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Abstract
We present a novel approach for structure pre-
diction that addresses the difficulty of obtaining
labeled structures for training. We observe that
structured output problems often have a compan-
ion learning problem of determining whether a
given input possesses a good structure. For ex-
ample, the companion problem for the part-of-
speech (POS) tagging task asks whether a given
sequence of words has a corresponding sequence
of POS tags that is “legitimate”. While obtaining
direct supervision for structures is difficult and
expensive, it is often very easy to obtain indirect
supervision from the companion binary decision
problem.

In this paper, we develop a large margin frame-
work that jointly learns from both direct and in-
direct forms of supervision. Our experiments ex-
hibit the significant contribution of the easy-to-
get indirect binary supervision on three important
NLP structure learning problems.

1. Introduction
Making complex decisions in real world problems often in-
volves predicting values to sets of interdependent variables.
These problems, called structured output problems have at-
tracted considerable interest in the machine learning com-
munity over the last few years (e.g., (Lafferty et al., 2001;
Tsochantaridis et al., 2004; Taskar et al., 2004; Roth & Yih,
2007) and many others).

Many tasks in Natural Language Processing (NLP) and
Computer Vision can be naturally modeled as structure
learning problems. Consider, for example, the problem
of entity transliteration. Given an English name (e.g.,
Italy), generate the corresponding name in Hebrew (pro-
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nounced Ee’Tal’Ya). To do so, there is a need to learn
a model which, given a pair {English named entity, its
Hebrew transliteration}, finds the phonetic (character se-
quence) alignment between them. Solving these problems
often involves both learning and inference steps – for an
input, there is a need to search a complex output space and
generate the best feasible element in it. In the above exam-
ple, most phonetic alignments are not legitimate. Unfortu-
nately, the natural complexity of the output space makes it
expensive to obtain labeled data and provide direct super-
vision for the target structure prediction task.

In this paper, we formalize the observation that many struc-
tured output prediction problems have a companion binary
decision problem of predicting whether an input can pro-
duce a good structure or not. For instance, consider the fol-
lowing binary problem (Klementiev & Roth, 2008): given
Named Entities (NE) in two languages, determine if they
represent transliterations of each other. Since transliter-
ations of NEs should sound similar, this binary decision
problem can be formulated as the following question: “Can
the two NEs produce good phonetic sequence alignment?”
This binary decision task determines whether a given input
(here, a pair of English and Hebrew NEs) can generate a
well-formed structure (in this case, the mapping).

Our work is motivated by several recent works (Chang
et al., 2009; Felzenszwalb et al., 2009; Chang et al., 2010)
which solve binary decision problems by learning to pre-
dict a (latent) structure on which the binary labels depend.
We observe that it is often easy to obtain supervision (bi-
nary labels) for the companion problem, and we refer to
the supervision for the companion binary task as indirect
supervision for the target structure prediction task. The key
research question addressed in this paper is: Can the struc-
tured output prediction task benefit from indirect supervi-
sion to the companion problem?

We propose a novel framework for Joint Learning with In-
direct Supervision (J-LIS) which uses both structured and
binary labeled data (Sec. 2). With this framework, one can
learn from a very small number of structured labeled ex-
amples, which are hard to come by, and gain substantially
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from indirect binary supervision for the companion deci-
sion problem, that, as we show, is easy to obtain.

We develop a learning algorithm for this formulation that
generalizes the structured output SVM by jointly learn-
ing from both forms of supervision (Sec. 3). Moreover,
our optimization algorithm allows incorporation of con-
straints on the output space, an approach that is often found
very useful in structured output problems. We experi-
mentally demonstrate the effectiveness of our algorithm
in three different structured output prediction domains—
transliteration, information extraction and part-of-speech
tagging (Sec. 4). In all domains, indirect supervision is
easily obtainable and significantly improves performance
on the target structured output prediction task.

2. Learning with Indirect Supervision
In many important applications, a companionship relation
exists between a structured output prediction task and a bi-
nary decision task. We start our explanation of the learning
framework with a few motivating examples.

Information Extraction An advertisement on Craiglist
contains fields like size, rent and location. Extracting the
fields from text is a sequence tagging problem. A com-
panion task is to determine if an article is a well-formed
advertisement. The relation between these tasks is clear;
the binary task asks whether advertisement fields can be
extracted from the article. The labeled data for the binary
problem is easy to obtain, for example by crawling the web,
and generating negative data by shuffling their contents1.

Object Part Recognition Consider the computer vision
task of labeling the “parts” (e.g., wheels) of a car in an im-
age. A companion binary task can be defined as predicting
whether an image contains a car. The relationship is clear,
as only an image containing a car will also contain car parts
in the right position. While labeling parts in an image is
difficult, obtaining car and non-car images is easy.

Typically, structured output learning uses direct supervi-
sion consisting of annotated structures. We incorporate
binary labeled examples for the companion task into the
learning process as indirect supervision.

2.1. Model

We now formalize the intuition described above. First,
we introduce the notation. Let S = {(xi,hi)}li=1 de-
note the direct supervision set consisting of l examples xi

and their corresponding structures hi. Likewise, let B =
{(xi, yi)}l+m

i=l+1 denote the indirect supervision set, where,
each yi ∈ {1,−1}. For brevity, we write i ∈ S to indicate
(xi,hi) ∈ S and i ∈ B to indicate (xi, yi) ∈ B. We de-
note B+ and B− as a partition of B consisting of positive

1Shuffling should also be treated as a supervision source, since
we know it will generate ill-formed examples for this domain.

and negative instances of B respectively. For any x, H(x)
denotes the set of all feasible structures. Let Φ(x,h) be a
feature generation function. We define X as the set of all
feature vectors for x. That is, X = {Φ(x,h) | h ∈ H(x)}.

In the standard structured output prediction task, the goal
of learning is to find a weight vector w that, for every ex-
ample (xi,hi) ∈ S, assigns the highest score to the correct
element hi ofH(xi). That is, we wish to find w such that,

hi = arg max
h∈H(x)

wT Φ(xi,h).

This inference problem can be solved by specific algo-
rithms or a general framework such as integer linear pro-
gramming (Roth & Yih, 2005). To use indirect supervision,
our key assumption is that an input x is valid (its y = +1)
if and only if its best structure is well-formed. Conversely,
the input is invalid (its y = −1) if every structure for that
input is bad. We require that the weight vector w should
satisfy two conditions:

∀ (x,−1) ∈ B−, ∀h ∈ H(x),wT Φ(x,h) ≤ 0,

∀ (x,+1) ∈ B+, ∃h ∈ H(x),wT Φ(x,h) ≥ 0 (1)

The geometric interpretation of this setting is shown in Fig.
1. Circles represent the set X = {Φ(x,h) | h ∈ H(x)},
the feature vectors corresponding to feasible structures of
an example x. The vector w defines a hyperplane separat-
ing the examples into positive and negative classes. The
figure on the left denotes standard structured output learn-
ing, where w is learned using a labeled set S. A positive ex-
ample, x has a well defined structure, but our prediction is
incorrect. On the right, the learning algorithm uses indirect
supervision. Following the requirement that structures ob-
tained from negative examples should have negative scores,
the weight vector w is pushed into a better region, allowing
the structure predictor to predict the correct structure.

2.2. Learning

In the standard structural SVM, the goal of learning is to
solve the following minimization problem:

min
w

‖w‖2

2
+ C1

∑
i∈S

LS(xi,hi,w) (2)

where, LS(xi,hi,w) represents the loss function for the
structure prediction. The function LS can be written as

LS(xi,hi,w)= `

(
max

h

(
∆(h,hi)−wT Φhi,h(xi)

))
(3)

where Φhi,h(xi) = Φ(xi,hi)− Φ(xi,h) and ∆ is a func-
tion which returns the distance between two structures. In
this paper, we define ∆ as the Hamming distance between
structures, but our algorithm can be used with any suitable
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Figure 1. Learning with indirect supervision when the target output is H . Each circle represents the set of feature vectors of feasible
structures of an example and w denotes a hyperplane. (a) Suppose we have learned a w using a structured labeled set S. For a positive
example, x ∈ B+, we know there exists a well defined, unknown structure, but our prediction is incorrect. (b) After adding two negative
examples: Negative examples, by definition, do not have a well formed structure. That is, every structure for x1,x2 ∈ B− should
be scored below a threshold, and some structure of x should score above it. The negative examples restrict the space of hyperplanes
supporting the right decision for x. See Section 2 for details.

definition for the distance between structures. The function
` : R → R can be instantiated by many commonly used
loss functions such as hinge loss, with `(x) = max(0, x),
and squared-hinge loss, with `(x) = max(0, x)2.

We incorporate indirect supervision using the intuition
from Eq. (1) to define the problem of Joint Learning with
Indirect Supervision (J-LIS):

Given a structured labeled dataset S and a binary labeled
dataset B, the goal of learning is to find w that minimizes
the objective function Q(w), which is defined as

‖w‖2

2
+C1

∑
i∈S

LS(xi,hi,w)+C2

∑
i∈B

LB(xi, yi,w), (4)

where LS , as before, is the loss for the structure prediction,
and LB is the loss for the binary prediction.

The intuition from Eq. (1) is incorporated into the binary
loss LB . The first inequality of Eq. (1) is equivalent to re-
quiring the highest scoring structure of all negative exam-
ples to be below the threshold. The second inequality will
be satisfied if the highest scoring structure of every positive
example is above the threshold. Thus, the two inequalities
can be re-stated as follows:

∀ (x,−1) ∈ B−, max
h∈H(x)

wT Φ(x′,h) ≤ 0,

∀ (x,+1) ∈ B+, max
h∈H(x)

wT Φ(x,h) ≥ 0.

Furthermore, the design of the binary loss needs to account
for the fact that different examples can be of different sizes.
Hence, the weight vectors Φ(xi,h) need to be normalized
according to the size of the input. Accordingly, using κ(x)

as normalization for an input x, we define the LB as2

LB(xi, yi,w) = `

(
1− yi max

h∈H(x)
(wT ΦB(xi,h))

)
(5)

where ΦB(xi,h) = Φ(xi,h)
κ(xi)

. We also add a dummy feature
in ΦB after normalization to adjust the threshold.

2.3. Relation to Other Learning Frameworks

Several discriminative algorithms for learning structured
output predictors have been proposed in the literature:
these include conditional random fields (Lafferty et al.,
2001), max-margin Markov network (Taskar et al., 2004)
and structural SVM (Tsochantaridis et al., 2004). These
methods use feature vectors of input-output space to cap-
ture the interdependency between output variables.

Our framework generalizes other structure learning frame-
works. When B = ∅ and ` is the hinge loss or squared
hinge loss, it reduces to the structural SVM framework.
When S = ∅ and the goal is the binary task, it is a la-
tent variable framework similar to (Felzenszwalb et al.,
2009), which learns a binary SVM over latent structures
and is an instantiation of the latent structural SVM of (Yu &
Joachims, 2009). Our approach differs from both of these
frameworks as it aims to use indirect supervision from one
task to help the companion target task.

The objective function Eq. (4) contains two loss terms cor-
responding to the direct and indirect supervision. While
the form of the objective function resembles the objec-
tive function of semi-supervised structure learning (Zien
et al., 2007; Brefeld & Scheffer, 2006), J-LIS is very dif-
ferent both conceptually and technically. The difference

2The function κ(x) is not needed when the feature vectors
take care of the scaling issue. It is only needed when the φ(x,h)
is sensitive to the size of x.
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stems from our interpretation of the relation between the
companion problems allowing us to use invalid examples
(y = −1), which are not used by semi-supervised learn-
ing frameworks. We further discuss the impact of negative
examples empirically in Sec. 4.4.

Our work is also conceptually related to Contrastive Esti-
mation (CE) (Smith & Eisner, 2005), where the goal is to
learn a structure predictor by pushing the probability mass
away from the “bad” neighbors. There are several technical
differences between the two approaches. These differences
are discussed in Sec. 5 with related experiments.

3. Optimization Algorithm
This section describes the optimization procedure for solv-
ing the objective function Q(w) from Eq. (4). First, we
study its convexity properties. We can rewrite Eq. (4) as

Q(w) = F (w) + G(w),

where F and G are given by Eq. (6) and (7), respectively.

‖w‖2

2
+C1

∑
i∈S

LS(xi,hi,w)+C2

∑
i∈B−

LB(xi, yi,w) (6)

C2

∑
i∈B+

`

(
1−max

h
(wT ΦB(xi,h))

)
(7)

If ` is convex and non-decreasing, F is convex. However,
the function G, which includes a maximization term within
it, need not necessarily be convex or concave. This renders
the function Q non-convex. This is an effect of the existen-
tial quantification over positive examples in Eq. (1).

Since G is not concave, the Concave-Convex procedure
(CCCP) (Yuille & Rangarajan, 2003) cannot be applied as
in (Yu & Joachims, 2009)3. However, we can apply an opti-
mization procedure similar to CCCP without requiring G to
be concave. We use the fact that our loss function ` is non-
decreasing, which holds for commonly used loss functions
such as hinge loss, squared-hinge loss and logistic loss.

The algorithm 1 iteratively improves the objective func-
tion. At the tth iteration of the loop, we denote wt to
be the current estimation of the weight vector, and denote
ht

i = arg maxh wt
T Φ(xi,h) to be the best structure for a

positive example according to wt. We then define an ap-
proximation function of G using wt:

Ĝ(w,wt)=Gt(w) = C2

∑
i∈B+

`(1−wT ΦB(xi,ht
i)). (8)

Unlike G, since the ht
is are fixed using wt, the function Gt

is convex in w given ` is convex. Now, step 3 of the algo-

3CCCP cannot be applied to this split of Q because G is not
concave. While it is possible to use other splits, the split proposed
in this paper leads to an intuitive and efficient algorithm which
has similar guarantees to CCCP.

Algorithm 1 Iterative algorithm for minimizing Q(w) by
repeatedly minimizing A(w,wt).

1: Initialize w0 with direct supervision S.
2: repeat
3: wt+1 ← arg minw A(w,wt)
4: until convergence
5: Return the final weight vector.

rithm minimizes the following convex function A(w,wt)
to obtain the next estimate of the weights.

A(w,wt) = F (w) + Ĝ(w,wt) = F (w) + Gt(w)
Algorithm 1 has the following property:

Theorem 1 If the loss function ` is a non-decreasing func-
tion, then in Algorithm 1, the objective function (Eq. (4))
will decrease with every iteration. That is, if wt is the
weight vector from the tth iteration and wt+1 is the weight
vector after running the Algorithm 1 for one more iteration.
Then, Q(wt+1) ≤ Q(wt).

Proof. For any h and w, we know that wT Φ(xi,h) ≤
maxh′ wT Φ(xi,h′). Since ` is non-decreasing, Gt(w) ≥
G(w) for any w. From definition of G and Gt, we have
Gt(wt) = G(wt). Thus,

Q(wt) = F (wt) + G(wt) = F (wt) + Gt(wt)
≥F (wt+1) + Gt(wt+1)
≥F (wt+1) + Gt+1(wt+1) = Q(wt+1).

The first inequality is from line 3 in Algorithm 1. 2

Algorithm 1 minimizes Q(w) by constructing a sequence
of convex problems A(w,wt) in each iteration. The al-
gorithm is defined for any convex and non-decreasing loss
functions `. Now, we show how the inner loop of the Algo-
rithm 1 (that is, minimizing A(w,wt)) can be solved effi-
ciently when `(x) = max(0, x)2, the squared hinge loss.

Our approach adapts the cutting plane strategy of
(Joachims et al., 2009) to minimize A(w,wt). We define
a working set for each element in S and B− – letWi and
Vi denote the working sets of xi ∈ S and xi ∈ B− respec-
tively. We minimize A iteratively using Algorithm 2,which
first updates the working sets and then solves the following
minimization problem :

min
w

1
2
‖w‖2 + C1

∑
i∈S

ξ2
i + C2

∑
i∈B

ξ2
i

s.t. ∀i ∈ S,h ∈ Wi, ξi ≥ ∆(h,hi)−wT Φhi,h(xi),

∀i ∈ B−,h ∈ Vi, ξi ≥ 1 + wT ΦB(xi,h),

∀i ∈ B+, ξi ≥ 1−wT ΦB(xi,ht
i) (9)

Note that in the first two sets of constraints above, we have
one constraint for each h in the working set, instead of
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Algorithm 2 Cutting plane algorithm for optimizing A(w,wt)
in Algorithm 1 with square hinge loss.

Require: wt, the weight vector from tth iteration
1: Wi ← ∅,∀i ∈ S
2: Vi ← ∅,∀i ∈ B−

3: ht
i = arg maxh wT

t ΦB(xi,h),∀i ∈ B+

4: repeat
5: for i ∈ B− do
6: h∗i ← arg maxh wT ΦB(xi,h)
7: Add h∗i to Vi

8: end for
9: for i ∈ S do

10: h∗i ← arg maxh wT Φ(xi,h) + ∆(hi,h)
11: Add h∗i toWi

12: end for
13: Update w by solving Eq. (9)
14: until no new element is added to anyWi and Vi

15: return w

an exponentially large number of constraints, one for each
possible h ∈ H(x). Furthermore, using the squared hinge
loss ensures that the constraints ξi ≥ 0 are not needed.
Hence, the dual formulation of Eq. (9) consists of only box
constraints. This allows us to use a very efficient coordi-
nate descent method on the dual formulation of Eq. (9).
For brevity, we extend the notation of V for elements of
B+, where each Vi is a singleton set consisting of ht

i.

In the dual of Eq. (9), each variable corresponds to one con-
straint. We use αs to denote the dual variables. For each i ∈
S, the dual contains |Wi| variables αi,j for the hi,j ∈ Wi.
Similarly, we define αi,j for every hi,j ∈ Vi, i ∈ B. The
weight vector can be reconstructed from the dual variables
using the standard approach. Algorithm 3 summarizes the
dual coordinate descent algorithm for minimizing Eq. (9).

Algorithm 3 Dual coordinate descent for minimizing Eq. (9).
1: repeat
2: Pick any variable αi,j

3: if i ∈ S then
4: η1 = ∆(hi,hi,j)−wT Φhi,hi,j

(xi)+
∑|Wj |

j=1 αi,j

5: η2 = ‖Φhi,hi,j (xi)‖2 + 1
2C1

6: else
7: η1 = 1− yiwT (ΦB(xi,hi,j)) +

∑|Vj |
j=1 αi,j

8: η2 = ‖ΦB(xi,hi,j)‖2 + 1
2C2

9: end if
10: αi,j ← max(αi,j + η1

η2
, 0)

11: until convergence

Our optimization algorithm is related to the convex-
concave procedure (CCCP) (Yuille & Rangarajan, 2003),
which has been used for solving many non-convex opti-
mization problems (Yu & Joachims, 2009). We show that
it is not necessary to decompose the objective function into

a sum of convex and concave functions to use a CCCP-
like iterative procedure. The object recognition work of
(Felzenszwalb et al., 2009) uses a similar optimization pro-
cedure for their problem. However, not only is the intent of
our algorithm is completely different (that work only has
labels for the binary problem and the goal is to improve
binary classification performance), our optimization algo-
rithm can handle general loss functions.

4. Experiments
We verify the effectiveness of J-LIS by applying it on
three NLP tasks defined over complex structures – Phonetic
Transliteration Alignment, Information Extraction (McCal-
lum et al., 2000; Grenager et al., 2005) and Part of Speech
Tagging (Smith & Eisner, 2005). Our experiments provide
insights into the settings in which indirect supervision is
most effective 4. For all our experiments, we selected pa-
rameters C1 and C2 from the set {10−1, 100, 101} by sam-
pling the data and evaluating the results on a held-out set.
We ran our algorithm until the relative change in the objec-
tive function became less than 10−5.

4.1. Phonetic Transliteration Alignment

Given a source language named entity (NE) and a corre-
sponding target language NE, the goal of Phonetic Translit-
eration Alignment is to find the best phonetic alignment be-
tween the character sequences of the two NEs.5 The com-
panion binary classification problem is the task of deter-
mining whether two words from different languages corre-
spond to the same underlying entity.

Since a good phonetic alignment is required for two NEs to
be considered transliterations of each other, we can use this
information to guide the alignment predictor. Given an in-
put example (in our case, an English and Hebrew NE pair),
the best sequence alignment can be efficiently found us-
ing a dynamic programming algorithm. Our feature vector
corresponds to the alignment edges, using the correspond-
ing character sequences. The normalization term κ(x) is
set to the number of characters in the Hebrew NE.

We used the English-Hebrew data-set from (Chang et al.,
2009), consisting of 300 pairs and manually annotated the
alignments between the NEs’ segments. We used 100 pairs
for training and 200 for testing. Our binary data, obtained
by crawling the web, consists of 1,000 positive and 10,000
negative pairs6. Note that obtaining the binary supervision
is considerably easier than labeling the alignment.

To measure the impact of indirect supervision, we vary the
size of the direct and indirect supervision sets. We report

4Further details will be provided at http://L2R.cs.
uiuc.edu/∼cogcomp/wpt.php?pr key=INDIRECT

5The character sequences can consist of multiple characters.
6Negative pairs were created by pairing an English NE to a

random Hebrew NE.
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Table 1. F1 measure for the phonetic transliteration alignment
task. The amount of direct supervision used for the structure pre-
diction task (|S|) varies across the rows of the table, while the size
of indirect supervision (|B|) changes across the columns. The first
column, (|B| = 0) is the standard structural SVM (SSVM). Re-
sults show that indirect supervision is especially effective when
little supervision exists for the structure task. The error reduction
compared to structural SVM is in parentheses.

Size of B
|S| 0 (SSVM) 2k 4k 8k
10 72.9 78.8 79.8 80.0 (26.2%)
20 82.1 84.6 84.7 85.4 (18.4%)
40 85.7 86.9 87.2 87.4 (12.0%)
80 88.6 89.4 89.0 89.4 (7.1%)

the F1 measure for the alignment in Table 1. Adding in-
direct supervision improves the structure predictor signif-
icantly. For example, when we have only ten structured
labeled pairs, the error reduction rate is 26%.

4.2. Part-Of-Speech tagging

Our POS data is from the Wall Street Journal corpus (Mar-
cus et al.); we used 25600 tokens for training and testing
(which correspond to 1000 sentences). Using a separate set
of sentences corresponding to 25600 tokens, we generated
2000 indirect supervision examples. The 1000 negative ex-
amples among these were generated by randomly shuffling
sentences in the corpus. To allow for more experiments,
we adopted the coarse tags from (Smith & Eisner, 2005)
here. We did not use a tagging dictionary, and all tags were
considered for every word. Our model was a first order
Markov model with spelling features representing capital-
ization and suffixes of the current word. We set our κ(x) to
be the number of words in the sentence x.

The results of the experiments are summarized in Fig. 2.
We observe that indirect supervision is most effective when
the size of the structured labeled data-set is small. For ex-
ample, when S consists of 200 tokens, adding indirect su-
pervision improves the predictor from 71% to 76%. As in
the transliteration domain, increasing the indirect supervi-
sion often results in better performance, the trend is very
clear in Fig. 2. While the effect of indirect supervision
decreases when the supervision set for the structure learn-
ing problem increases, we found that J-LIS is competitive
with structural SVM even when we used all the labeled data
(25.6k). The supervised SVM achieves 93.66% with all la-
beled examples, compared to J-LIS ’s 93.72%.

4.3. Information Extraction

Information Extraction (IE) is the task of identifying pre-
defined fields in text. We report results for two IE tasks:
(i) Extracting fields from citation (e.g., author, title, year)
(McCallum et al., 2000), and (ii) Extracting fields from ad-
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Figure 2. Results for the part-of-speech tagging. Adding indi-
rect supervision significantly improves the results. Also, the re-
sults are better when more indirect supervision is used. We report
the size of the data-sets used by counting the total number of to-
kens due to the variance in sentences size. See the text for more
details. Even when all of our labeled data is used (25.6k), SSVM
and J-LIS are comparable (SSVM: 93.66% and J-LIS :93.72%).

vertisements (e.g., size, rent and neighborhood) (Grenager
et al., 2005). The companion binary problem is to classify
whether a text is a well structured citation/advertisement.
For citations, we used 300 structured labeled examples for
training, 100 for development and 100 for testing. In the
advertisements domain, we used 100 labeled examples for
training, development and testing. For each domain, our
positive data contains 1k entries (50k tokens for the citation
domain and 200k tokens for the advertisement domain).
We generate 1k negative entries for each domain by ran-
domly shuffling the tokens. We use features corresponding
to the current word and previous state allowing us to use
Viterbi to find the best sequence efficiently. The κ(x) is set
to the number of tokens of this entry.

The token-level accuracy results for both domains are sum-
marized in Table 2, where we vary |S| and fix |B| for each
domain. In the advertisement domain, when the number of
tokens in S is 500 tokens, structural SVM attains an accu-
racy of approximately 58%. Adding indirect supervision
boosts the accuracy to over 66%, which even outperforms
the structural SVM results with |S| = 1000. In the citation
domain, we observe similar trends.

4.4. The importance of negative examples

The key difference between J-LIS and previous work on
discriminative semi-supervised structured output predic-
tion (e.g., (Brefeld & Scheffer, 2006; Zien et al., 2007))
is the use of invalid (y = −1) examples. These approaches
use well-formed unlabeled examples for training. These
correspond only to our y = +1 class. To provide further
insight into the role of negative examples, we isolate the
contribution of the invalid examples in the indirect super-
vision dataset by fixing the number of positive examples,
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Table 2. Results for two IE tasks. |S| (the structured supervised
set) is measured by the number of tokens. Performance is evalu-
ated by token-level accuracy with a fixed indirect supervision set
B. The results are bold faced when the improvement obtained by
J-LIS is statistically significantly under paired-t test p < 0.01.

.
Advertisements Citations
|S| SSVM J-LIS |S| SSVM J-LIS

500 57.18 66.60 100 58.24 64.05
1000 64.93 70.09 400 70.53 73.63
2000 69.57 72.75 1600 82.39 84.28
4000 74.24 75.80 6400 90.15 90.33

19k 78.07 79.00 9k 92.24 92.31

and show the effect of varying the number of negative ex-
amples in the citation domain. We fix the structured labeled
set (|H| = 100 tokens). The binary indirect training set is
created as follows – positive examples are fixed (34767 to-
kens) and the number of negative examples is varied.

Results (Fig. 3) show that increasing the number of neg-
ative examples improves the performance of the structure
predictor. This stresses the advantage of J-LIS over the
standard discriminative semi-supervised approaches which
cannot gain from negative examples.

5. Discussion: Focus on Y

When the size of S is zero CE (Smith & Eisner, 2005)
is conceptually related to this work. However, the goal of
J-LIS is to jointly learn from both structured and binary
supervision, while CE is not designed to use labeled struc-
tures. Therefore, we compare to CE by restricting J-LIS to
use |S| = 0. Next, we describe the conceptual difference
between the approaches and then empirically compare the
two algorithms and Expectation-Maximization(EM).

Even without any labeled structure, J-LIS is less restricted
than CE. First, in CE, a “good” example and its “bad”
neighbors need to be grouped together and CE cannot be
directly applied when the relationship between good and
bad examples is not known. In contrast, our framework can
be directly applied to existing binary datasets. Moreover,
CE needs to marginalize over all possible hidden struc-
tures, while J-LIS only looks for the best structure. Hence,
the practical computational cost of the inference problem is
lower. This property also allows us to incorporate complex
domain specific constraints, which as previous work has
shown can significantly boost the performance of structure
predictors (Roth & Yih, 2005; 2007; Martins et al., 2009).
It is not clear how to use arbitrary constraints in CE without
using an approximated inference procedure.

Following (Smith & Eisner, 2005), we adopt the com-
monly used tagging dictionary assumption: for any word,
we know all its possible POS (e.g. ‘play’ can be a verb
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Figure 3. Impact of negative examples in the citation domain. Re-
sults show that as more negative examples (y = −1) are used,
indirect supervision improves performance.

or a noun). We used a 96K word subset of the WSJ cor-
pus, and evaluated on ambiguous words (that is, words with
more than one allowed tag), as in the CE work. All models
used the second order Markov assumption and exactly the
same features. For J-LIS, we generate four negative exam-
ples for each positive one by randomly shuffling its words.
We compare to the closest CE experimental setting which
transposes neighboring words.

The token accuracy of EM and CE are 60.9% and 74.7%,
respectively in a pure unsupervised learning. When hyper-
parameters are tuned using supervised data, the perfor-
mance can go up to 62.6% and 79.0%. The restricted J-
LIS attains 70.1%, which is significantly better than EM
but worse than CE. We hypothesize that the reason is that
J-LIS only finds a single best structure. Without any ini-
tialization, it is likely that many structures are assigned the
same score as the best one7. While this does not affect CE,
which sums over the score of all structures, J-LIS might
commit to a solution too early. We verified this intuition by
adding merely 5 structured labeled sentences that provide
better initial point, resulting in an accuracy of 79.1%.

Using structure as indirect supervision In this section
we consider the reverse question: can structured data act as
indirect supervision for the binary task. Since J-LIS does
not make any assumptions about S and B, it can be applied
directly when the binary task is the target. We briefly de-
scribe experimental results in this setting using the translit-
eration identification task (determining if a given NE pair
is a transliteration pair). This is the companion problem
to the transliteration alignment problem considered in Sec.
4.1. We matched each English NE in the test data with the
best Hebrew NE using the classifier’s confidence and mea-
sured the accuracy of the top ranking prediction. Our test
data consists of 200 English and Hebrew NEs.

There are two ways of using S to improve binary predic-

7It is therefore important for J-LIS to have an inference algo-
rithm capable of randomly choosing among equivalent solutions.
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Figure 4. The impact of structured labeled data when binary clas-
sification is our target. Results (for transliteration identification)
show that joint training significantly improves performance, espe-
cially when direct supervision is scarce.

tion: (1) Initialize the weight vector using S, and apply
J-LIS to B. (2) Initialize the weight vector with S, and
then apply J-LIS on both B and S (the joint approach).
We vary the size of the |B| from 100 to 800 and keep
the positive to negative ratio to 0.1 and report results for
|S| ∈ {10, 20}. Fig. 4 shows that increasing |S| improves
accuracy. Furthermore, the joint method performs signifi-
cantly better than using S for initialization only.

6. Conclusion
This work studies two companion problems – structured
output prediction and a binary decision problem over the
structure. The key contribution of this work is the devel-
opment of a discriminative joint learning framework, J-
LIS, that exploits the relationship between the two prob-
lems. Consequently it can make use of easy-to-get supervi-
sion for the binary problem to improve structure prediction,
where supervision is hard to get. We apply our framework
to three structure learning tasks - phonetic transliteration
alignment, information extraction and part-of-speech tag-
ging and show significant empirical improvements. Inter-
estingly, in all three domains the most significant improve-
ment is obtained when little direct supervision is available
for the structure prediction task, thus demonstrating the
benefit of using our framework especially in data-poor do-
mains, where more supervision is required.
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