact that state-level legislation is rarely
discussed, it has a dramatic influence on the every-
day life of residents of the respective states. The
policies enacted at the state-level touch on all as-
pects, from mundane topics, such as trash removal
and state mascots, to highly ideologically-charged
topics such as education, religious liberties, and
health-care access. Moreover, state-legislatures dis-
cuss and vote-on significantly more bills than their
Federal counterparts, adding up to over 120,000
bills per year (King, 2019). Also, the lack of gen-
eral interest, as well as the complexity of the pro-
cesses that differ across states, often leads to public
disengagement from local politics. This results in
decisions being made with little understanding of
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Figure 1: Example of failure and party cleavages.

the processes that shape them and how they are
likely to influence different demographics.

Similarly, most effort directed at understanding
political processes using data was directed at the
Federal level. In the NLP community, several
works looked at analyzing political texts (Iyyer
et al., 2014) and the resulting behaviors of legis-
lators (Gerrish and Blei, 2011, 2012). The only
exception is recent work (Eidelman et al., 2018),
predicting whether a bill would pass the prelim-
inary stage, legislative committee, to a full-body
vote.

State-level demographic cleavages: Our goal
in this paper is to take a first step towards under-
standing the processes and interests that underlie
how decisions are passed using data-driven meth-
ods. Our main intuition is that the impact of bills
on different demographics will be reflected in the
behavior and voting patterns of their representa-
tives. Thus, providing the ability to automatically
identify bills, before they are put to a vote, that will
have a positive or negative influence on a specific
demographic can help inform public responses and
increase engagement with local political processes.

To help achieve this goal, we define two novel
text classification tasks, characterizing the break-
down of votes, based on different cleavages or de-
mographic indicators such as gender, geography
(i.e., rural vs. urban districts), party membership
and ideological splits. With respect to each one of
these splits, we define two aggregate-level proper-
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ties of a vote, competitive and inverse-competitive
cleavages. Both of these measures capture the lack
of consensus in the legislature body around a spe-
cific bill, but in different ways. We say that a bill
is competitive in a vote (Fig. 1b) if the majority of
legislators from a logical group (e.g., democrats,
women, urban districts, liberals) vote differently
from the majority of legislators from the opposite
group (e.g., republican, men, rural districts, con-
servatives). A bill is inverse-competitive (Fig. 1c)
if there is a partial or complete tie within the leg-
islators from the same group (e.g., women). To
help explain these concepts, consider a bill restrict-
ing access to abortion clinics. This bill is likely
to results in a competitive vote, based on ideology.
On the other hand, a bill granting tax breaks for
farmers might result in a inverse-competitive vote,
based on ideology. In that case, a competitive vote,
based on geography is more likely.

In Table 1, we provide examples of the different
splits associated with real bills that were brought to
a vote. Unsurprisingly, a “benign” bill, such as #1
is widely accepted and does not result in any con-
tention. A contentious bill, such as #2, touching on
the way religion is taught is split ideologically (i.e.,
the vote is almost unanimous inside each ideologi-
cal group), but mixed based on economic and gen-
der splits. Bill #4 addressing nepotism issues and
regulating public contracts is contentious across
all splits. Alerting the public when such bills are
brought to a vote can help ensure that legislators
take into account the opinions and voiced raised in
their constituencies.

Technical Contributions Although a text classi-
fication scheme is a reasonable starting point to de-
termine demographic cleavages of bills only based
on their content, it is not sufficient. Our key insight
in this paper is that the context or relations through
which specific information is propagated among
different players in the legislative process (e.g.,
money donors and legislators), can be leveraged to
further improve the performance. Thus, we build a
shared relational architecture that models the text
of a bill and its context into a graph; Our model
captures the behavior of individual legislators, lan-
guage of bills, and influence of contributions on the
decision to identify demographic cleavages. While
there are different ways to realize our relational
model, we chose to build on recent advances in the
NLP space, Relational Graph Convolutional Net-
work (RGCN) (Schlichtkrull et al., 2018) and pre-

trained BERT transformers (Devlin et al., 2018).
RGCN allows us to define multiple relations be-
tween each pair of entities (e.g., a legislator spon-
sorship and casting a vote on a bill) and BERT en-
ables us to represent the textual information more
efficiently. With the help of the attention-based
architecture, BERT has been shown to outperform
LSTM models. To operationalize our relational
settings, we collected information from different
sources and introduced a new dataset combining
information about legislators, bills, donations, and
donors as well as demographic information about
the legislators and their districts. In our experi-
ments, we analyze the implication of different rela-
tions on the performance and show that our shared
architecture outperforms existing text and graph
models.

Table 1: Competitive and inverse-competitive bills.
# Bill Title Gen. Geo. Ideo. Party
1 A CONCURRENT RESOLU-

TION congratulating the Pio-
neer Junior-Senior High School
football team on winning the In-
diana High School Athletic As-
sociation

None None None None

2 Teaching of the origin of life Inver. Inver. Comp. Comp.
3 Beer dealer permits None None None None
4 Officeholder qualifications,

nepotism, and public contracts
Both Inver. Both Both

2 Related Work

Bill analysis at the state level has received little
attention and our work, while conducting a new
in-depth modeling and analysis, is inspired by the
following works:

Classification of congress roll calls. (Eidelman
et al., 2018) combines the text of the bill with par-
tisan identity of the bill’s sponsor(s) in a model
predicting the likelihood of a member of the U.S.
Congress voting in support of a non-unanimous
congress bill or resolution. They find that the mod-
els that combine text with sponsorship data sig-
nificantly outperform several alternative models.
Similarly, (Gerrish and Blei, 2011) uses topics as-
sociated with congress bills to infer its location in
ideological space and then uses ideal point mod-
els to predict the likelihood of a U.S. Senator or
House member voting in support of a bill. They
find that their model increases predictive accuracy
by about 4% over a naïve baseline model. (Patil
et al., 2019; Kraft et al., 2016; Karimi et al., 2019;
Kornilova et al., 2018; Peng et al., 2016) extend
this congress model to learn embeddings for legis-
lators and congress bills using other sources of data
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(e.g., Twitter, knowledge graphs). More recently,
(Budhwar et al., 2018) evaluates different models
for predicting roll-call votes based on verbal state-
ments that legislators make during questioning.

Predicting progress of bills Rather than using
bill text in models to explain the roll-call behavior
of individual legislators, (Yano et al., 2012) in-
clude the legislation’s text in a model that predicts
whether a bill emerges from a standing commit-
tee, a point in the legislative process that most bills
do not pass. In particular, they use features based
on the urgency and importance of the issue being
addressed by the bill as well as a set of features
extracted from co-sponsors of the bill. Examining
the fate of bills between the 103rd and 111th con-
gresses, they find that including features of the bill
drawn from the text improves the model’s predic-
tive accuracy over their baseline model. (Eidelman
et al., 2018) repeat a similar analysis for the states
and they show “that combining contextual informa-
tion about the legislators and the legislatures with
bill text consistently provides the best predictions”.
(Nay, 2017) examines the text of congressional to
identify the text structure most associated with a
congress bill’s enactment and then embeds it us-
ing Word2Vec for the classification based on Ran-
dom Forests; Nay concludes that the full text of a
congress bill enables better prediction efficiency.

Demographic bill cleavages. Demographic bill
cleavages is a well-studied topic in the political
science space. Research has properly differenti-
ated between the multiple ways demographic back-
ground of legislators can influence roll-call voting.
(Pinney and Serra, 1999) finds that Congressional
Black Caucus members vote more consistently
with the caucus than they do with fellow parti-
sans or with representatives from their state. (Jenk-
ins, 2012) discusses gender moderates the effect
of party and ideology in roll-call voting. Similarly,
(Frederick, 2010) discusses gender influences the
roll-call vote in the Senate by moderating the effect
of partisanship for GOP women. (Broach, 1972)
demonstrates that urban-rural cleavages structure
vote in less partisan states and on bills that clearly
divide urban and rural interests.

NLP applications of GCN. Recently, GCNs
have been explored in different NLP tasks. Se-
mantic role labeling (SRL) (Marcheggiani and
Titov, 2017), relation classification in clinical nar-
ratives (Li et al., 2018), and machine transla-
tions (Bastings et al., 2017) are a few instances.

In such tasks, GCN is used to encode syntactic
structure of sentences. In a similar context, some
works explored the idea of graph neural networks
(GNNs) (Peng et al., 2018; Henaff et al., 2015; Def-
ferrard et al., 2016), where each part of a document
(e.g., sentences) is collapsed into a graph of words
or the citation relations (Kipf and Welling, 2016)
creates a network among different documents.

3 Modeling

We model the legislative process as a graph that
consists of bills, legislators, and money donors in
all states. Building a global graph captures contex-
tual information and relationships that interconnect
different states. For instance, money donation by a
contributor to two legislators from different states
could indicate they have a similar roll call behav-
iors on abortion bills. Given this intuition, after
a brief overview of the legislative process in US
states, we describe how we collapse it into a graph
structure.

Bill Introduced

First Reading
Referred to 
Committee

Second and Third 
Reading

Conference 
Committee

Governor Law

Other Chamber

Origin Chamber

Second and Third 
Reading

Referred to 
Committee

First Reading

Figure 2: Bill-to-Law stages

3.1 Primer on State-Level legislative Process

Although there are some specific differences across
state legislatures, a common process, shown in Fig-
ure 2, prevails. This process starts with one or more
legislators (Representatives or Senators) who spon-
sor and file a bill. The idea of a bill could be origi-
nal or come from a constituent, public official, or
an interest group. Each state consists of two “cham-
bers”: the House of Representatives (“House") and
the Senate. To become law, the bill goes through a
reviewing process in the origin chamber, where it
can “die” at different stages. If the bill gets a pass
vote, it is sent to the other chamber and the same
process repeats. Finally, the bill is reviewed by the
state Governor for signature. In parallel to these
efforts, external contributors, e.g., money donors
and lobbyists, play an important yet indirect role in
the process. By sourcing information and money
into the process, they leave an impact on legislators,
which can change the progression of a bill.

Within a chamber the process is as follows: if the
leadership in the chamber chooses, the bill gets its
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First Reading by title. Then, the chamber president
may refer the bill to a committee for review. If
the committee casts a vote on the bill, it can be
defeated or advance to Second Reading by the full
body of legislators. Next, the chamber leadership
may decide to approve the bill for Third Reading,
where it again comes to a vote by the full body of
legislators and a majority vote can advance the bill.

Contributors

Inferred
Negative 
Donation

Sponsors

Nay Vote

Yea Vote

Legislators State Bills

Positive
Donation

Figure 3: Collapsing the legislative process into a het-
erogeneous multi-relational legislative graph.

3.2 Legislative Process in a Heterogeneous
Multi-Relational Graph

A close look reveals that the legislative process
cannot be captured in a simple graph as there can
be multiple relations between a pair of nodes (e.g.,
sponsorship and vote between legislators and bills),
and the graph consists of several nodes types with
different attributes and labels (e.g., bills with com-
petitive labels). Thus, we model the process using
a heterogeneous multi-relational graph, as follows:

Node attributes: The nodes in our proposed leg-
islative graph come with a rich set of features and
information: (1) Bill nodes contain title, descrip-
tion, and full text of the house and senate state
bills. (2) Legislator nodes contain diverse textual
information abstracting the behavior of a legislator
such as his biography, political interests, committee
assignments, and demographic attributes (gender,
party, and ideology and the district information).
(3) Contributors nodes come with different infor-
mation (in the textual format) on money donors
such as their specific and general business interests,
party, and their type (individual vs non-individual).

Relations: Based on the legislative process, we
identify that legislator and bill nodes participate
in three main relations: sponsorship (R1), nega-
tive (“Nay”) vote (R2), and positive (“Yea”) vote
(R3). Similarly, we establish two types of relations
between contributors and legislators: positive do-
nation edges (R4), which are realized based on the
real data, and negative or lack of donation edges
(R5), inferred when a contributor shows lack of in-

terest in specific legislators (e.g., always donates to
Democrats). In this case, we randomly sample such
legislators and link them to the contributor. Based
on our data analysis, more than 62% of unique
contributors always contribute to one party in our
dataset. We also conducted an ablation study, not
included due to space constraints, and the donor
information contributed between 2 to 11 F1 points.

3.3 Bill Inference Problems

For a bill and one of its roll calls in the legislative
graph, we seek to predict if (1) it evinces identi-
fiable voting cleavages or (2) it can advance by
getting a pass. For voting cleavages, we defined
four demographic attributes (gender, party, ideol-
ogy, and the urban/rural nature of the district) to
divide legislators into groups. We assign nine la-
bels to each bill as follows: (1) Competitive labels:
For an attribute (e.g., party), a voting round of a
bill is defined as “competitive” if the majority of
legislators from one group (e.g., Democrats) votes
differently from the majority of the other group
(e.g., Republicans). For example, in Figure 1b,
70% of Democrats vote Yea and 80% Republicans
vote Nay on a roll call, then the bill is competi-
tive and the disagreement between the groups is
10% (=80%-70%). (2) Inverse-competitive labels:
Similarly, for an attribute (e.g., party), we call a
voting round as inverse-competitive if there is a
partial or full cleavage among the legislators of the
same group. For instance, consider a bill with 55%
of Democrats voting Yea and 45% of them vot-
ing Nay (Figure 1c). In this case, the bill turns
out to be inverse-competitive and the disagree-
ment is 45% (the percentage of minority votes).
(3) Survival label: Depending on the progress, a
bill passes a certain voting round if it gets a major-
ity vote (e.g., in 2nd/3rd Reading) or if two-thirds
of legislators agree to it (e.g., in amendments).

4 Inference on Legislative Graph

We argue for a joint graph and text embedding
model to represent the nodes and their textual at-
tributes in the legislative graph, which is used for
the roll-call prediction and aggregation. Embed-
ding models that only leverage textual information
ignore important relations in the legislative graph.
Graph-based models make textual information less
distinguishable at the classification stage, where it
matters. At a high level, our approach combines
the complementary strengths of both approaches.
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of… [SEP]
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Average
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of…[SEP]
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Average
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Figure 4: Joint text-graph architecture for predicting relations in the legislative graph and aggregating vote (roll-
call) of individual legislators, by leveraging text-attributed RGCN and BERT’s pretrained embeddings.

Our architecture (Figure 4a) uses BERT’s pre-
trained embedding to represent the textual infor-
mation of nodes in the graph; and text-attributed
RGCN to generate an embedding for them based on
their relations. Finally, we combine them to build a
representation of edges in the graph for our relation
prediction and then aggregate vote relations.

4.1 Text Representation Layer

The lower half of our architecture is based on
BERT, which leverages transformers and acts as
an efficient replacement for sequential models. In
our case, we use the BERT’s pretrained embed-
ding to form an initial representation for the textual
information of the nodes in the legislative graph.

Bill representation: We represent a bill by av-
eraging three different vectors (Figure 4b) corre-
sponding to: (1) title, (2) description, and (3) body
of the bill. For each of these components, we com-
pute the average word vector based on BERT’s pre-
trained word embedding. Thus, the bill representa-
tion is Xbill = Avg(etitle + edescription + ebody).

Legislator representation: To represent a leg-
islator, we compute BERT’s pretrained embedding
for his textual information: (1) attributes, (2) bi-
ography, and (3) committee information. Finally,
we take the average of these vectors, Xlegislator =
Avg(eattributes+ebiography+ecmte−info), as illus-
trated in Figure 4c.

Contributor representation: Similarly, We
transform different pieces of textual information on
a contributor, i.e., party- and type-related attributes,
business information, and industry data, into sep-
arate vectors, eattributes, ebusiness, eindustry and
then take their average as the final representation,
Xcontributor (Figure 4d).

4.2 Relational Graph Convolutional Layers

We feed the text representation of the bill, legislator,
and contributor nodes, as their initial representa-
tion, into Relational Graph Convolutional Network
(RGCNs) to better represent them given the legisla-
tive graph structure. In parallel, a feed-forward neu-
ral network (FFNN) processes these text representa-
tions and takes them to a concatenation layer for the
joint text-graph optimization. From the message
passing perspective, each (non-relational) GCN
layer performs two operations: propagation and
aggregation. In the propagation phase, the neigh-
borhood nodes send their feature/hidden represen-
tation to the node that needs to be updated. In the
aggregation phase, the node sums up all the mes-
sages coming from its neighborhood with its prop-
erties. The aggregated message is passed through a
non-linear activation function which forms the new
representation of the node. If the graph edges are
not typed, the hidden representation of each node i,
at (l + 1)’th layer, is computed by:

hi
l+1 = σ

(∑
j∈Ni

1

ci
W lhlj

)
(1)

In which the weight matrix W l is shared by all
edges in layer l.Also, ci is a normalization factor,
which is often set to ci = |Ni|. Relational GCN
(RGCN) generalizes GCNs to handle different rela-
tions between any pair of nodes, and thus being a
better fit for our problem. Unlike GCNs, RGCNs
use a different weight matrix and normalization
factors (e.g., cri = |N r

i |) for each relation type and
thus the hidden representation of nodes in (l+1)’th
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Table 2: Statistics of the legislative graphs, aggregated
over the 2011-2018 period.

State Nodes Relations
# Cont # Bills # Leg. #Cont-Leg #Leg-Bill

IN 274 4818 226 17729 217026
OR 462 4884 150 29213 102463
WI 175 1320 208 5924 88004
All 911 11022 584 52866 407493

layer is computed as:

hi
l+1 = σ

(
W l

0h
l
i +
∑
r∈R

∑
j∈Nr

i

1

ci,r
W l

rh
l
j

)
(2)

By having a K-layer RGCN (stacking layers
onto each other), we can capture kth-order rela-
tions from a node in the graph. However, a 2-layer
RGCN turns out to be sufficient in our case as it
fully realizes the 2nd order relations between con-
tributors and bills.

4.3 Roll-Call Classification and Aggregation
By combining the outputs of the RGCN and FFNN,
we train a model for predicting relations in the leg-
islative graph through FFNN+softmax. One could
leverage DistMult scoring functions (Schlichtkrull
et al., 2018; Yang et al., 2014) as well. Next,
we post-process the roll-call relations and aggre-
gate them to form the demographic and pass/fail
vote breakdowns and determine the final class la-
bels. In more detail, the representation of an edge
or relation (s, d) is the dot product of ejoints and
ejointd , which are the embedding of the correspond-
ing nodes. The representation of a node comes
from the concatenation of two components: (1)
text embedding (hidden states) coming from the
BERT layer after being fine-tuned through FFNN,
and (2) the graph embedding (hidden state of the
node) from the last RGCN layer.

Loss function: At a high level, our loss func-
tion is L = LCls + LText + LGraph and jointly
optimizes the text and graph embeddings as well
as the relation prediction and roll-call aggregation.
LCls is the cross-entropy loss of the relation predic-
tion; LGraph and LText are the L2 regularizations
of RGCN’s and FFNN’s weights that generate the
graph and text representations, respectively.

5 Experiments

In this section, we describe our comprehensive leg-
islative dataset, combining different sources of data
(e.g., money donors data, diverse information on

Table 3: Legislators’ attributes across the target states
aggregated over the 2011-2018 period—UR: Urban, RU:
Rural, C: Conservative, M: Moderate, L: Liberal.

State Gender Party Geography Ideology
F M D R UR RU C M L

IN 50 176 67 159 161 64 125 94 7
OR 47 103 83 67 133 17 28 61 61
WI 51 157 84 124 160 48 78 49 81
All 148 436 234 350 454 129 231 204 149

legislators). Table 2 shows the statistics of our
dataset after pruning and forming the legislative
graph (discussed in Section 3). Next, we focus on
our joint embedding model and its great ability in
outperforming existing prediction models.

5.1 Data Collection Methodology & Statistics

Bills and legislator data. From the LegiScan web-
site (LegiScan, 2019), we collected data on the
text and lower chamber disposition of all bills in-
troduced in Indiana, Oregon, and Wisconsin from
the 2011 through 2018 sessions. To do so, we de-
veloped a comprehensive crawler in Python that
performs multiple operations. First, it uses the
LegiScan API to collect legislative information on
every bill that covers: (1) bill metadata that in-
cludes the bill type, title, description, sponsors, and
links to its texts; (2) vote metadata that consists
of the individual legislator’s vote – “Yea,” “Nay,”
“Absent,” or “NV”; and (c) legislator metadata con-
taining party and district information. Then, our
crawler accurately converts bill texts that are stored
in the PDF format to text files, using open-source
libraries. To identify the fine-grained progression
of bills in the legislative process, our crawler down-
loads and processes the “History” section of each
bill on the LegiScan Website, which consists of
a series of events associated with a bill’s history
(e.g., committee report, roll-call vote). Such infor-
mation is not readily available in the LegiScan API.
Overall, we collected 34443 bills introduced in the
target states from 2011 to 2018. We studied 58%
of the bills that had both the votes of individual
legislators and full texts, which are necessary for
determining vote breakdowns and cleavage labels;
However, our focus in this paper is on the 2nd/3rd
reading, in which all members of the chambers
vote, so we selected 32% of the bills that reached
this stage to build the legislative graph (Table 2).

Biography, ideology and geography data. Fi-
nally, our crawler uses Ballotpedia (Ballotpedia,
2019) to collect texts on each legislator’s biogra-
phy, political interests, and committee assignments.
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Also, it aggregates other publicly available datasets
to identify each legislator’s attributes such as ideol-
ogy, gender, and district nature (urban/rural). The
ideology scores for legislators were taken (Shor and
McCarty, 2011) and they were grouped into conser-
vatives, moderates, and liberals. The district identi-
fier was combined with GIS census data (Census,
2019) to categorize each legislator as representing
either an urban or rural district.Table 3 shows the
breakdown of legislators’ party, gender, ideology,
and district information in our target states. For
less than 10% of legislators, Ballotpedia profiles
were missing. Thus, we used other public textual
information about them (e.g., Twitter).

Donors data: FollowTheMoney (FollowThe-
Money, 2019) captures and keeps tracks of dona-
tions to legislators and candidates in the US states.
Our crawler consumes the FollowTheMoney API
to collect the information of donors for each leg-
islator and cosponsors of our bills. This includes
multiple textual attributes and information for each
contributor: type that could be individual or non-
individual, general party, and economic and busi-
ness information. While the contributor data can be
used in more sophisticated ways, in this work, we
focused on major contributors by setting a donation
threshold ($10000) and removing those who con-
tributed to a single legislator; We also separated be-
tween ideological contributors and pragmatic ones
(donating to both parties) by inferring “negative”
(lack of) donation relations (see Section 3); We set
the fraction of negative donations to 30% of the
positive ones extracted from the real data. Table 2
shows the final per-state statistics of contributors.

5.2 Experimental Setup

We build different graph and textual models on
top of PyTorch, DGL (Deep Graph Library), and
spaCy. In our joint text-graph model (Figure 4)
and other baselines, the initial embedding dimen-
sion of both BERT (“bert-large-uncased”) and the
first-layer RGCN are set to 1024. The FFNN (fully
connected layer) and the second-layer RGCN take
the initial text and graph embeddings to a 256-
dimensional space. We have also experimented
with different settings, which while resulting in
lower overall performance, retained the same trend
when comparing the other models. We used Adam
to optimize our model and for each observed rela-
tion (Table 2), we sampled a negative example.

Data splits. Our focus is on the bill cleavage and

survival and thus we split legislative graphs based
on bill nodes. To evaluate different scenarios, we
have three configurations: (1) random where we
select 20% of the bills for testing and keep the rest
for training and validation. (2) time-based where
20% of most recent bills are considered for testing;
and (3) state-based: where the test bills come from
one specific state and train bills from the other
states. The test bills and corresponding legislators
appear in the test graph, and the difference of the
original and test graphs is used for training. Note
that vote relations of sponsoring legislators and a
bill are known, and appear in training.

Metric. Given the highly skewed data when pre-
dicting bill survival and cleavages, we pick Macro
F1 as the main metric over accuracy.

5.2.1 Baselines
To demonstrate the benefits of our joint text-graph
embedding, we implement a series of text and
graph embedding architectures as the baseline.

Category 1: text embedding models: We re-
alize our bill encoder (Figure 4b) using three text
embedding models and then train a logistic regres-
sion classifier to directly predict if a bill text shows
a certain cleavage or passes/fails: (a) BoW, where
unigram and bigram features (top 10K highest scor-
ing ones using scikit-learn (Pedregosa et al., 2011))
used to represent bill texts. (b) GloVe (Penning-
ton et al., 2014) that is a popular word embed-
ding model using the square loss; We used the
GloVe-840B-300D pre-trained word vectors in
our experiments. (c) BERT (Devlin et al., 2018)
that is a transformer based architecture capable of
capturing contextualized embedding.

Category 2: featureless graph embedding
models: We build a edge classifier over edge em-
beddings generated by models that assume nodes
in the legislative graph are homogeneous and fea-
tureless, and then aggregate the roll call results:
(a) DeepWalk (Perozzi et al., 2014) is an embed-
ding model that generates node vectors by running
Skip-Gram on random walks formed at different
nodes in the graph. (b) GCN (Kipf and Welling,
2016) is the basic two-layer GCN model that uses
a single weight matrix in each layer and begins
with the random node features in the first layer.
(c) RGCN (Schlichtkrull et al., 2018) is the rela-
tional version of the GCN that captures different
relations in our legislative graph.

Category 3: text-attributed (TA) graph em-
bedding models: We use the same edge classifier
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Table 4: Macro-F1 in bill survival and cleavage prediction for the random split and known sponsors’ relations.

Embedding Pass/
Fail

Competitive Inverse-Competitive
Party Gender Ideology Geography Party Gender Ideology Geography

Naive Majority 0.47 0.44 0.46 0.44 0.46 0.48 0.47 0.45 0.47
Sponsor 0.51 0.43 0.43 0.41 0.43 0.44 0.45 0.41 0.45

Text-
based

BoW 0.63 0.64 0.64 0.65 0.60 0.58 0.60 0.57 0.62
GloVe 0.65 0.67 0.66 0.67 0.61 0.57 0.62 0.60 0.63
BERT 0.68 0.70 0.72 0.69 0.66 0.58 0.64 0.62 0.67

Featureless
Graph

DeepWalk 0.49 0.52 0.50 0.54 0.56 0.52 0.50 0.52 0.51
GCN 0.49 0.53 0.51 0.55 0.57 0.52 0.51 0.53 0.52

RGCN 0.57 0.57 0.53 0.55 0.59 0.54 0.52 0.55 0.56
Text

Attributed
Graph

TA-DeepWalk 0.66 0.67 0.64 0.68 0.60 0.53 0.62 0.55 0.71
TA-GCN 0.67 0.67 0.65 0.66 0.61 0.52 0.62 0.54 0.72

TA-RGCN 0.72 0.69 0.65 0.71 0.63 0.56 0.64 0.57 0.72
Joint Graph+Text 0.82 0.83 0.79 0.82 0.73 0.64 0.78 0.65 0.78

but use the graph models that can consume the
text-based node features generated by our BERT-
based node encoders: (a) TA-DeepWalk (Yang
et al., 2015) that changes the graph factor-
ization in DeepWalk to support node features.
(b) TA- GCN (Kipf and Welling, 2016) is the origi-
nal GCN that takes as input an initial node features.
(c) TA-RGCN (Schlichtkrull et al., 2018) is a rela-
tional GCN that captures node features initialized
by our text-based node encoders.

Category 4: naive baselines. We evaluate two
other naive classifiers: (a) Majority: A baseline pre-
dicting the most frequent class in the training data:
(b) Sponsor: A logistic regression classifier that di-
rectly predicts bill survival and cleavages based on
the one-hot encoded sponsors’ info. encoded.

5.3 Results and Analysis

Performance of different textual and graph
models. Table 4 shows macro F1 for different
bill cleavages and pass/fail. We first analyze the
performance of different models in each category:
(1) Among the naive models, the sponsor-based
classifier improves the bill survival prediction com-
pared to the majority model but has no positive
impact on bill cleavages as expected intuitively.
(2) In the textual models, we observe BERT im-
proves the F1 performance by 2%-8% compared
to GloVe and BoW. By leveraging a bidirectional
operation, BERT more efficiently captures the con-
text of each word in the bill title, summary, and
body. (3) In the featureless graph models, RGCN
consistently outperforms the standard GCN and
DeepWalk models as it treats each of the relations
in the legislative graph (e.g., donation and voting)
differently and does not mix their weight matrices
with each other. This benefit of RGCN is entirely
enabled by our new dataset that explicitly tracks

different legislative relations; (4) Unlike the second
category, the text attributed graph models capture
implicit relations between different nodes in the
graph through their text features. By leveraging
our node encoders, they begin with better initial
representations of the nodes and relations (e.g., par-
ticularly votes) and thus provide an improvement
by up to 15% in the performance compared to their
featureless counterparts. (5) Finally, our proposed
model by combining and jointly optimizing the
graph and textual representations consistently pro-
vides a higher F1 score. Compared to the other
models, it improves recall while maintaining high
precision, e.g., in the case of the bill survival pre-
diction, the macro precision and recall values for
BERT, TA-RGCN, and our model are (0.72, 0.67),
(0.92, 0.66), (0.82, 0.84), respectively.

Language and implications of different cleav-
ages. We can make a few observations: it is slightly
more challenging to identify inverse-competitive
bills compared to competitive ones. This happens
across different graph and text models, and thus
indicating the language of these bills and the dy-
namics of relations behind them is rather complex.
To help provide an intuition, we summarized in
Table 6 the top bigrams and unigrams used in com-
petitive and inverse-competitive bills across the
different cleavages. Interestingly, the top n-grams
of competitive bills align better with the cleavages
(e.g., “abortion” is competitive both based on ide-
ology and gender) compared to the top inverse-
competitive n-grams, which often focus on mun-
dane issues such as taxes and services, suggesting
that when non-polarizing legislation is discussed,
group agreement takes a secondary role.

From another angle, Figure 5 further illustrates
the differences between these two categories of
cleavages. Overall, there are 10%-20% more com-
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Table 5: Macro F1 for bill survival and party cleavages for the best model in each category based on the state-
and time-based data splits.

Embedding
State-based
(Test: IN)

State-based
(Test: OR)

Time-based
(Test: 20%)

Pass/fail Comp. Inverse.
Comp Pass/fail Comp Inverse

Comp Pass/fail Comp. Inverse
Comp.

Naive (Majority) 0.47 0.44 0.45 0.46 0.45 0.44 0.48 0.45 0.46
Text-based (BERT) 0.63 0.64 0.53 0.61 0.64 0.54 0.67 0.67 0.57
Featureless Graph(RGCN) 0.52 0.52 0.50 0.51 0.50 0.51 0.54 0.54 0.52
Text-Attributed Graph (TA-RGCN) 0.60 0.62 0.53 0.62 0.61 0.52 0.67 0.68 0.55
Joint Graph+Text 0.70 0.72 0.58 0.70 0.70 0.58 0.73 0.76 0.61

Table 6: Most frequent unigrams and bigrams of com-
petitive and inverse-competitive bills.

Type Unigram/Bigram

Comp.

Party
law, fund, abortion, political subdivision,
providing penalty, badger-care plus,
parental choice

Gender
abortion, child, medical, school, providing
penalty, motor vehicle, minimum wage,
parental choice

Ideology
income, abortion, insurance, drugs,
local government, retirement system,
natural resources, political subdivision

Geography

county, service, commission, district,
transportation, housing, residential, state
financial, criminal history, restroom
facility, greenhouse gas

Inv-comp.

Party state, program, motor vehicle, real estate,
study committee, education matters,

Gender
financial, emergency, permits,
legislative council, economic
development, criminal penalty

Ideology
tax, services, county, criminal, alcoholic
beverages, board education, commission
declaring

Geography law, school corporation, property tax,
unemployment insurance

0

0.1

0.2

0.3

Party Gender Geography Ideology

%
 to
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Figure 5: Distribution of competitive and inverse-
competitive bills before split over 2011-2018.

petitive bills compared to inverse-competitive ones
under the party and ideology attributes, indicating
cross-group disagreements (e.g., conservatives VS.
moderates VS. liberals) are more likely than intra-
group disagreement. This pattern is reversed for
the gender and geography attributes.

Implication of state- and time-based data
splits. For the pass/fail and party cleavages with
the best model in each category, Table 5 shows a
sharp drop in the F1 score for the state-based and
time-based data split, particularly for graph-based
models (RGCN and TA-RGCN). By training the
model with the two states and testing it with an-

other one, the graph-based embedding models are
challenged with representing many unseen legisla-
tors. While GCN-based solutions are capable of
creating such representations in the test time (us-
ing the same weight matrix), they are sub-optimal
particularly in featureless GCN settings. One inter-
esting observation is that when the model is tested
with the OR data, the drop is even sharper as OR
tends to be a democratic state; While WI and IN
are often republican states. For the time-based data
split, we observe a similar but slightly better perfor-
mance as the number of unseen nodes are fewer. In
all these different configurations, our joint model
still improves the F1 score but it is limited on how
the underlying graph model behaves.

6 Summary

In this paper, we take the first step towards un-
derstanding the dynamics of state-level legislative
processes in the US through a data-driven approach.
We proposed to collapse the legislative process into
a heterogeneous multi-relational graph and sug-
gest several tasks for capturing disagreement over
several ideological and demographic cleavages, as
well as predicting the outcome of the legislative
process. We approach these problems by formulat-
ing them as aggregate roll-call prediction.

To fully realize the potential of graph-based mod-
eling, we created a new dataset, used to character-
ize the real-world context in which the legislative
process takes place, consisting of bills, donors, and
legislators and their behavior. We model the rich
relationship between these entities and the content
of the bills using a joint text and graph prediction
model on top of BERT and RGCN, outperforming
each one of the models in isolation.
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