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Abstract

The ability to comprehend wishes or desires and their fulfill-
ment is important to Natural Language Understanding. This
paper introduces the task of identifying if a desire expressed
by a subject in a given short piece of text was fulfilled. We
propose various unstructured and structured models that cap-
ture fulfillment cues such as the subject’s emotional state and
actions. Our experiments with two different datasets demon-
strate the importance of understanding the narrative and dis-
course structure to address this task.

1 Introduction

Understanding expressions of desire is a fundamental aspect
of understanding intentional human-behavior. The strong
connection between desires and the ability to plan and exe-
cute appropriate actions was studied extensively in contexts
of rational agent behavior (Georgeff et al. 1999), and mod-
eling human dialog interactions (Grosz and Sidner 1986).

In this paper we recognize the significant role that ex-
pressions of desire play in natural language understand-
ing. Such expressions can be used to provide rationale for
character behaviors when analyzing narrative text (Goyal,
Riloff, and Daumé III 2010; Elson 2012a), extract infor-
mation about human wishes (Goldberg et al. 2009), explain
positive and negative sentiment in reviews, and support au-
tomatic curation of community forums by identifying unre-
solved issues raised by users.

We follow the intuition that at the heart of the applica-
tions mentioned above is the ability to recognize whether
the expressed desire was fulfilled or not, and suggest a novel
reading comprehension task: Given text, denoted as Desire-
expression (e.g., “Before Lenin died, he said he wished to be
buried beside his mother.”) containing a desire (“be buried
beside his mother”) by the Desire-subject (“he”), and the
subsequent text (denoted Evidence fragments or simply Ev-
idences) appearing after the Desire-expression in the para-
graph, we predict if the Desire-subject was successful in ful-
filling their desire. Fig. 1 illustrates our setting.

Unlike most NLP tasks such as text categorization or
sentiment classification which rely on lexical information,
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Figure 1: Example of a Desire Expression (d), Evidence
fragments (e1. . .e5) and a binary Desire Fulfillment Status
(f). The Desire-subject and Desire-verb are marked in blue
and bold fonts respectively in the Desire-expression.

understanding desire fulfillment requires complex infer-
ences connecting expression of desire, actions affecting the
Desire-subject, and the extent to which these actions con-
tribute to fulfilling the subject’s goals. For example, in
Fig. 1 the action of ‘preserving’ Lenin’s body led to non-
fulfillment of his desire.

We address these complexities by representing the nar-
rative flow of Evidences, and assessing if the events (and
emotional states) mentioned in this flow contribute to (or
provide indication of) fulfilling the desire expressed in the
preceding Desire-expression. Following previous work on
narrative representation, we track the events and states as-
sociated with the narrative’s central character(s): the Desire-
subject (Chambers and Jurafsky 2008; Chaturvedi et al.
2015; Srivastava, Chaturvedi, and Mitchell 2016).

While this representation captures important properties
required by the desire-fulfillment prediction task, such as the
actions taken by the Desire-subject, it does not provide us
with an indication about the outcome of these actions. Re-
cent attempts to support supervised learning of such detailed
narrative structures by annotating data (Elson 2012b), result
in highly complex structures even for restricted domains. In-
stead we model this information by associating a state, in-
dicating if the outcome of an action (or the mention of an
emotional state) provides evidence for making progress to-
wards achieving the desired goal. We model the transitions
between states as a latent sequence model, and use it to pre-
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dict if the value of the final latent state in this sequence is
indicative of a positive or negative prediction for our task.

We demonstrate the strength of our approach by compar-
ing it against two strong baselines. First, we demonstrate
the importance of analyzing the complete text by compar-
ing with a textual-entailment based model that analyzes indi-
vidual Evidence fragments independently. We then compare
our latent structured model, which incorporates the narrative
structure with an unstructured model, and show improve-
ments in prediction performance. Our key contributions are:
• Introduce the problem of understanding desire fulfillment,

and annotate and release two datasets.
• Present a latent structured model for this task, incorporat-

ing the narrative structure of the text, and propose relevant
features that incorporate world knowledge.

• Empirically demonstrate that such a model outperforms
competitive baselines.

1.1 Problem Setting

Our problem consists of instances of short texts (called
Desire-expressions), which were collected in a manner so
that each consists of an indication of a desire (character-
ized using a Desire-verb) by a Desire-subject(s). The Desire-
verb is identified by the following verb phrases: ‘wanted
to’, ‘wished to’ or ‘hoped to’.The three Desire-verbs were
identified using lexical matches while the Desire-subject(s)
was marked manually. Each Desire-expression is followed
by five or fewer pieces of Evidence fragments (or simply
Evidences). The Desire-expression and the Evidences (in or-
der) consist of individual sentences that appeared contigu-
ously in a paragraph. We address the binary classification
task of predicting the Desire Fulfillment status, i.e. whether
the indicated desire was fulfilled in the text, given the Evi-
dences and the Desire-expression with Desire-verb and Sub-
ject identified. Fig. 1 shows an example of the problem.

2 Inference Models for Understanding

Desire Fulfillment in Narrative Text

In this section we present three textual inference approaches,
each following different assumptions when approaching the
desire-fulfillment task, thus allowing a principled discussion
about which aspects of the narrative text should be modeled.

Our first approach assumes the indication of desire fulfill-
ment will be contained in a single Evidence fragment. We
test this assumption by adapting the well-known Textual En-
tailment task to our settings, by generating entailment can-
didates from Desire-expression and Evidence fragments.

Our second approach assumes the decision depends on
the Evidence text as a whole, rather than on a single Ev-
idence fragment. We test this assumption by representing
relevant information extracted from the entire Evidence text.
This representation (depicted in Fig. 3) connects the central
character in the narrative, the Desire-subject, with their ac-
tions and emotional states exhibited in the Evidence text.
This representation is then used for feature extraction when
training a binary classifier for the desire-fulfillment task.

Our final model provides a stronger structure for the ac-
tions and emotional states expressed in the Evidence text.

Data Normalized? P R F

MC No 59.38 24.68 34.86
Test Yes 76.09 45.45 56.91

Simple No 50.00 2.22 4.26
Wiki Yes 37.04 8.89 14.34

Table 1: Effects of normalizing the Desire-expression.

The model treats individual Evidence fragments as parts of
a plan carried out by the Desire-subject to achieve the de-
sired goal, and makes judgments about the contribution of
each step towards achieving the desired goal.

2.1 Textual Entailment (TE) Model

Recognizing Textual Entailment (RTE) is the task of recog-
nizing the existence of an entailment relationship between
two text fragments (Dagan et al. 2010). From this perspec-
tive, a textual entailment based method might be a natural
way to address the desire fulfillment task. RTE systems often
rely on aligning the entities appearing in the text fragments.
Hence we reduce the desire fulfillment task into several RTE
instances consisting of text-hypothesis pairs, by pairing the
Desire-expression (hypothesis) with each of the Evidence
fragments (text) in that example. However, we “normalized”
the Desire-expression, so that it would be directly applicable
for the RTE task. For example, the Desire-expression, “One
day Jerry wanted to paint his barn.”, gets converted to “Jerry
painted his barn.”. This process followed several steps:
• If the Desire-subject is pronominal, replace it with the ap-

propriate named entity when possible (we used the Stan-
ford CoreNLP coreference resolution system) (Manning
et al. 2014).

• Ignore the content of the Desire-expression appearing be-
fore the Desire-subject.

• Remove the clause containing the Desire-verb (‘wanted
to’, ‘wished to’ etc.), and convert the succeeding verb to
its past tense.
The desire was considered ‘fulfilled’ if the RTE model

predicted entailment for at least one of the text-hypothesis
pairs of the example. E.g., the model could infer that the
normalized Desire-expression example mentioned above,
would be entailed by the following Evidence fragment- “It
took Jerry six days to paint his barn that way.” and hence
it would conclude that the desire was fulfilled. Table 1
shows the performance of BIUTEE (Stern and Dagan 2012;
Magnini et al. 2014), an RTE system, on the two datasets
(see Sec. 4) used in our experiments1. Our results show that
the RTE Model performs better with normalization. We use
this model (with normalization) as a baseline in Sec. 5.

2.2 Unstructured Model

The Textual Entailment model described above assumes that
the Desire-expression would be entailed by one of the in-
dividual Evidences. This assumption might not hold in all

1We also tested the TE model by using the default setting, opti-
mized for the RTE task, however it performed very poorly.
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Figure 2: Structured model (LSNM) Diagram. Evidence ei,
Desire Fulfillment, f , and Structure-independent features,
φ(d), are observed. States, hi, are hidden.

cases. Firstly, the indication of desire fulfillment (or its nega-
tion) can be subtle and expressed using indirect cues. More
commonly, multiple Evidence fragments can collectively
provide the cues needed to identify desire fulfillment. This
suggests a need to treat the entire text as a whole when iden-
tifying cues about desire fulfillment.

We begin by identifying the Desire-subject and the de-
sire expressed (using ‘focal-word’ described in Sec. 3) in
the Desire-expression. Thereafter, we design several seman-
tic features to model coreferent mentions of the Desire-
subject, actions taken (and respective semantic-roles of the
Desire-subject), and emotional state of the Desire-subject in
the Evidences. We enhance this representation using several
knowledge resources identifying word connotations (Feng et
al. 2013) and relations. Fig. 3 presents a visual representa-
tion of this process and Sec. 3 presents further details.

Based on these features, extracted from the collection of
all Evidences instead of individual Evidence fragments, we
train supervised binary classifiers (Unstructured models).

2.3 Latent Structure Narrative Model (LSNM)

The Unstructured Model described above captures nuanced
indications of desire-fulfillment, by associating the Desire-
subject with actions, events and mental states. However, it
ignores the narrative structure as it fails to model the ‘flow
of events’ depicted in the transition between the Evidences.

Our principal hypothesis is that the input text presents a
story. The events in the story describe the evolving attempts
of the story’s main character (the Desire-subject) to fulfill its
desire. Therefore, it is essential to understand the flow of the
story to make better judgments about its outcome.

We propose to model the evolution of the narrative us-
ing latent variables. We associate a latent state (denoted hj),
with each Evidence fragment (denoted ej). The latent states
take discrete values (out of H possible values, where H is
a parameter to the model), which abstractly represent vari-
ous degrees of optimism or pessimism with respect to ful-
fillment, f of the desire expressed in the Desire-expression,
d. These latent states are arranged sequentially, in the order
of occurrence of the corresponding Evidence fragments, and
hence capture the evolution of the story (see Fig. 2).

The linear process assumed by our model can be sum-
marized as: The model starts by predicting the latent state,
h0, based on the first Evidence, e0. Thereafter, depending on
the current latent state, and the content of the following Evi-
dence fragment, the model transitions to another latent state.
This process is repeated until all the Evidence fragments are

associated with a latent state. We formulate the transition be-
tween narrative states as sequence prediction. We associate a
set of Content features with each latent state, and Evolution
features with the transitions between states.

Note that the desire fulfillment status, f , is viewed as
an outcome of this inference process and is modeled as
the last step of this chain using a discriminative classifier
which makes its prediction based on the final latent state
and a Structure-independent feature set, φ(d). This feature
set can be handcrafted to include information that could not
be modeled by the latent states, such as long-range depen-
dencies, and other cumulative features based on the Desire-
expression, d, and the Evidence fragments, ejs.

We quantify these predictions using a linear model which
depends on the various features, φ, and corresponding
weights, w. Using the Viterbi algorithm we can compute the
score associated with the optimal state sequence, for a given
input story as:

score = max
h

[w · φ(e, d, f,h)] (1)

Algorithm 1 Training algorithm for LSNM
1: Input: Labeled set {(d, e, f)i ∀i ∈ {1 . . . D}}; and T :

number of iterations
2: Output: Weights w
3: Initialization: Initialize w randomly
4: for t : 1 to T do
5: ĥi = argmaxhi

[wt−1 · φ(ei, di, f,hi)] such that
f = fi∀i ∈ {1 . . . D}

6: wt = StructuredPerceptron({(d, e, ĥ, f)i})
7: end for

Learning and Inference During training, we maximize
the cumulative scores of all data instances using an iterative
process (Alg. 1). Each iteration of this algorithm consists of
two steps. In the first step, for every instance, it uses Viterbi
algorithm (and weights from previous iteration, wt−1) to
find the highest scoring latent state sequence, h, that agrees
with the provided label (the fulfillment state), f . In the fol-
lowing step, it uses the state sequence determined above to
get refined weights for the tth iteration, wt, using struc-
tured perceptron (Collins 2002). The algorithm is similar to
an EM algorithm with ‘hard’ assignments albeit with a dif-
ferent objective. While testing, we use the learned weights
and Viterbi decoding to compute the fulfillment state and the
best scoring state sequence. Our approach is related to latent
structured perceptron though we only use the last state (and
structure-independent features) for prediction.

3 Features

We now describe our features and how they are used by the
models. Table 2 defines our features and Fig. 3 describes
their extraction for an example. They capture different se-
mantic aspects of the desire-expression and evidences, such
as entities, their actions and connotations, and their emo-
tive states using lexical resources like Connotation Lexi-
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Feature Type Id Definition

Entailment F1 TEPrediction: Binary prediction of the Textual Entailment model (Stern and Dagan 2012).
Discourse F2,

F3
ButPresent, SoPresent: Binary features indicating if a ‘but’ or ‘so’ (respectively) followed the Desire-verb
(‘wanted to’, ‘wished to’ etc.) in the Desire-expression.

Focal Word F4,
F5,
F6

focal count, focal syn and focal ant count: Count of occurrences of the focal word(s), their WordNet (Miller
1995) synonyms and antonyms (respectively) in the Evidence. Occurrences of synonyms or antonyms were
identified only when they had the same POS tag as the focal word(s).

F7 focal+syn count: Sum of F4 and F5
F8 focal lemm count: Count of occurrences of lemmatized forms of the focal word(s) in the Evidence.

Desire-sub. mention F9 sub count: Count of all mentions (direct and co-referent) of the Desire-subject in the Evidence.
Emotional State F10,

F11
+adj, -adj count: Counts of occurrences of ‘positive’ and ‘negative’ adjectives (respectively) modifying
the direct and co-referent mentions of the Desire-subject in the Evidence.

Action F12,
F13

+Agent, -Agent count: Number of times the connotation of verbs appearing in the Evidence agreed with
and disagreed with (respectively) that of the intended action.

F14,
F15

+Patient, -Patient count: Count of occurrences of ‘positive’ and ‘negative’ verbs (respectively) in the
Evidence which had the Desire-subject as the patient.

Sustenance F16,
F17

isConforming, isDissenting: Binary features indicating if the Evidence starts with a conforming or dis-
senting phrase (respectively). See Table 3 for example phrases.

Table 2: Feature definitions (Sec. 3). F1-F3 are extracted for each example while F4-F17 are extracted for each evidence.

Figure 3: Framework for feature extraction for an example.
Ei refers to the ith evidence out of a total of N evidences.

Figure 4: Artificial example indicating feature utility. The
Desire-subject mentions are marked in blue, actions in bold
and emotions in italics. Discourse feature is underlined.

con (Feng et al. 2013), WordNet and our lexicon of con-
forming and dissenting phrases. Before extracting features,
we pre-processed the text 2 and extracted all adjectives and
verbs (with their negation statuses and connotations) as-
sociated with the Desire-subject using dependency-parsing
based rules.
1. Entailment (F1): This feature simply incorporates the
output of the Textual Entailment model.
2. Discourse (F2-F3): These features aim to identify in-
dications of obstacles or progress of desire fulfillment in

2We obtained POS tags, dependency parses, and resolved co-
references using Stanford CoreNLP (Manning et al. 2014).

the Desire-expression itself, based on discourse connectives.
E.g. ‘so’ (underlined) in the Desire-expression in Fig. 4 in-
dicates progress of desire fulfillment.
3. Focal words (F4-F8): These features identify the word(s)
most closely related to the desire, and look for their presence
in the Evidences. We define a focal word as the clausal com-
plement of the Desire-verb (‘wanted to’, ‘hoped to’, ‘wished
to’). If the clausal complement is a verb, the focal word is its
past tense form. e.g., the focal word in the Desire expression
in Fig. 4 is ‘helped’. A focal word is not simply the verb
following the Desire-verb: e.g. in the Desire-expression in
Fig. 1, the causal complement of ‘wished’ is ‘buried’. We
then define features counting occurrences of the identified
focal words and their WordNet synonyms and antonyms in
each of the Evidences.
4. Desire-subject mentions (F9): This feature looks for
mentions of Desire-subject in the Evidences assuming that
a lack of mentions of the Subject might indicate absence of
instances of their taking actions needed to fulfill the desire.
5. Emotional State (F10-F11): Signals about the fulfillment
status could also emanate from the emotional state of the
Subject. A happy or content Desire-subject can be indicative
of a fulfilled desire (e.g. in Evidence e3 in Fig. 4), and vice
versa. We quantify the emotional state of the Subject(s) us-
ing connotations of the adjectives modifying their mentions.
6. Action features (F12-F15): These features analyze the
intended action and the actions taken by various entities.
We first identify the intended action - the verb immedi-
ately following the Desire-verb in the Desire Expression.
e.g., in Fig. 4 the intended action is to ‘help’. Thereafter,
we design features that capture the connotative agreement
between the intended action and the actions taken by the
Desire-subject(s) in the Evidences. We also include features
that describe connotations of actions (verbs) affecting the
Desire-subject(s). E.g. in e1 of Fig. 4, the action by the
Desire-subject (marked in blue), ‘offered’, is in connotative
agreement with the intended action, ‘help’ (both have posi-
tive connotations according to Feng et al. (2013)). Also, the
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Type Phrases
Conforming in other words, for example, consequently
Dissenting although, but, by contrast, conversely

Table 3: Examples of conforming and dissenting phrases.

actions affecting the subject (‘thanked’, ‘gifted’) have posi-
tive connotations indicating desire fulfillment.
7. Sustenance Features (F16-F17): LSNM uses a chain of
latent states to abstractly represent the content of the Evi-
dences with respect to Desire fulfillment Status. At any point
in the chain, the model has an expectation of the fulfill-
ment status. The sustenance features indicate if the expec-
tation should intensify, remain the same or be reversed by
the incoming Evidence fragment. This is achieved by design-
ing features indicating if the Evidence fragment starts with
a ‘conforming’ or a ‘dissenting’ phrase. E.g. e3 in Fig. 4
starts with a conforming phrase, ‘Overall’, indicating that
the fulfillment status expectation (positive in e2) should not
change. Table 3 presents some examples of the two cate-
gories. These phrases were chosen using various discourse
senses mentioned in Prasad et al. (2007). The complete list
is available on the first author’s webpage.

3.1 Unstructured Models

For the unstructured models, we directly used the Entailment
and Discourse features (F1 to F3 in Table 2). For features F4
to F15, we summed their values across all Evidences of an
instance. This ensured a constant size of the feature set in
spite of variable number of Evidence fragments per instance.

3.2 Latent Structure Narrative Model

Our Structured model requires three types of features: (a)
Content features that help the model assign latent states to
Evidence fragments based on their content, (b) Evolution
features that help in modeling the evolution of the story ex-
pressed by the Evidence fragments (c) Structure Indepen-
dent features used while making the final prediction.
Content features: These features depend on the latent state
of the model, hj , and the content of the corresponding Evi-
dence, ej (expressed using features F4 to F15 in Table 2).

1. φ(hj , ej) = α if the current state is hj ; 0 otherwise where
α ∈ F4 to F15

Evolution features: These features depend on the current
and previous latent states, hj and hj−1 and/or the current
Evidence fragment, ej :
1. φ(hj−1, hj) = 1 if previous state is hj−1 and current state

is hj ; 0 otherwise.
2. φ(hj−1, hj , ej) = α if previous state is hj−1, current state

is hj ; 0 otherwise where α ∈ F16 and F17
3. φ(h0) = 1 if start state is h0; 0 otherwise.
Structure Independent features φ(d): This feature set is
exactly same as that used by the Unstructured models.

4 Datasets

We have used two manually annotated datasets for our ex-
periments: MCTest and SimpleWiki. Both the datasets are
available on the first author’s webpage.

Model
MCTest SimpleWiki

P R F P R F

BoW 41.2 50.0 45.2 28.2 20.0 23.4
TE 76.1 45.4 56.9 37.0 8.9 14.3
LR 70.6 63.2 66.7 50.0 8.9 15.2
DT 71.4 52.6 60.6 42.9 5.4 9.5

LSNM 69.6 84.2 74.4 37.5 21.3 27.1

Table 4: Test set performances. Our structured model,
LSNM, outperforms the unstructured, TE and BoW models.

Collection and annotation: The MCTest data originated
from the Machine Comprehension Test dataset (Richardson,
Burges, and Renshaw 2013) which contained of a set of 660
stories and associated questions. The vocabulary and con-
cepts are limited to the extent that the stories would be un-
derstandable by 7 year olds. We discard the questions and
only consider the free text of the stories.

The SimpleWiki dataset was created from the textual con-
tent of an October, 2014 3 dump of the Simple English
Wikipedia (after discarding all lists, tables and titles). We
chose Simple English Wikipedia over Wikipedia to limit the
complexity of the vocabulary required to comprehend the
content, thus making the task simpler and manageable.

The Desire-subject(s) and the Desire Fulfillment Status
were manually annotated on CrowdFlower 4. Each instance
was annotated by 3 or more annotators as determined by
CrowdFlower using expected annotation accuracy. Annota-
tors were also required to demonstrate proficiency on an ini-
tial set of 5 test instances. To avoid annotator fatigue, each
annotator was presented only 3 instances per session. The
mean CrowdFlower confidence (inter-annotator agreement
weighted by their trust scores) of the annotations was 0.92.

Training and Test Sets: The SimpleWiki and MCTest
data consisted of about 1000 and 175 instances, 20% of
which was held-out as test sets. In the test sets of Sim-
pleWiki and MCTest, 28% and 56% of the data belonged
to the positive (desire fulfilled) class respectively.

5 Empiricial Evaluation

Table 4 compares the test set performances using F1 score
of the positive (desire fulfilled) class for various models.
We included a simple Logistic Regression baseline based on
Bag-of-Words (BoW) features. For training the unstructured
model, we experimented with different algorithms and show
the results for the best two models: LR (Logistic Regres-
sion) and DT (Decision Trees). We report median perfor-
mance values over 100 random restarts of our model since
its performance depends on the initialization of the weights.
Also, the number of latent states, H , was set to be 2 and 15
for the MCTest and SimpleWiki datasets respectively using
cross-validation. The difference in optimal H values (and
F1 scores) for the two datasets could be attributed to the dif-
ference in complexity of the language and concepts used in

3http://dumps.wikimedia.org/simplewiki/
4http://www.crowdflower.com/
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Feature F9 F13 F16 F17 F10
h=1 0.682 0.502 0.041 0.024 0.009

Overall 0.535 0.365 0.059 0.017 0.021
h=2 0.201 0.054 0.098 0.000 0.049

Table 5: Mean feature values for the overall dataset and the
two latent states learned by LSNM on the MCTest dataset.

Figure 5: Sample Evidences from the two latent states that
our model learned on the MCTest data.

them. MCTest consists of children stories, focusing on sim-
ple concepts and goals (e.g., ‘wanting to go skating’) and
their fulfillment is indicated explicitly, in simple and focused
language (e.g., ‘They went to the skating rink together.’). On
the other hand, SimpleWiki describes real-life desires (e.g.,
‘wanting to conquer a country’), which require sophisticated
planning over multiple steps, which may provide only indi-
rect indication of the desire’s fulfillment. This resulted in a
harder classification problem, and increased the complexity
of inference over several latent states.

The table shows that the unstructured models perform bet-
ter than the TE model emphasizing the need for simulta-
neous analysis all of the Evidence text. Also, LSNM out-
performs the unstructured models indicating the benefit of
modeling the narrative structure of the Evidences.

5.1 Analysis of Latent States

We now delve into the contents of the latent states learned by
LSNM and delineate their principal characteristics. Table 5
shows the mean values of some of the features for the two
latent states learned by LSNM on the MCTest dataset. The
table also shows the mean values for the overall dataset. We
can see that Evidences assigned latent state=1 (h=1) were
correlated with high values of features F9, F13 and F17,
while those assigned h=2 had high values for features F16
and F10. This can also be observed in Fig. 5 which pro-
vides sample Evidences from the MCTest dataset assigned
to the two latent states. We can see that the Evidences as-
signed h=1 started with dissenting words like Instead (high
value for F17) while those assigned h=2 started with con-
senting words like overall, finally (high value for F16). Also.
in general Evidences with h=1 had greater number of men-
tions of the Desire-subject (marked in bold fonts) indicating
high value for F9. Lastly, Evidences assigned h=2 also ex-
hibit positive emotional state of the Desire-subject through
words like excited (high value for F10).

6 Related Work

Expressions of desires and wishes have attracted psy-
cholinguists (Shatz, Wellman, and Silber 1983) and lin-
guists (Barak, Fazly, and Stevenson 2013) alike. Goldberg
et al. (2009) detect wishes from text. Analyzing desires adds
a new dimension to more general tasks like opinion min-
ing (Pang and Lee 2007) where the manufacturers and ad-
vertisers want to discover users’ desires or needs from on-
line reviews etc. Another use-case would be in resolving is-
sues for community forum users. For instance, the number
of posts in Massive Open Online Courses forums often over-
whelm the instructional staff (Chaturvedi, Goldwasser, and
Daumé III 2014). Identifying posts containing unresolved
issues can help focus the efforts of the instructional staff.

Our problem is related to Machine Comprehen-
sion (Richardson, Burges, and Renshaw 2013). However,
unlike most systems, designed for understanding large tex-
tual collections (macro-reading) (Etzioni, Banko, and Ca-
farella 2006; Carlson et al. 2010), this work focuses on
Micro-reading, understanding short pieces of text. Berant et
al. (2014) also address micro-reading but with a different
goal – answering domain-specific questions.

Our task is also related to Recognizing Textual Entailment
(RTE) (Dagan et al. 2010; Dagan, Glickman, and Magnini
2006). However, we show that solving it additionally re-
quires modeling the narrative structure of the text. There
have been several attempts at modeling narrative structures
which include narrative schemas (Chambers and Jurafsky
2009; 2008), plot units (Lehnert 1981) and Story Intention
Graphs (Elson 2012b). Previous work has also studied con-
notations and word effects on narrative modeling (Feng et
al. 2013; Goyal, Riloff, and Daumé III 2010). Our structured
model and features, share similar motivation as these meth-
ods, while focusing on a specific classification task.

The AI task of recognizing plans of characters in a nar-
rative viewing them as intentional agents (Mueller 2007;
Wilensky 1978; Mani 2012) is also relevant. However, the
focused nature of our task lets us employ latent variables to
model the transitions between expectations and plans.

7 Conclusion

In this paper we have addressed the novel task of analyz-
ing small pieces of text containing expression of a desire to
identify if the desire was fulfilled in the given text. For solv-
ing this problem, we adopt three approaches based on dif-
ferent assumptions. We first use a textual entailment model
to analyze small fragments of texts independently. Our sec-
ond approach, an unstructured model, assumes that it is not
sufficient to analyze different pieces of text independently.
Instead, the complete text should be analyzed as a whole to
identify desire fulfillment. Our third approach, a structured
model, is based on the hypothesis that identifying desire ful-
fillment requires an understanding of the narrative structure
and models the same using latent variables. We compare per-
formances of these models on two different datasets that we
have annotated and release. Our experiments establish the
need to incorporate the narrative structure of the storyline
offered by the text to better understand desire fulfillment.
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