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Abstract

Traditionally, solving the adjoint equation for unsteady problems involves solving a large, structured linear system.
This paper presents a variation on this technique and uses a Monte Carlo linear solver. The Monte Carlo solver yields
a forward-time algorithm for solving unsteady adjoint equations. When applied to computing the adjoint associated with
Burgers’ equation, the Monte Carlo approach is faster for a large class of problems while preserving sufficient accuracy.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Adjoint based methods are widely used tools for analyzing and controlling the behavior of many systems.
In these methods, one models a system as an algebraic or differential equation, then the adjoint equation of the
original problem is derived, and finally both equations are solve. From the solution of the adjoint equation,
the derivative of an objective function is calculated with respect to a set of control parameters. Often this pro-
cedure is called backward algorithmic (automatic) differentiation [15]. Adjoint based methods solve a large
class of optimization problems, inverse problems and control problems [2,5,11,16,17,20].

Another important application of adjoint based methods is posterior error estimation. In this context, these
methods are often called duality based methods [12,13,18]. They are particularly useful when the original
problem is a discretized partial differential equation. When the numerical error caused by the discretization
is high, we can apply automatic adaptive mesh refinement [19] based on the adjoint solution to reduce the
numerical error at a fixed computational cost.

Although adjoint based methods have a long history in computational sciences and engineering [3], comput-
ing the solution of an adjoint equation is difficult: when the original problem is a time dependent (unsteady)
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problem, solving its adjoint equation is a backward-time procedure and requires the full trajectory to be stored
in memory. The trajectory is formed by the solution of the original problem at all time steps, and is often too
large to store in memory. In [14], Griewank proposed a very interesting iterative checkpointing scheme called
revolve for dealing with this problem. In his scheme, storing the full trajectory is avoided by iteratively solving
the original problem. This idea made solving adjoint equations possible for larger unsteady problems. Since
then, a number of similar schemes have been proposed [4,28]. Nevertheless, all of these schemes are significantly
more expensive than solving the original problem in terms of both memory requirements and computational
time. As a result, if the original problem is very large in terms of the number of degrees of freedom, solving
the adjoint equation is still prohibitively expensive.

In this paper, we propose a new method for solving the adjoint equation for unsteady problems. Instead of
computing an exact solution, we use a Monte Carlo method to approximate the solution. This method samples
Markovian random walks in the space–time structure of the original problem and estimates quantities of inter-
est from these samples. The method builds upon Monte Carlo linear solvers for general linear systems
[10,7,27,22] and some related works [23]. We found that the Monte Carlo method is particularly suitable
for solving unsteady adjoint equations. In contrast to traditional methods used for solving the adjoint equa-
tion, this method is a forward-time procedure. Amazingly, neither storing the trajectory nor iteratively solving
the original problem is required. Therefore, the memory requirement and computational time of our Monte
Carlo method are a constant multiples of the original problem (as opposed to exact solution methods where
these requirements are log m times larger, where m is the number of time steps).

In the remainder of this paper, Section 2 introduces the unsteady adjoint equation. Section 3 describes the
traditional exact solution methods. In Section 4, we introduce our Monte Carlo method for solving adjoint
equations. Because many large problems arise from discretized partial differential equations, we describe
our method specifically for this case. The error and variance of this method is analyzed in Section 5. In Sec-
tions 6 and 7, we show the results of several numerical experiments with Burgers’ equation.

2. The unsteady adjoint equation

Consider a state vector u controlled by a control vector g via constraint or governing equation R. The
objective function F is defined on the space of u and g. We denote this by
F ðu; gÞ
Rðu; gÞ ¼ 0;

�
ð1Þ
where F is a scalar function and R is a vector function with dimðRÞ ¼ dimðuÞ. In the context of an adjoint
equation, system (1) is often referred as the original problem.

Many engineering applications fit this problem type. Generally, R is an algebraic or differential equation
modeling a physical system, u is a vector describing the state of the system and g is a vector composed of a
set of control parameters. In the context of computational fluid dynamics, most problems concern objects
in a flow field. In these problems, the constraint R, the Navier–Stokes equation, controls the flow field u.
We are often interested in objective functions such as the lift, drag and other forces, which are possible can-
didates for F . The control parameters might be the geometry of the object itself or perturbations to the bound-
ary conditions.

The adjoint equation of the system (1) is defined as the linear system
oR

ou

� �T

w ¼ oF

ou

� �T

; ð2Þ
where ðoR
ou Þ

T is the constraint Jacobian and w is the adjoint solution.
The adjoint equation is widely used in analyzing and controlling the system (1). For example, many opti-

mization problems, inverse problems and control problems require computing the derivative of the objective
function with respect to the control parameters of the original problem (1),
dFðuðgÞ; gÞ
dg

¼ oF

og
þ oF

ou
duðgÞ

dg
;
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where uðgÞ is an implicit function defined by R and its derivative duðgÞ
dg can be obtained from
0 ¼ dRðuðgÞ; gÞ
dg

¼ oR

og
þ oR

ou
duðgÞ

dg
:

Therefore, with some manipulation of the adjoint equation (2), we get
dF ðuðgÞ; gÞ
dg

¼ oF

og
� oF

ou
oR

og

� ��1
oR

og
¼ oF

og
� wT oR

og
; ð3Þ
which is a linear function of the adjoint solution. In this paper, we focus on the case when the original problem
(1) is an unsteady problem; e.g. when the constraint R is a time dependent partial differential equation. In this
case, we can order the elements of the state vector and the constraint by time steps, i.e.
u ¼ ðuð1Þ; . . . ; uðmÞÞT; R ¼ ðRð1Þ; . . . ;RðmÞÞT;

where m is the number of time steps, uðiÞ and RðiÞ are the state vector and the constraint at time step i. With this
ordering, the matrix ðoR

ou Þ
T in the unsteady adjoint equation (2) is well structured. This is because for unsteady

problems, RðiÞ only depends on the part of u up to time step i. In other words, a block of the constraint Jaco-
bian J ij 6¼ 0 only if j 6 i. As a result, the Jacobian matrix oR

ou is in block-lower-triangular form.
oR

ou
¼

J 11

J 21 J 22

. .
. . .

. . .
.

J m1
. .

.
J mm�1 J mm

2
666664

3
777775; ð4Þ
where each block describes the spatial dependence of the constraint.
J ts ¼
oRðtÞ

ouðsÞ

� �
:

The adjoint equation (2) now becomes
J T
11 J T

21
. .

.
J T

m1

J T
22

. .
. . .

.

. .
. . .

.

J T
mm

2
66666664

3
77777775

wð1Þ

wð2Þ

..

.

wðmÞ

2
66664

3
77775 ¼

bð1Þ

bð2Þ

..

.

bðmÞ

2
66664

3
77775; ð5Þ
where
bðtÞ ¼ oF

ouðtÞ

� �T

:

In this representation, the adjoint solution w is split into m parts. We call wðtÞ the adjoint solution at time step
t.

Moreover, if R comes from a discretized unsteady differential equations, the Jacobian matrix is also block-
banded. In this case, RðtÞ only depends on the part of u that is in a neighborhood of time step t, and J ts 6¼ 0
only if s is in a neighborhood of t. Hence the Jacobian matrix has a block-bandwidth that depends on the
temporal discretization scheme. For example, if the original problem uses a one-step scheme, RðtÞ depends
only on uðtÞ and uðt�1Þ. In this case, the block-bandwidth is two. If it is a two-step scheme, then the block-band-
width is three, etc. In particular, if the differential equation is discretized using an explicit scheme, then
RðtÞ ¼ uðtÞ � f ðuðt�1Þ; . . .Þ, and the diagonal blocks of the Jacobian are identity matrices
J tt ¼
oRðtÞ

ouðtÞ

� �
¼ I :
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Note that in this case, the entire Jacobian matrix is lower-triangular instead of just block-lower-triangular.
In addition to the fixed block-bandwidth, each block of the Jacobian matrix is sparse when the original

problem is a discretized partial differential equation. This fact follows because in most spatial discretization
schemes, the constraint R at a mesh-point only depends on its neighboring mesh-points. Denote
uðtÞ ¼ ðuðtÞ1 ; . . . ; uðtÞn Þ
T
; RðtÞ ¼ ðRðtÞ1 ; . . . ;RðtÞn Þ

T
;

where R
ðtÞ
i and uðtÞi are the constraint residue and state variable at mesh-point i and time step t. Then

oR
ðtÞ
i

ouðsÞj

is
non-zero only if j is a neighbor mesh-point of i. Therefore, each block of the constraint Jacobian
J ts ¼

oR
ðtÞ
1

ouðsÞ
1

. . .
oR
ðtÞ
1

ouðsÞn

..

. ..
.

oR
ðtÞ
n

ouðsÞ
1

. . . oR
ðtÞ
n

ouðsÞn

2
6666664

3
7777775
is an n by n sparse matrix, where n is the number of grid points in space.
Thus far, we have studied the adjoint as the solution of a linear system – a well structured sparse system if

the original problem is a discretized PDE in space and time. One thing that distinguishes the unsteady adjoint
equation from other linear systems is its huge size. In an unsteady PDE, the size of the adjoint linear system is
N ¼ n � m. Where n is proportional to the number of spatial mesh points (up to billions) and m is the number
of time steps (tens of thousands). For many recently attempted computational fluid dynamic problems, the
size of the adjoint equation is tens of trillions. As a result, solving adjoint equations requires different strategies
and techniques than solving general linear systems.

One direct consequence of such a huge size is the unavailability of required memory to store the entire
linear system. Therefore, it is necessary to use a piece by piece approach to solve the adjoint equation. In
other words, the solution of the adjoint equation must be computed one piece at a time, based on the
information of the adjoint equation given one piece at a time. For this reason, the matrix ordering is a
key consideration in developing an algorithm for solving unsteady adjoint equations. Another consider-
ation is how the adjoint solution will be used. Often applications only need part of the solution, or a linear
function of the solution. Algorithms that directly compute these final quantities without commuting the full
solution should be computationally economical. Note that in this case, we generalize the term ‘‘solving
adjoint equation” to computing linear functions of the adjoint solution without computing the full
solution.

3. Exact solution of adjoint equations

The structure of the adjoint equation, as shown in Eq. (5), makes the piece by piece strategy possible. One
approach is to utilize its block-lower-triangular structure and solve using block-back-substitution. In the
block-back-substitution, we first solve for wðmÞ, then solve for wðm�1Þ, and finally solve for wð1Þ. This approach
for solving the exact solution of unsteady adjoint equation is consistent with the algorithm of backward auto-
matic differentiation [15].

This way of solving the unsteady adjoint equation is a time-reverse algorithm. When solving (5) using
block-back-substitution, the first step is to solve for wðmÞ using block J T

mm of the matrix and bðmÞ of the right
hand side. Since the J T

mm and bðmÞ depend on uðmÞ, the first step of solving the adjoint equation requires the solu-
tion of the original problem at the last time step. As the block backward substitution continues, the solution of
the original problem is required in a time-reverse order. As a result, for this simple method to work efficiently,
the solution of the original problem at all time steps, namely the full trajectory, must be stored in memory.

However, for even moderately large problems, the memory required to store the full trajectory is too large.
One solution to this problem is to use a checkpointing scheme [14,15,28]. These methods are based on the idea
of ‘‘divide and conquer”. Although the whole trajectory cannot be stored, we can speed up the computation by
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restarting from a set of checkpoints. Additional forward iterations of the original problem move the solution
between checkpoints [4].

In 1992, Griewank [14] first proposed the scheme revolve which uses this idea to achieves optimal logarith-
mic behavior in terms of both computational time and memory requirement. Revolve and many other check-
pointing schemes proposed since then use Oðlog mÞ times the memory and computational time of the original
problem. Using these schemes, the cost of solving the adjoint equation is only a relatively small factor times
the cost of solving the original problem, even if the number of time steps is large.

4. Monte Carlo method for adjoint equation

In this section, we propose a Monte Carlo method for solving the unsteady adjoint equation. Both the
memory requirement and computational time of this scheme are Oð1Þ times that of the original problem, inde-
pendent of the number of time steps of the original problem. As demonstrated in Section 7, our Monte Carlo
method has better scaling efficiency than the optimal exact solution method.

Monte Carlo methods have already been shown to be efficient for solving many systems of linear equations,
especially when the system is very large and the required precision is relatively low [27,7,1]. These methods
craft statistical estimators whose mathematical expectation is a component of the solution vector. Random
sampling of these estimators yields approximate solutions [27,24,29]. The main ideas of these methods were
proposed by von Neumann and Ulam and are extended by Forsythe and Liebler [10].

Using Monte Carlo methods has several known advantages for solving linear equations. First, the compu-
tational cost of obtaining one component of the solution vector using these methods is independent of the size
of the linear system [27]. More precisely, it is OðqlÞ, where q is the number of random walks and l is their
length. Both q and l are independent of the size of the linear system, and can be controlled to obtain any
desired precision. Also, Monte Carlo methods are known for their parallel nature. It is often very easy to par-
allelize them in a coarse grained manner. Even early in 1949, Metropolisand and Ulam [21] noticed the par-
allelism inherent in this method.

In addition to these advantages, Monte Carlo methods are particularly suitable for solving the unsteady
adjoint equation for two reasons. One is that the Monte Carlo method used in this paper to solve the unsteady
adjoint equation is a forward-time procedure. In this procedure, we only use the information necessary to
advance to the next time step, which enables us to solve the adjoint equation at the same time as we solve
the original equation. Thus we do not need to store full trajectory, neither do we need to iteratively resolve
the original problem. This is one great advantage over the traditional method. Secondly, we can directly com-
pute the inner product of the solution w with a given vector c, without computing w. And the cost of comput-
ing cTw using this method is only OðqlÞ, which is the same as the cost of computing one component of the
solution vector. In computing dF

dg using Eq. (3) we can take advantage of this by representing wT oR
og as the inner

product of w with dimðgÞ given vectors
wT oR

og
¼ wT oR

og1

;wT oR

og2

; . . . ;wT oR

ogn

� �
; where n ¼ dimðgÞ
When the dimension of the control vector dimðgÞ is much smaller than the dimension of the state vector
dimðuÞ, we can save a lot of computational cost by directly computing wT oR

og . This is useful in applications such
as wall control for drag reduction [5,2].

In the remainder of this section, Section 4.1 introduces the (preconditioned) Neumann series representation
of the solution. In Section 4.2, we construct the Markovian random walk and the D estimator. We prove that
the D estimator is an unbiased estimator to the Neumann series representation of the solution. These discus-
sions are valid for general linear systems and are presented in more detail in [22]. Section 4.3 describes our
Monte Carlo algorithm designed specifically for solving unsteady adjoint equations using the D estimator.
Section 5.2 discusses the choice of transition probabilities of the Markovian random walk based on the theory
of minimum probable error [6]. Section 5.4 discusses choice of preconditioner used in Neumann series repre-
sentation for our Monte Carlo method. Finally, in Section 6 we fully specify our Monte Carlo algorithm used
for Burgers’ equation.
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4.1. Neumann series representation

To simplify notation, let
�A ¼ oR

ou

� �T

and �b ¼ oF

ou

� �T
in adjoint equation (2). The adjoint equation simplifies to
�Aw ¼ �b:
We multiply both sides by a block-diagonal preconditioner matrix P, that is easy to invert and preserves the
block-upper-triangular structure of the Jacobian �A. Denote
A ¼ I � P �A and b ¼ P�b: ð6Þ

We note that A has the same block-upper-triangular and block-banded structure of �A. Now the adjoint equa-
tion becomes
w ¼ Awþ b: ð7Þ

The solution w to the equation above can be expanded in a Neumann series:
w ¼ bþ Abþ A2bþ A3bþ � � � : ð8Þ

The Neumann series converges and (8) is valid if and only if the spectral radius of A is less than one. When

it converges, the Neumann series (8) is the solution of the adjoint equation (7). Note that the inner product of
w with a given vector c can be represented as
cTw ¼ cTðbþ Abþ A2bþ A3bþ � � �Þ ¼
X1
k¼0

cTAkb ð9Þ
The Monte Carlo method in this paper is a random sampling of this infinite series by a Markovian random
walk.

4.2. Markovian random walk and D estimator

For a given vector c, we use Markovian random walks to create random samples of an estimator D intro-
duced in (18) whose mathematical expectation are the inner product of the solution w with the given vector c,
i.e. EðDÞ ¼ cTw. In particular, when c ¼ ei, EðDÞ ¼ wTei ¼ wi, and we compute a component of the solution
vector. The Markovian random walks have a finite state space with size N þ 1, where N is the size of the
adjoint equation. If we label the states as 1; 2; . . . ;N þ 1, each of the first N states correspond to a component
of the adjoint equation. The special state, a final exit state, gets label N þ 1. The random walks begin from a
birth probability r, and follow a transition probability p, where pði; jÞ is the transition probability from state i

to state j. r and p must satisfy the following conditions [22]:
ð1Þ 0 6 rðjÞ; pði; jÞ 6 1 for all i; j; ð10Þ

ð2Þ
XNþ1

j¼1

pði; jÞ ¼ 1 for all i; ð11Þ

ð3Þ
XN

i¼1

rðiÞ ¼ 1; ð12Þ

ð4Þ pðN þ 1;N þ 1Þ ¼ 1; ð13Þ
ð5Þ pði; jÞ 6¼ 0() Aij 6¼ 0 and rðiÞ 6¼ 0() ci 6¼ 0; ð14Þ
where Aij is the i; jth entry of the matrix A, and ci is the ith component of the vector c In the four conditions
above, the first three define r and p as birth and transition probabilities. The fourth condition defines the state
N þ 1 as the final exit state. We note that the probability that the Markovian random walk transits from state j
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to the final exit state is pðj;N þ 1Þ ¼ 1�
PN

i¼1pði; jÞ. Once it reaches the final exit state, it always stays there
with probability 1. When this happens, we say that the random walk was absorbed in state j. The last condi-
tion means that the random walks always stay tied to the matrix, which allows us to go from the random walk
model described by p and a to the Neumann series (9) that involves Aij and ci.

Now we will relate the random walk to the components of the matrix A. Indeed, let the Markov chain be
a ¼ a0; a1; . . . ; an; . . .ð Þ

and
i ¼ ði0; i1; . . . ; il;N þ 1;N þ 1; . . .Þ; 1 6 ij 6 N
be a typical path of the Markov chain that begins at state i0 and is absorbed at state il. The probability that the
Markov chain takes this path is
Pða ¼ iÞ ¼ rði0Þpði0i1Þpði1i2Þ � � � pðil�1IlÞpðil;N þ 1Þ:

We define
wij ¼
Aij

pði;jÞ if pði; jÞ 6¼ 0

0 if pði; jÞ ¼ 0

(

and as in [22], we define the weight W k as a random variables on the space of random walks a:
W kðaÞ ¼
ca0

rða0Þ
Yk

j¼1

wajaj�1
; 0 6 k 6 l ð15Þ
The following proposition gives us insight on why we define the weight in this way.

Proposition 4.1. Assume conditions (10)–(14) are satisfied. Denote ð�Þj as the jth component of a vector, and ð�Þij
as the i; j entry of a matrix. Then
EðW kIfak¼jgÞ ¼ ðcTAkÞj ð16Þ
In particular, if c ¼ ei,
EðW kIfak¼jgÞ ¼ ðAkÞij ð17Þ
Proof 4.2. Since W 0 ¼
ca0

rða0Þ
and Pða0 ¼ jÞ ¼ rðjÞ,
E½W 0Ifa0¼jg� ¼ Pða0 ¼ jÞ cj

rðjÞ ¼ cj
So (16) holds for k ¼ 0. Assume it holds for certain k, we prove it holds for k þ 1.
E½W kþ1Ifakþ1¼jg� ¼ E
X

i

ðIfak¼i;akþ1¼jgW kwði; jÞÞ
" #

¼
X

i

E½Ifak¼i;akþ1¼jgW k�
Aij

pði; jÞ
By using the tower property of conditional expectations, ‘‘taking out what is known” and applying Markov
property, we have
E½Ifak¼i;akþ1¼jgW k� ¼ E½Ifak¼igW k�pði; jÞ:
Therefore, by the induction hypothesis,
E½W kþ1Ifakþ1¼jg� ¼
X

i

E½Ifak¼igW k�Aij ¼
X

i

ðcTAkÞiAij ¼ ðcTAkþ1Þj:
Thus we conclude that (16) holds true for all k P 0. (17) follows trivially. h

This tells us that W kIfak¼jg is in fact a randomly sparsified version of vector cTAk. The randomly sparsified
vector contains only one non-zero entry. In every step of the random walk, W kIfak¼jg is multiplied by A, and
further sparsified. We can think of it as the sparsified version of cTAk is multiplied by A, by which we get an
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approximation of cTAkþ1, and then sparsify it. Because the Neumann series (9) gives us a relationship between
cTw and cTAk, we can use this relationship to build an estimator for cTw in terms of W kIfak¼jg, which is a
randomly sparsified version of cTAk.

Definition 4.3. Define the D estimator by
DðaÞ ¼
X1
k¼0

W kðaÞbak ð18Þ
where a ¼ ða0; a1; . . .Þ is the random walk; ðb1; . . . ; bNÞT is the right hand side of equation (7) and bNþ1 ¼ 0.

Now we prove the main theorem that supports the Monte Carlo method.

Theorem 4.4. Assume that the Neumann series (8) converges for jAj, and conditions (10)–(14) are satisfied. Then

the expectation of the D estimator
EðDðaÞÞ ¼ cTw
where w is the solution of Eq. (7).

Proof 4.5. Since bak ¼
P

jIfak¼jg, the expectation of the D estimator can be represented as
E½D� ¼ E
X1
k¼0

W kbak

" #
¼ E

X1
k¼0

X
j

W kIfak¼jgbj

" #
¼
X1
k¼0

X
j

E W kIfak¼jg
� �

bj:
The condition that the Neumann series converges for jAj justifies the exchange of infinite sum and expectation
by dominated convergence theorem. It follows from Proposition 4.1 that
E½D� ¼
X1
k¼0

X
j

ðcTAkÞjbj ¼
X1
k¼0

cTAkb;
which is the Neumann series expansion (9). Thus we have
E½D� ¼ cTw; ð19Þ

i.e. D is an unbiased estimator of cTw. h

This theorem suggests that we can use Monte Carlo method based on the D estimator to approximate cTw
cTw � 1

q

Xq

p¼1

Dða½p�Þ;
where a½p�; 1 6 p 6 q are independent identically distributed random walks. And the following corollary is a
direct consequence of Theorem 4.4 and the strong law of large number.

Corollary 4.6. Under the conditions of Theorem 4.4, the estimated solution by the Monte Carlo method
1

q

Xq

p¼1

Dða½p�Þ ! cT/
almost surely as q!1.

This result justifies our Monte Carlo approach for solving adjoint equation by saying that as the number of
random walks increases, the solution of the Monte Carlo method asymptotically converges to the exact
solution.

4.3. Monte Carlo algorithm

In this section, we explain the Monte Carlo algorithm for solving the unsteady adjoint equation based on
the D estimator constructed in the last section.
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We note that condition (14) of the transition probability matrix guarantees that P has the same block-
upper-triangular and block-banded structure as matrix A. We remember that the components of u are ordered
by time steps. As a result, random walks defined by this transition probability matrix can only possibly walk to
later time steps (upper-diagonal blocks of P are non-zeros), or walk within the same time step (diagonal blocks
of P are non-zero), but never walk backwards to previous time steps (lower-diagonal blocks of P are always
zero). Therefore, the Markovian random walks only go forward in time. This makes the following forward-
time Monte Carlo algorithm possible.

In this algorithm, we generate q independent identically distributed random walks a½p�; 1 6 p 6 q. Each of
them has transition probabilities pði; jÞ and birth probabilities rðiÞ that satisfies the conditions (10)–(14). We
will discuss the choices for r and p in the next section. We denote ak½p� as the current position of random walk
a½p�, and we say that a random walk a½p� is at time step t if ak½p� is in the range of indices that represent time
step t. Let W ½p� denote W kða½p�Þ, the weight of random walk at current step. D½p� stores the accumulative sum
of the D estimator (18), which equals to DðaÞ after the random walk is absorbed.

(1) For each 1 6 p 6 q, choose a0½p� randomly by birth probability vector r, and initialize
W ½p� ¼ ca0½p�=rða0½p�Þ; D½p� ¼ W ½p�ba0½p�:
Then start from t ¼ 1, do step 2–4, until done with the last time step t ¼ m.
(2) Solve the original problem at time step t, which enables us to compute the corresponding blocks

of matrix A and p.
(3) For each random walk a½p� that is at time step t, choose its next state akþ1½p� randomly by

transition probabilities p. If akþ1½p� is not the final exit state, update
W ½p� ¼ W ½p�wak ½p�akþ1½p�; D½p� ¼ D½p� þ W ½p�bakþ1½p�:
If akþ1½p�0 is the final exit state, the random walk is absorbed and we freeze D½p�.
(4) Repeat step 3 until all random walks at time step t are either absorbed or left the time step. If t < m,

then let t ¼ t þ 1 and go to step 2.
(5) After done with the last time step m, all random walks are absorbed. Compute the sample mean

of the estimators 1
q

Pq
p¼1D½p�, which is our approximation to cTw.

It is clear that this is a forward-time algorithm in which we only need to store the current time steps of the
original problem and no iterations are needed. Further, it directly yields the inner product of the solution with
the given vector. Indeed, there is no difficulty with this algorithm to solve multiple linear functions of the solu-
tion vector at the same time. This property is useful in many adjoint based methods. For example, in comput-

ing dFðuðgÞ;gÞ
dg using formula (3), we can use the Monte Carlo method to directly compute wT oR

og , which is the

inner product of the adjoint solution w with oR
ogi
; i ¼ 1; . . . ; dimðgÞ. This can be directly obtained from the

algorithm described above. The cost of this algorithm is OðnqlÞ plus the cost of the original problem, where
n is the dimension of the control vector; q is the number of random walks for each evaluation of inner product
and l is the average length of the random walk, which is proportional to the number of time steps m of the
original problem. When the dimension of the control vector is much smaller than the mesh size, and the
required precision is relatively low (which allows us to choose a small q), the cost of solving the adjoint equa-
tion in this algorithm is a small overhead. This is particularly attractive especially compared to solving the
exact solution of the unsteady adjoint equation, which is significantly more costly in computation time and
storage than the original problem.

5. Analysis of the Monte Carlo method

In the last section, we derived the algorithm of using random walk Monte Carlo to solve the discrete adjoint
equation, and theoretically proved that as the number of samples increases, the solution obtained by our method
converges asymptotically to the exact solution. In practice, however, it is only possible to run a finite number of
random walks with limited computational resources. In this section, we address the following questions: how
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much error is made by running a finite number of random walks, and how this error can be controlled and
minimized.

Before we start, we definition the probable error in order to quantify the difference between the Monte
Carlo approximation and the exact solution of the adjoint equation.

Definition 5.1. Let I be the value to be estimated by Monte Carlo method, and D be its unbiased estimator.
The probable error for the Monte Carlo method is defined to be
r ¼ sup s : PðjI � DjP sÞ > 1

2

� �
ð20Þ
The probable error specifies the range which contains 50% of the possible values of the estimator. In the
case of continuous distribution, this is equivalent to the definition in [9,25].

The probable error is closely related to the variance of the estimator. Suppose D1; . . . ;Dq are independent
and identically distributed samples of D, If the variance of estimator D is bounded, the Central Limit Theorem
P

P
Di

q
� I 6 x

� �
! UðxÞ
holds. When q is large, the probable error of the average of the q samples is [9,27]
r � 0:6745
VarD

q

� �1=2

: ð21Þ
Therefore, the probable error decreases when the number of samples q increases or when the variance of the
estimator D decreases. Using this formula, we can estimate and control the probable error of our Monte Carlo
method by estimating the variance of the D estimator.

In the rest of this section, we focus on the variance of the D estimator. To make mathematical derivation
cleaner, we denote
pij ¼ pði; jÞ

to be the transition probability from state i to state j,
pi ¼ pði;N þ 1Þ

to be the transition probability from state i to the final exit state, and
ri ¼ rðiÞ

to be the birth probability at state i.

5.1. Variance decomposition

Suppose the mean and variance of the D estimator of a random walk starting from state i are EiðDÞ and
ViðDÞ, respectively. Since the Markov chain at state i has pi probability of going to the final exit state and
pij probability of going to the jth state, we know
EiðDÞ ¼ pi

1

pi

bi

� �
þ
X

j:Aij 6¼0

pij

Aij

pij

EjðDÞ
 !

¼ bi þ
X

j:Aij 6¼0

AijEjðDÞ;
which corresponds to the linear equation (7) we want to solve. Apply the same analysis to the expectation of
D2, we can obtain a formula for the variance of the D estimator,
ViðDÞ ¼ Ei D2
� 	

� EiðDÞ2 ¼ pi
bi

pi

� �2

þ
X

j:Aij 6¼0

pij

A2
ij

p2
ij

EjðD2Þ
 !

� EiðDÞ2

¼ b2
i

pi

þ
X

j:Aij 6¼0

A2
ij

pij

EjðDÞ2 � EiðDÞ2
 !

þ
X

j:Aij 6¼0

A2
ij

pij

VjðDÞ
 !

: ð22Þ
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We can see that the variance of a random walk starting at state i comes from two parts, The first part
V
ð1Þ
i ðDÞ ¼

b2
i

pi

þ
X

j:Aij 6¼0

A2
ij

pij

EjðDÞ2 � EiðDÞ2: ð23Þ
This part of variance is caused by the first step of the random walk. The second part
V
ð2Þ
i ðDÞ ¼

X
j:Aij 6¼0

A2
ij

pij

VjðDÞ ð24Þ
is a weighted average of the variance of random walks starting from all the states that state i leads to. This part
of variance is caused solely by the random walk starting from the second step.

Similarly, we can calculate the variance of the D estimator of a random walk starting with birth probability
ri,
VrðDÞ ¼ Er D2
� 	

� ErðDÞ2 ¼
X
i:ri 6¼0

ri
c2

i

r2
i

Ei D2
� 	� �

� ErðDÞ2

¼
X
i:ri 6¼0

c2
i

ri
EiðDÞ2 � ErðDÞ2

 !
þ

X
i:ri 6¼0

c2
i

ri
ViðD2Þ

 !
; ð25Þ
where EiðDÞ and ViðDÞ are the mean and variance of the random walk starting deterministically from the state
i. We can see that the variance of a random walk starting with birth probability ri also comes from two parts.
The first part
Vð1Þr ðDÞ ¼
X
i:ri 6¼0

c2
i

ri
EiðDÞ2 � ErðDÞ2 ð26Þ
is caused by the randomness of the birth state. The second part
Vð2Þr ðDÞ ¼
X
i:ri 6¼0

c2
i

ri
ViðD2Þ ð27Þ
is a weighted average of the variance of random walks starting from all the possible birth states. This part of
variance is caused by the random walk starting from the each possible birth states.

Based on this split of variance, the next section discusses choice of transition and birth probabilities pi and
ri that reduces each component of the decomposition.

5.2. Choice of transition and birth probabilities

Finding the probabilities that make the variance as small as theoretically possible has been shown to be
impractically time consuming for Monte Carlo linear solvers [6,8]. For this reason, we focus on finding ‘almost
optimal’ transition and birth probabilities by minimizing upper bounds of the variances.

The upper bounds on which we base our almost optimal transition probabilities are
V
ð1Þ
i ðDÞ ¼

b2
i

pi

þ
X

j:Aij 6¼0

A2
ij

pij

EjðDÞ2
 !

� EiðDÞ2 6
b2

i

pi

þ
X

j:Aij 6¼0

A2
ij

pij

 !
B2 � EiðDÞ2
and
V
ð2Þ
i ðDÞ ¼

X
j:Aij 6¼0

A2
ij

pij

VjðDÞ 6
X

j:Aij 6¼0

A2
ij

pij

 !
max
j:Aij 6¼0

VjðDÞ;
where
B ¼ max jEjðDÞj
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These bounds are chosen because individual EjðDÞ2 and VjðDÞ are not known a priori. They are therefore
substituted by a common upper bound. The optimal pij and pi for these upper bounds, under the constraints
1 (28
X
j

pij þ pi ¼ 1 and pij P 0;
are given by the formulae1
p�ij ¼
jAijjB

jbij þ
P

jjAijjB
ð28Þ
and
p�i ¼
jbij

jbij þ
P

jjAijjB
: ð29Þ
These are the almost optimal transition probabilities. Note that since B is not known a priori, it needs to be
estimated unless bi ¼ 0.

Similarly, we construct upper bounds for Vð1Þr ðDÞ and Vð2Þr ðDÞ:
Vð1Þr ðDÞ ¼
X
i:ri 6¼0

c2
i

ri
EiðDÞ2

 !
� ErðDÞ2 6

X
i:ri 6¼0

c2
i

ri

 !
B2 � ErðDÞ2

Vð2Þr ðDÞ ¼
X
i:ri 6¼0

c2
i

ri
ViðD2Þ 6

X
i:ri 6¼0

c2
i

ri

 !
max ViðD2Þ
� 	
The almost optimal birth probabilities that minimizes these upper bounds are given by the formula
r�i ¼
jcijP

ijcij
ð30Þ
Because the almost optimal transition and birth probabilities minimize upper bounds of the estimator vari-
ance, we use this choice of probabilities in all our numerical experiments presented later in this paper.

5.3. Growth of variance

This section studies how the variance of our D estimator can grow assuming the almost optimal transition
and birth probabilities derived in the last section. First, we plug the optimal probabilities into the upper
bounds of V

ð1Þ
i and V

ð2Þ
i , we get
V
ð1Þ
i ðDÞ 6 jbij þ CiBð Þ2 � EiðDÞ2
and
V
ð2Þ
i ðDÞ 6

jbij
B
þ Ci

� �
Ci max

j:Aij 6¼0
VjðDÞ;
where
Ci ¼
X

j

jAijj:
The total variance is the sum of the two components of the variance decomposition, thus
ViðDÞ 6 ðjbij þ CiBÞ2 � EiðDÞ2

 �

þ jbij
B

Ci þ C2
i

� �
max
j:Aij 6¼0

VjðDÞ: ð31Þ
) and (29) together minimizes upper bound of V
ð1Þ
i ðDÞ; (28) alone minimizes upper bound of V

ð2Þ
i ðDÞ under the constraints.
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This equation characterize the growth of variance as the Monte Carlo random walk proceeds. In the case of
explicit time stepping, all j such that Aij 6¼ 0 are in the next time step of i. As the random walk proceed through

time steps, the variance can suffer from exponential growth if the multiplicative factor ðjbij
B

Ci þ C2
i Þ is greater

than 1. If this is the case, the probable error can be too large for our Monte Carlo method to be practical. On
the other hand, if this factor is less or equal to 1, the variance grow at most linearly. For this reason, the size of
multiplicative factor is critical in the efficiency of our Monte Carlo method.

In the case of conservation law PDEs discretized with a positive coefficient scheme, we know the size of this
multiplicative factor. The discrete conservation property guarantees that
2 No
X
j

Aij ¼ 1;
for all but boundary grid points. Also, all Aij are non-negative in a positive coefficient scheme. As a result of
these two properties,
Ci ¼
X

j

jAijj ¼
X

j

Aij ¼ 1: ð32Þ
In addition, if the adjoint equation does not have a source term, then bi ¼ 0, and the multiplicative factor
jbij
B

Ci þ C2
i ¼ 1:
This implies that the probable error of our Monte Carlo method does not increase exponentially in this case.
This is indeed true, as seen in our numerical experiments, that the error of our Monte Carlo adjoint solver
decreases as the number of time steps gets larger. In case the adjoint equation have a source term, the discret-
ized source term bi is of order of Dt, thus the multiplicative factor
jbij
B

Ci þ C2
i ¼ 1þOðDtÞ:
This suggests that for a fixed T, as the discretization refines, the total amount of variance growth remain
bounded.

For systems other than scalar transport equations, Eq. (32) may not be true. In many cases, a proper choice
of preconditioner is required to prevent exponential growth of variance.

5.4. Choice of preconditioner

The choice of the preconditioner matrix P2 in Eq. (6) controls the behaviors of the Neumann series, and
influences the variance growth of the estimator D. A good choice can improve the precision of the result
and reduce the cost by requiring fewer samples, while a bad choice can make the variance grow exponentially.
Thus, the main purposes of the preconditioner is to control the multiplicative factor in the variance growth by
reducing Ci. Just like choosing a preconditioner a linear system, there is no universal best choice. Still, there
are a few preconditioners that we wish to mention in the setting of unsteady adjoint equation.

First of all, if the Jacobian matrix is diagonal dominant, a possible choice of preconditioner is the inverse of
the diagonal part of the Jacobian. This method is called diagonal splitting. Diagonal splitting makes the Neu-
mann series equivalent to the Jacobian iteration scheme, which has guaranteed convergence for diagonal dom-
inant matrices.

Tan proposes a relaxed Monte Carlo linear solver in [9,27], which is equivalent to choosing a diagonal pre-
conditioner that is not equal to the diagonal part of the Jacobian matrix. It was shown that this approach has
improved performance over diagonal splitting for many problems.

Srinivasan [26] studied non-diagonal splitting Monte Carlo solvers, which is equivalent to choosing the pre-
conditioner to be inverse of the diagonal and first sub-diagonal or super-diagonal of �A. His approach is suit-
t to be confused with the transition probability matrix P.
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able for a larger class of problems than diagonal conditioning. We have not yet investigated the last two more
advanced preconditioner in the context of solving unsteady adjoint equations.

In the context of partial differential equations, choosing a preconditioner that transforms the random walk
into the frequency space is an ideal currently being investigated. Preliminary results show that this precondi-
tioner may be a solution to certain problems on which achieving a bounded variance growth using existing
preconditioners is difficult.

6. Example of Monte Carlo algorithm: Burgers’ equation

In this section, we demonstrate a concrete example of the Monte Carlo algorithm for solving adjoint equa-
tions. The example is Burgers’ equation
Rðx; tÞ ¼ ut þ
u2

2

� �
x

¼ 0;
discretized temporally by the forward Euler scheme, and spatially by the first order up-winding scheme. Our
original problem is the fully discretized equation
R
ðtÞ
i ¼ uðtÞi � uðt�1Þ

i þ Dt
Dx

f ðt�1Þ
iþ1

2

� f ðt�1Þ
i�1

2


 �
¼ 0; t ¼ 1; 2; . . . ;m; ð33Þ
where f is the numerical flux computed using the up-winding formula
f ðtÞ
iþ1

2

¼
1
2
ðuðtÞi Þ

2 if uðtÞi þ uðtÞiþ1 > 0

1
2
ðuðtÞiþ1Þ

2 if uðtÞi þ uðtÞiþ1 6 0:

(

In this case, the full state vector u is
u ¼ ðuð1Þ1 ; . . . ; uð1Þn ; uð2Þ1 ; . . . ; uð2Þn ; . . . ; uðmÞ1 ; . . . ; uðmÞn Þ
T

and the full constraint is
R ¼ ðRð1Þ1 ; . . . ;Rð1Þn ; R
ð2Þ
1 ; . . . ;Rð2Þn ; . . . ; R

ðmÞ
1 ; . . . ;RðmÞn Þ

T

where n is the number of mesh points, and m is the number of time steps. The size of the adjoint equation as a
linear system is N ¼ mn.

For this example, we will analyze the structure of the adjoint equation, derive the birth probability matrix
and transition probability matrix, and walk through the Monte Carlo algorithm. Let us begin with the con-
straint Jacobian matrix. The forward Euler temporal discretization scheme is a one-step scheme, and the con-
straint (33) at a time step t only depends on u at time step t and t � 1. Hence, the only non-zero blocks in the

Jacobian (4) are J tt and J tt�1; t ¼ 1; . . . ;m. Moreover, the equation is discretized using explicit scheme, so
oR
ðtÞ
i

ouðtÞj

is non-zero only if i ¼ j. Therefore, the diagonal blocks of the Jacobian are identity matrices,
J tt ¼
oRðtÞ

ouðtÞ
¼ I :
In this case, we use no preconditioner, and
A ¼ I � oR

ou

� �T

¼

0 �J T
21

0 . .
.

. .
.

�J T
mm�1

0

2
666664

3
777775:
The Neumann series associated with this matrix has finite length m.
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Each block J T
tt�1 in this matrix is well structured. We note that the residue (33) at mesh-point i only depends

on u at mesh-point i� 1; x and iþ 1. Thus
oR
ðtÞ
i

ouðtÞj

is non-zero only if i� 1 6 j 6 iþ 1, and the off diagonal blocks

J tt�1 are tri-diagonal matrices with entries
oR
ðtÞ
i

ouðt�1Þ
i�1

¼ �aðtÞi
Dt
Dx

uðtÞi�1;

oR
ðtÞ
i

ouðt�1Þ
i

¼ �1� bðtÞi
Dt
Dx

uðtÞi ;

oR
ðtÞ
i

ouðt�1Þ
iþ1

¼ �cðtÞi
Dt
Dx

uðtÞi�1;

ð34Þ
where
aðtÞi ¼
�1 if uðtÞi�1 þ uðtÞi > 0

0 if uðtÞi�1 þ uðtÞi 6 0

(

bðtÞi ¼
1 if uðtÞi�1 þ uðtÞi > 0 and uðtÞi þ uðtÞiþ1 > 0

�1 if uðtÞi�1 þ uðtÞi 6 0 and uðtÞi þ uðtÞiþ1 6 0

0 otherwise

8>><
>>:

cðtÞi ¼
1 if uðtÞi þ uðtÞiþ1 6 0

0 if uðtÞi þ uðtÞiþ1 > 0:

(

We compute the transition probabilities using (28), choosing the absorption probability to be 0 at t < m, and 1
at t ¼ m. We get the transition probability matrix
P ¼

0 P 1 0

0 . .
.

0

. .
.

P m�1 0

0 1

0 0 0 0 1

2
66666664

3
77777775
;

where the last row and column correspond to the final exit state, and each P t is an n by n tri-diagonal matrix.
We note that following this transition probability matrix, each step of a random walk goes one time step for-
ward. At the next step, a random walk either stays at the same mesh-point, or goes to its left or right neighbor,
with probabilities specified by P t at the current time step. Therefore, in our Monte Carlo method, the spatial
distribution of the random walks follows transition probabilities P t at each time step, and all random walks
are absorbed at the mth time step. This is consistent to the finite length of a Neumann series associated with
the matrix A.

Assume that we are interested in solving for the adjoint solution at the first time step wð1Þ, we can approx-
imate it by starting q random walks from each of the n mesh-points at the first time step. Denote a½p; i� as the
pth random walk starting at mesh-point i, and at½p; i� its position at time step t. The Monte Carlo algorithm in
this case is

(1) For each 1 6 p 6 q; 1 6 i 6 n, choose a0½p; i� ¼ x and initialize
W ½p; i� ¼ 1; D½p; i� ¼ bi:
Then start from t ¼ 1, do steps 2–4, until done with the last time step t ¼ m.
(2) Solve the original problem at time step t for uðtÞ. Compute tri-diagonal matrix �J T

tþ1t using (34), and
transition probabilities P t at this time step using (28).
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(3) For each random walk, choose its next state atþ1½p� according to P t. Update
W ½p; i� ¼ W ½p; i�wat ½p;i�atþ1½p;i�; D½p; i� ¼ D½p; i� þ W ½p; i�batþ1½p;i�:
(4) Let t ¼ t þ 1, if t < m, go to step 2.
(5) At last time step m, all random walks are absorbed. Compute the sample mean of the estima-

tors 1
q

Pq
p¼1D½p; i� for each i, which is our approximation to wð1Þi .

7. Numerical experiments

In this section, we use three numerical experiments to demonstrate the convergence property and scaling
efficiency of our Monte Carlo adjoint solver as well as its performance in solving an inverse problem. These
experiments are done with Burgers’ equation, discretized with numerical scheme (33). Because we used an
explicit temporal discretization scheme for the original problem, we use no preconditioning in the Monte Car-
lo algorithm (see Section 5.4). The transition probabilities and birth probabilities are chosen based on (28) and
(30). The absorption probabilities are chosen to be 1 at the last time step, and 0 at other time steps except at
boundaries. All experiments are done on a desktop with two Intel(R) Xeon(TM) 3.00 GHz CPUs, 2 GB mem-
ory, GNU/Linux 2.6.9-42.0.10.ELsmp.

7.1. Convergence of Monte Carlo adjoint solver

This experiment demonstrates that the Monte Carlo adjoint solution converges to the exact solution as the
number of random walk increases. We solve the Burgers’ equation with initial condition
uðx; 0Þ ¼ sinðpxÞ; x 2 ½0; 1� ð35Þ

in time interval ½0; 0:25�. First-order up-winding finite volume scheme is used on 100 grid points uniformly
space on ½0; 1�; the CFL number for time integration is set to 0.5. On the other hand, the adjoint equation
is solved with final condition
/ðx; 0:25Þ ¼ exp �ðx� lÞ2

2r2

 !
; x 2 ½0; 1� ð36Þ
in the same time interval ½0; 0:25�, where l ¼ 0:5 and r ¼ 0:2. Both Burgers’ equation and the adjoint equation
use zero Dirichlet boundary condition.

Our Monte Carlo adjoint solver is used in four different settings. In each setting, the number of random
walks starting from each grid point is, respectively, 1, 10, 100 and 1000. Griewank’s checkpointing adjoint
solver is used to compute the exact adjoint solution. Fig. 1 plots the Monte Carlo adjoint equation in each
of the four cases on top of the exact solution. The Monte Carlo adjoint solution clearly converges towards
the exact solution as the number of random walks increases.

The rate of this convergence is depicted in Fig. 2. The slope of the line in the log–log plot is roughly 0.5,
indicating that our Monte Carlo adjoint solver converges at a rate of

ffiffiffi
q
p

, which is the common rate of con-
vergence in Monte Carlo methods.

7.2. Scaling efficiency

By avoiding trajectory storage and re-iteration, our Monte Carlo adjoint solver is especially competitive to
exact solution methods when the number of time steps is large. This efficiency is demonstrated by this
experiment.

In this experiment, the Burgers’ equation is solved in time interval ½0; 0:25� with uniform grids of 10 different
sizes, ranging from 10 to 10,000. The CFL number for time integration is set to 0.5, thus the number of time
steps increases proportionally to the grid size. Similar to the first experiment, the initial condition for Burgers’
equation is (35); the numerical scheme used is first-order up-winding finite volume. Again, we solve the adjoint
equation in time interval ½0; 0:25� using both our Monte Carlo solver and Griewank’s optimal checkpointing



Fig. 2. Convergence of Monte Carlo adjoint solution. The horizontal axis is q, the number of random walks starting from each grid
points; the vertical axis is the L2 distance between Monte Carlo adjoint solution and the exact solution.

Fig. 1. Solutions of adjoint equation at time 0. Solid lines are solutions estimated by Monte Carlo method; dash lines are the exact
solution. The number of random walks starting from each grid point is top-left plot: 1; top-right plot: 10; bottom-left plot: 100; bottom-
right plot: 1000.
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scheme. Two different settings, with q ¼ 1 and q ¼ 10, respectively, are used in the Monte Carlo solver. We
then compare the time it takes using our Monte Carlo method in both settings to the time it takes using
the optimal checkpointing scheme.

From the log–log plot in Fig. 3, we observe that the computation time of our Monte Carlo method in both
settings is proportional to the square of grid size. This is because with fixed CFL number, the number of time
steps grow linearly to the grid size, and the computational time is proportional to the product of the grid size
and the number of time steps. In contrast, the computation time of the optimal checkpointing scheme grows
faster, with a theoretical rate of n2 log n, where n is the grid size.



Fig. 3. The computation time of the adjoint solution as grid size increases. The dash line is the amount of time it takes to compute the
exact adjoint solution using Griewank’s optimal checkpointing scheme; the solid line above it is the amount time it takes to estimate the
adjoint solution using Monte Carlo method using q ¼ 10 random walks per grid point; the solid line below is the amount of time it takes to
estimate the adjoint solution using Monte Carlo method using q ¼ 1 random walks per grid point. The calculation is done on a desktop
with two Intel(R) Xeon(TM) 3.00 GHz CPUs, 2GB memory, GNU/Linux 2.6.9-42.0.10.ELsmp. All calculations are single threaded.

Q. Wang et al. / Journal of Computational Physics 227 (2008) 6184–6205 6201
This scaling efficiency of our Monte Carlo method is obtained without sacrificing the accuracy of its esti-
mated solution. Fig. 4 shows the L2 distance between the Monte Carlo adjoint solution and the exact solution
for different grid sizes. As the grid size and number of time steps increases, the quality of the Monte Carlo
adjoint solution increases for a fixed number of random walks per grid point. This result indicates that when
the computation upscales as the spatial and temporal resolution increases, our Monte Carlo is more compu-
tationally efficient and produces more accurate estimated adjoint solution.

7.3. A Monte Carlo adjoint driven inverse problem

In this experiment, we test the performance of our Monte Carlo adjoint solver in solving a simple inverse
problem: finding the initial condition of a Burgers’ equation so that the solution at time T ¼ 0:25 matches a
prescribed target function
Fig. 4. L2 estimation error of the Monte Carlo adjoint solver. The top line is the error for q ¼ 1 random walks per grid point; the bottom
line is the error for q ¼ 10 random walks per grid point.
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ftðxÞ ¼ exp �ðx� lÞ2

r2

 !
; x 2 ½0; 1�;
where l ¼ 0:5 and r ¼ 0:2. The boundary condition is zero Dirichlet at both x ¼ 0 and x ¼ 1.
We solve the Burgers’ equation using first-order up-winding finite volume scheme on 100 uniformly spaced

grid points; the CFL number is set to 0.5. The adjoint solution is obtained by our Monte Carlo adjoint solver;
the number of random walk starting from each grid point q is set to 1. This adjoint solution is used to drive a
gradient based optimization procedure to minimizes the square L2 difference between the solution at T and the
prescribed function ft. In this experiment, we use the BFGS quasi-Newton algorithm provided by Python
module scipy.optimize. The initial guess fed into the optimization routine is ft.

Due to insufficient precision of the gradient, calculated from the Monte Carlo adjoint solution, the optimi-
zation procedure terminated after 28 iterations without reaching its default error tolerance. The result of this
optimization procedure and the corresponding solution at T is plotted in Fig. 5. For the purpose of compar-
ison, a fully converged solution at iteration 68 driven by the exact adjoint solution is plotted in Fig. 6. Despite
the wiggling fluctuations on the solution using Monte Carlo adjoint solver, it captures the shape of the solu-
tion. The corresponding Burgers’ solution at T is also close to the target function. Moreover, the objective
function, the square L2 distance to the target function is 2:4� 10�4, more than 2 orders of magnitude smaller
than that of the initial guess, which is 7:5� 10�2. This result indicates that the Monte Carlo adjoint solution,
being an approximation itself, is useful in obtaining an approximate solution of optimization and inverse
problems. The accuracy of the adjoint solution limits the accuracy of the computed gradient, preventing full
convergence of gradient based optimization procedures.

Better convergence can be obtained if a smoothed version of the Monte Carlo adjoint solution is used to
calculate the gradient. Fig. 7 shows the solution of the same inverse problem driven by Monte Carlo adjoint
solutions smoothed by a Gaussian filter. The number of random walks starting from each grid point q is still
set to 1. The r of the Gaussian filter is 0.03. This time the optimization routine terminates after 58 iterations.
Although the default error tolerance is still not reached, the quality of the solution is significantly improved.
The final objective function, 3:2� 10�5, is also an order of magnitude smaller than the final objective function
of the non-smoothed case.

This experiment concludes that despite being less accurate than the exact solution, the Monte Carlo adjoint
is capable of reducing the objective function in optimization and inverse problems. In some practical problems
where the Monte Carlo adjoint solver is more computationally efficient, it may be desirable to use the Monte
Solving an inverse problem using Monte Carlo adjoint solver. The solid line is the solution to the inverse problem after 28 BFGS
ns. The dash line is the solution at time T of the Burgers’ equation with the solid line as its initial condition. The dot line is the

function ft. The dash line and dot line being close means that the solid line is an approximate solution to the inverse problem.



Fig. 7. Solving an inverse problem using smoothed Monte Carlo adjoint solver. The solid line is the solution to the inverse problem after
57 BFGS iterations. The dash line is the solution at time T of the Burgers’ equation with the solid line as its initial condition. The dot line is
the target function ft. The dash line and dot line being almost on top of each other means that the solid line is an accurate approximate
solution to the inverse problem.

Fig. 6. Solving the same inverse problem using exact adjoint solution. The solid line is the solution to the inverse problem after 68 BFGS
iterations (fully converged.) The dash line is the solution at time T of the Burgers’ equation with the solid line as its initial condition. The
dot line is the target function ft. The dash line and dot line lying on top of each other means that the solid line is an accurate solution of the
inverse problem.
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Carlo adjoint solution to drive the optimization until further improvement is limited by its accuracy, then
switch to an exact adjoint solver to ensure full convergence.

8. Future work

The Oð ffiffiffinp Þ convergence rate of the Monte Carlo method (21) makes it unattractive when the variance of
the estimator D is high. This is the case when we apply our method to vector transport equations such as
Navier–Stokes equations. Therefore, our future work focuses on reducing the variance of our estimator.
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(1) The variance of our estimator may be reduced by trying more advanced preconditioners [27,26], which
can improve the convergence of the Neumann series. We are particular interested in investigating pre-
conditioners in the case of vector partial differential equations, such as Navier–Stokes equation.

(2) We are interested in investigating Monte Carlo methods that are not based on the Neumann series.
These methods are especially useful in case the Neumann series have poor convergence.

Our ultimate goal is to use this method in large simulations of physical systems, such as aerodynamic sim-
ulations, turbulence simulations and fluid-structure coupled simulations.
9. Conclusion

The Monte Carlo method is an efficient method to approximate the solution of the adjoint equation. The
biggest advantages of this method are

(1) By only advancing forward in time, it avoids storing the full trajectory or iterating the original problem.
(2) It is easy to compute only part of the adjoint solution, or a linear function of the solution. This saves

computation time in practice.
(3) It is conceptually easy to parallelize.

As we have demonstrated through our numerical experiments, our Monte Carlo method has better scaling
efficiency than exact solution methods. By sacrificing some accuracy, choosing Monte Carlo adjoint solver in
large scale calculations can be rewarding in terms of computation time and memory usage. This has been dem-
onstrated in Burgers’ equation. If this method can be efficiently generalized to vector transport equations, it
will make very large scale calculation of their adjoint equations feasible.
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