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ABSTRACT

Local graph clustering methods aim to �nd a cluster of nodes by

exploring a small region of the graph. �ese methods are a�ractive

because they enable targeted clustering around a given seed node

and are faster than traditional global graph clustering methods

because their runtime does not depend on the size of the input

graph. However, current local graph partitioning methods are not

designed to account for the higher-order structures crucial to the

network, nor can they e�ectively handle directed networks. Here

we introduce a new class of local graph clustering methods that

address these issues by incorporating higher-order network infor-

mation captured by small subgraphs, also called network motifs.

We develop the Motif-based Approximate Personalized PageRank

(MAPPR) algorithm that �nds clusters containing a seed node with

minimal motif conductance, a generalization of the conductance

metric for network motifs. We generalize existing theory to prove

the fast running time (independent of the size of the graph) and ob-

tain theoretical guarantees on the cluster quality (in terms of motif

conductance). We also develop a theory of node neighborhoods

for �nding sets that have small motif conductance, and apply these

results to the case of �nding good seed nodes to use as input to the

MAPPR algorithm. Experimental validation on community detec-

tion tasks in both synthetic and real-world networks, shows that

our new framework MAPPR outperforms the current edge-based

personalized PageRank methodology.

1 INTRODUCTION

�e goal of graph clustering—also called community detection or

graph partitioning—is to identify clusters of densely linked nodes

given only the graph itself [15]. �e vast majority of algorithms

optimize a function that captures the edge density of the cluster (a

set of nodes), for instance, conductance or modularity. Most meth-

ods for clustering are global and seek to cluster all nodes of the

network. Local graph clustering—also known as seeded or targeted

graph clustering—is a speci�c case of this problem that takes an

additional input in the form of a seed set of vertices. �e idea is to

identify a single cluster nearby the seed set without ever exploring
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the entire graph, which makes the local clustering methods much

faster than their global counterparts. Because of its speed and scal-

ability, this approach is frequently used in applications including

ranking and community detection on the Web [13, 16], social net-

works [22], and bioinformatics [24]. Furthermore, the seed-based

targeting is also critical to many applications. For example, in the

analysis of protein-protein interaction networks, local clustering

aids in determining additional members of a protein complex [45].

�e theory and algorithms for local approaches are most well

developed when using conductance as the cluster quality mea-

sure [2, 50]. Conductance, however, is only de�ned for simple

undirected networks. Using principled local clustering methods

for networks involving signed edges, multiple edge types, and di-

rected interactions has remained an open challenge. Moreover,

current cluster quality measures simply count individual edges and

do not consider how these edges connect to form small network

substructures, called network motifs. Such higher-order connec-
tivity structures are crucial to the organization of complex net-

works [5, 35, 48], and it remains an open question how network

motifs can be incorporated into local clustering frameworks. De-

signing new algorithms for local higher-order graph clustering that

incorporate higher-order connectivity pa�erns has the potential to

lead to improved clustering and knowledge discovery in networks.

�ere are two main advantages to local higher-order cluster-

ing. First, it provides new types of heretofore unexplored local

information based on higher-order structures. Second, it provides

new avenues for higher-order structures to guide seeded graph

clustering. In our recent work, we established a framework that

generalizes global conductance-based clustering algorithms to clus-

ter networks based on higher-order structures [5]. However, there

are multiple issues that arise when this framework is applied to

local graph clustering methodologies that we address here.

Present work: Local higher-order clustering. In this paper we

develop local algorithms for �nding clusters of nodes based on

higher-order network structures (also called network motifs, Fig-

ure 1). Our local methods search for a cluster (a set of nodes) S with

minimal motif conductance, a cluster quality score designed to in-

corporate the higher-order structure and handle edge directions [5].

More precisely, given a graph G and a motif M , the algorithm aims

to �nd a set of nodes S that has good motif conductance (for motif

M) such that S contains a given set of seed nodes. Cluster S has

good (low) motif conductance for some motif M if the nodes in S
participate in many instances of M and there are few instances of

M that cross the set boundary de�ned by S . Figure 2 illustrates

the concept of motif conductance, where the idea is that we do not

count the number of edges that are cut, but the number of times



a given network motif M gets cut. �is way edges that do not

participate in a given motif (say, a triangle) do not contribute to

the conductance. Motif conductance has the bene�t that it allows

us to focus the clustering on particular network substructures that

are important for networks of a given domain. For example, trian-

gles are important higher-order structures of social networks [19]

and thus focusing the clustering on such substructures can lead to

improved results.

Our main approach is to generalize Approximate Personalized

PageRank (APPR) [2] to �nding sets of provably small motif con-

ductance (�eorem 4.3). �e APPR method is a graph di�usion

that “spreads” mass from a seed set to identify the cluster. It has

an extremely fast running time, which is roughly proportional to

the size of the output cluster. Our generalization, the motif-based

APPR method, or MAPPR, uses a pre-processing step that trans-

forms the original network into a weighted undirected graph where

the weights depend on the motif of interest. �is procedure �nds all

instances of the motif, but does not store the enumeration, which

helps to scale to larger networks (for example, if the motif is a clique

such as a triangle, no additional memory is needed by our method).

We show that running APPR on this weighted network maintains

the provably fast running time and has theoretical guarantees on

cluster output quality in terms of motif conductance. An additional

bene�t of our MAPPR method is that it naturally handles directed

graphs on which graph clustering has been a longstanding chal-

lenge. �e original APPR method can only be used for undirected

graphs, and existing local approaches for APPR on directed graphs

are challenging to interpret [3].

We use MAPPR on a number of community detection tasks and

show improvements over the corresponding edge-based methods.

We show that using the triangle motif improves the detection of

ground truth communities in synthetic networks. In addition, we

identify important directed triangle motifs for recovering commu-

nity structure in directed graphs.

We also show how to identify good seeds for �nding local higher-

order clusters when the motif is a clique. To do this, we develop

a theory around the relationship between 1-hop neighborhoods,

motif conductance, and a recently developed higher-order general-

ization of the network clustering coe�cient. Essentially, we show

that if the network has a large `th-order clustering coe�cient C` ,

then there exists some node whose 1-hop neighborhood has small

`-clique conductance. We use a notion of local optimality in node

neighborhood conductances to identify many good seed nodes for

MAPPR and �nd that the resulting clusters capture global trends in

the clustering structure of the graph.

In summary, our paper develops simple and �exible methods for

local higher-order graph clustering with theoretical guarantees. By

going beyond the old edge-based community detection objective

functions, our work opens a new door to higher-order clustering

and community detection problems that apply to a broad set of

network clustering problems.

2 PRELIMINARIES

Before deriving our algorithms, we �rst go over the basic notation

and cluster quality scores that we use throughout the paper. Our

datasets will be simple, unweighted, possibly directed graphs G =

M1 M2 M3

Figure 1: Examples of three directedmotifs: a triangle in any

direction (M1), a cycle (M2), and a feed-forward loop (M3).

1 motif cut

11 motif end points

motif conductance = 1 / 11
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20 edge end points
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Figure 2: Illustration of (edge) conductance (A) and motif

conductance (B) for the same set of nodes in the same graph,

where the motif M is the triangle. Our methods �nds clus-

ters of nodes based on themotif conductance, where the user

can decide which motifM to use for the clustering.

(V ,E) with adjacency matrix A. We denote n = |V | as the number

of nodes andm = |E | as the number of edges. Our algorithms will

sometimes use a weighted graph Gw = (V ,E,W ).

Cut, volume, and conductance. �e cut of a set of nodes S ⊂ V ,

denoted by cut(S ), is the number of edges with one end point in S
and the other end point in the complement set S̄ = V \S . �e volume
of a set of nodes S , denoted by vol(S ), is the number of edge end

points in S , i.e. vol(S ) =
∑
u ∈S du , where du is the degree of node

u. �e conductance of a set of nodes S ⊂ V is

ϕ (S ) =
cut(S )

min(vol(S ), vol(S̄ ))
.

Figure 2A illustrates the concept. When vol(S ) ≤ vol(S̄ ), the con-

ductance measures the ratio of the number of edges leaving S to

the number of edges in S . Note that conductance is symmetric—

ϕ (S ) = ϕ (S̄ ) since cut(S ) = cut(S̄ ). Conductance generalizes to

weighted networks where cut(S ) is the sum of weights cut and

vol(S ) is the sum of weighted degrees. Small conductance indi-

cates a good cluster, and we will use this metric (and the motif

conductance de�ned next) for evaluating cluster quality.

Conductance is recognized as one of the most important graph

clustering criterions [39] and is empirically e�ective at captur-

ing ground-truth communities compared to other popular mea-

sures used in community detection [47]. Although minimizing

conductance is NP-hard [46], there are approximation algorithms

with theoretical guarantees for �nding clusters with small con-

ductance [2, 9]. A known issue of using conductance as a global

clustering criterion is cluster imbalance, i.e., the detected clusters

tend to be of uneven sizes [29, 31]. In local clustering, we seek

small clusters containing a seed node, so the imbalance works in

our favor.

Motif cut, motif volume, andmotif conductance. Benson et al.

recently generalized the cut, volume, and conductance measures to

account for network motifs [5]. For this paper, we de�ne a network

motif M to be any small connected graph (such as a triangle), and

an instance of M in a graph G is some induced subgraph H of G



that is isomorphic to M . Given a motif M , the motif cut of a set

of nodes S , denoted by cutM (S ), is the number of instances of M
that have at least one end point (i.e., node) in S and at least one end

point in S̄ (Figure 2B). �e motif volume of a set of nodes S , denoted

by volM (S ) is the number of motif instance end points in S , i.e., the

number of times a node is in S , counted over each node in every

instance of M . �e motif conductance for a given motif M is then

ϕM (S ) =
cutM (S )

min(volM (S ), volM (S̄ ))
.

In the case that M is an edge, these de�nitions are simply the origi-

nal cut, volume, and conductance measures described above. �ese

de�nitions also accommodate mixtures of motifs (e.g., triangles and
edges) by counting over the union of instances of each motif type.

Comparing edge and motif conductance. We o�en compare

values of motif conductance to edge conductance (see Figure 2). Al-

though these two objective functions measure di�erent (but related)

quantities, they both represent a probability. Edge conductance is

equivalently the probability that traversing a random edge adja-

cent to a randomly selected node from the cluster leads outside the

cluster (provided that the volume of the cluster is less than half of

the total graph volume). Motif conductance is the probability that

a traversing to a random end point of a randomly chosen motif

adjacent to a randomly selected node from the cluster leaves the

cluster (provided that the motif volume of the cluster is less than

half of the total graph volume). �us, a motif conductance much

smaller than an edge conductance is evidence that the higher-order

structured exposed by the motif characterizes the cluster structure

more clearly.

3 RELATEDWORK

We now summarize some additional related work. �ere are a few

methods for global partitioning based on motifs [4, 5, 27, 38, 43].

�is paper instead focuses on local clustering methods that ex-

amine local regions of the network. �ere are several methods

for �nding clusters containing a seed node beyond the person-

alized PageRank method considered here, including other graph

di�usions [8, 26], local spectral methods [32, 33], local modular-

ity maximization [10], �ow-based algorithms [36], and minimum

degree maximization [11, 40]. All of these local methods optimize

edge-based criteria to �nd clusters, whereas we are focused on

�nding clusters based on motifs. We generalize the personalized

PageRank method because of the algorithm’s simplicity, scalability,

and theoretical underpinnings. Most related to our approach are a

couple of local clustering methods based on triangle frequencies

through �nding k-trusses containing a seed node [20] or by greedily

growing a cluster from a seed node to avoid cu�ing triangles [38].

In the la�er method, the notion of cu�ing a triangle is a special

case of the motif cut discussed above.

Higher-order structures (under the names motifs, graphlets, or

subgraphs) are crucial in many domains including neuroscience [41],

biology [37], and social networks [44]. Many of our experiments use

triangle motifs, which have long been studied for their frequency

in social networks [19]. �e algorithmic problem of counting or

estimating the frequency of various higher-order pa�erns has also

drawn a large amount of a�ention [1, 6, 12, 23].

4 MOTIF CONDUCTANCE MINIMIZATION

We now develop our local higher-order clustering methodology.

We begin by generalizing the Approximate Personalized PageRank

(APPR) algorithm of Andersen et al. [2] to quickly �nd a cluster

containing a given seed node with minimal motif conductance.

Our algorithm has theoretical guarantees on cluster quality and

running time. We then show how the motif conductance of 1-hop

neighborhoods in a network can be used to identify many good

seed nodes.

4.1 Motif-based Approximate Personalized

PageRank (MAPPR)

We now adapt the classical Approximate Personalized PageRank

(APPR) method to account for motifs. �e essential idea of our

approach is to transform the input graph, which is unweighted

and possibly directed, into a weighted undirected graph where the

weights depend on the motif [5]. We then prove that the fast Ap-

proximate Personalized PageRank method on this weighted graph

will e�ciently �nd a set with small motif conductance that con-

tains a given seed node. We also explain how previous theoretical

results are applicable to this approach, which gives us formal guar-

antees on running time and cluster output quality in terms of motif

conductance.

Background on APPR. �e personalized PageRank (PPR) vector

represents the stationary distribution of a particular random walk.

At each step of the random walk, with a parameter α ∈ (0, 1), the

random walker “teleports” back to a speci�ed seed node u with

probability 1 − α ; and with probability α , the walker performs a

random walk step. �e key idea is that the stationary distribution

of this process for a seed node u (the PPR vector pu ) will have

large values for nodes “close” to u. We can write the stationary

distribution as the solution to the following system of equations

(I − αP )pu = (1 − α )eu , where I is the identity matrix, P is the

column-stochastic transition matrix representing the random walk

over the graph, and eu is the indicator vector for node u. Formally,

P = AD−1
, where A is the adjacency matrix, D = diag(Ae ) is the

diagonal degree matrix, and e is the vector of all ones.

Andersen et al. developed a fast algorithm for approximating pu
by a vector p̃u where 0 ≤ D−1pu −D

−1p̃u ≤ ε component-wise [2].

To obtain a cluster with small conductance from this approximation,

a sweep procedure is used: (i) sort the nodes by descending value

in the vector D−1p̃u , (ii) compute the conductance of each pre�x in

this sorted list, (iii) output the pre�x set with smallest conductance.

Overall, this algorithm is fast (it runs in time proportional to the size

of the output cluster) and is guaranteed to have small conductance

provided that node u is in a set with small conductance. We will be

more speci�c with the guarantees in the following section, when

we derive the analogous theory for the motif-based approach.

Adapting APPR for motifs. We now propose the motif-based

APPR (MAPPR) algorithm that �nds a cluster with small motif

conductance by �nding an approximate PPR vector on a weighted

graph based on the motif. Given a motif M , MAPPR has three steps:

(i) construct a weighted graphW , whereWi j is the number of in-

stances of M containing nodes i and j , (ii) compute the approximate

PPR vector for this weighted graph, (iii) use the sweep procedure

to output the set with minimal conductance. Algorithm 1 formally



Algorithm 1: Motif-PageRank-Nibble method for �nding lo-

calized clusters with small motif conductance.

Input: Unweighted graph G = (V ,E), motif M , seed node u,

teleportation parameter α , tolerance ε
Output: Motif-based cluster (set S ⊂ V )

1 Wi j ← #(instances of M containing nodes i and j)

2 p̃ ← Approximate-Weighted-PPR(W ,u,α , ε ) (Algorithm 2)

3 DW ← diag(We )

4 σi ← ith smallest entry of D−1

W p̃

5 return S ← arg min` ϕM (S` ), where S` = {σ1, . . . ,σ` }

Algorithm 2: Approximate-Weighted-PPR

Input: Undirected edge-weighted graph Gw = (Vw ,Ew ,W ),
seed node u, teleportation parameter α , tolerance ε

Output: an ε-approximate weighted PPR vector p̃
1 p̃ (v ) ← 0 for all vertices v

2 r (u) ← 1 and r (v ) ← 0 for all vertices v except u

3 dw (v ) ←
∑
e ∈Ew :v ∈eW (v )

4 while r (v )/dw (v ) ≥ ε for some node v ∈ Vw do

5 /* push operation */

6 ρ←r (v ) − ε
2
dw (v ); p̃ (v )←p̃ (v ) + (1−α )ρ; r (v )← ε

2
dw (v )

7 for each x : (v,x ) ∈ Ew do r (x ) ← r (x ) +
W (v,x )
dw (v ) · αρ

8 return p̃

describes this method. Note that step (i) needs to be done only

once, whereas steps (ii) and (iii) would be repeated for multiple

subsequent runs.

�is method is motivated by the following result of Benson et

al. [5], which says that for motifs on three nodes, standard conduc-

tance in the weighted graph is equal to motif conductance in the

original graph.

Theorem 4.1 ([5], Theorem 5). Denote the edge conductance in
a graph H by ϕ (H ) (S ). LetM be a motif on three nodes, and let GW
be the weighted graph whereWi j is the number of instances ofM in

graph G containing nodes i and j. �en ϕ (G )
M (S ) = ϕ (GW ) (S ).

(When the motif has more than 3 nodes, the weighted graph

serves as a principled heuristic for motif conductance [5].) We

interpret this result for our purposes: if we can �nd a set with low

edge conductance in the weighted graph using APPR, then this set

will have small motif conductance.

�e APPR method is designed for unweighted graphs, whereas

we want to use the method for weighted graphs. Mathematically,

this corresponds to replacing the column stochastic matrix P in

the linear system with the column stochastic matrix PW =WD−1

W ,

where DW = diag(We ) is the diagonal weighted degree matrix. For

the purposes of implementation, this modi�cation is simple. We

just need to change the algorithm’s push method to push resid-

ual weights to neighbors proportional to edge weights (instead of

evenly). We state the procedure in Algorithm 2.

For the purposes of theoretical analysis with motifs, it is impor-

tant that our edge weights are integers so that we can interpret

an edge with weight k as k parallel edges. Since all the analysis of

APPR permits parallel edges in the graph, we can combine previous

results for theoretical guarantees on Algorithm 1. �e following

result says that our algorithm runs in time proportional to the size

of the output set.

Theorem 4.2. Algorithm 1, a�er line 1, runs in O ( 1

ε (1−α ) ) time,
and the number of nodes with non-zero values in the output approxi-
mated PPR vector is at most 1

ε (1−α ) .

Proof. �is follows from Andersen et al. [2, Lemma 2], where

we translate Gw into a unweighted graph with parallel edges. �

Although APPR with weighted edges has used before [3, 17],

there was never a runtime bound. �is result is the �rst (albeit

straightforward) theoretical bound on the runtime of APPR with

weighted edges when they arise from integers.

Our next result is a theoretical guarantee on the quality of the

output of Algorithm 1 in terms of motif conductance. �e proof of

the result follows from combining �eorem 4.1 and the analysis of

Zhu et al. [50] (an improvement over the analysis of Andersen et

al.). �e result says that if there is some set T with small motif con-

ductance, then there are several nodes in T for which Algorithm 1

outputs a set with small motif conductance. For notation, let η
be the inverse mixing time of the random walk on the subgraph

induced by T .

Theorem 4.3. Let T ⊂ V be some unknown targeted community
we are trying to retrieve from an unweighted graph using motif M .
�en there exists Tд ⊆ T with volM (Tд ) ≥ volM (T )/2, such that
for any seed u ∈ Tд , Algorithm 1 with 1 − α = Θ(η) and ε ∈
[

1

10volM (T ) ,
1

5volM (T ) ] outputs a set S with

ϕM (S ) ≤ Õ
(
min

{√
ϕM (T ),ϕM (T )/

√
η
})
.

�e �nal piece we need to consider is the complexity of forming

the weighted graph in line 1 of Algorithm 1. For `-clique motifs,

we use the method of Chiba and Nishizeki to compute the adja-

cency matrix W in O (`a`−2m) time, where a is the arboricity of

the graph [7] and m is the number of edges in the graph. �is

is su�cient for the motifs considered in this paper, and there are

also e�cient algorithms for counting other types of motifs [34].

Note that this computation can be reused for many subsequent

evaluations of the clustering algorithm for di�erent seeds.

Towards purely local methods. Our method precomputes the

number of motif instances containing each pair of nodes. Comput-

ingW is a (possibly large) upfront cost, but subsequently �nding

local clusters for any given seed node is fast. �e graph weighting

procedure could also be done locally by having the push procedure

computeWvx “on the �y” for all nodes x adjacent to node v . �is

su�ces for Algorithm 2, but Algorithm 1 needs to know the total

volume of the weighted graph to compute the motif conductance

scores. To address this, one might use recent techniques for quickly

estimating the total `-clique volume on large graphs [21]. We leave

the runtime analysis of this purely local method for future work.

Practical considerations. �e formal theory underlying the meth-

ods (�eorem 4.3) requires multiple apriori unknowable parameters

including the inverse mixing time η of the target community and

the volume of the output. As practical guidance, we suggest using

α = 0.98, computing the PPR vector for ε = 10
−2/ ¯dM , 10

−3/ ¯dM ,

10
−4/ ¯dM , where

¯dM =
1

n volM (G ) is the average motif-degree of all



nodes, and outpu�ing the set of best motif conductance. �e reason

for scaling by
¯dM is as follows. �eorem 4.2 bounds the running

time by volume as if accessing an edge (i, j ) with weightWi j takes

Θ(Wi j ) time (i.e., as if the edges are parallel). However, we merely

need to access the valueWi j , which takes O (1) time. Scaling ε by

¯dM accounts for the average e�ect of parallel edges present due

to the weights of the motifs and permits the algorithm to do more

computation with roughly the same running time guarantees.

Rather than using the global minimum in the sweep procedure in

the last step of the Nibble method, we apply the common heuristic

of �nding the �rst local minimum [47]. �e �rst local minimum

is the smallest set where the PageRank vector suggests a border

between the seed and the rest of the graph. It also be�er models

the small size scale of most ground truth communities that we

encounter in our experiments.

4.2 Finding many good seed nodes

So far we have proposed MAPPR to �nd a single cluster containing

a given seed with minimal motif conductance. Now we consider

the problem of how to quickly �nd many clusters with small motif

conductance. Our approach will examine small network neigh-

borhoods of nodes to identify good seeds for the targeted cluster

expansion of MAPPR. We justify the use of these neighborhoods

from a technical result that establishes a relationship between 1-hop

neighborhoods and clusters of small motif conductance.

Informally, our key theorem is: Real world graphs with large

clustering coe�cients have a 1-hop neighborhood with small motif

conductance for clique motifs. We can �nd this set since we can

compute the motif conductance of all 1-hop neighborhoods e�-

ciently. �e result holds for undirected graphs only, so we will be

concerned only with undirected graphs in this section. We establish

our result in theory in this section and demonstrate the result in

practice in Section 5.

�e formal theory rests on the idea of higher-order clustering

coe�cients, which we developed in recent work [49] and brie�y

review below. As an extreme case of our theory, consider a graph

with clustering coe�cient 1. �en that graph will be a union of

cliques, and any 1-hop neighborhood in that graph is a cluster with

motif conductance of zero. �e theory developed in this section

relaxes this extreme se�ing and relates large clustering coe�cients

to �nding node neighborhoods with small motif conductance. Our

experiments in Section 5.3 show that these node neighborhoods

are even be�er than our theory would predict.

Background on higher-order clustering coe�cients. First, we

introduce the de�nition of higher-order clustering coe�cients pro-

posed by Yin et. al [49]. �e classical clustering coe�cient is the

fraction of wedges (length-2 paths) in the graph that are closed (i.e.,

induce a 3-clique, or a triangle). We can alternatively interpret each

wedge as a (2-clique, adjacent edge) pair, where the “adjacent edge”

shares a single node with the 2-clique (edge). �e clustering coef-

�cient is formally C = 6|K3 |/|W |, where K3 is the set of 3-cliques,

W is the set of (2-clique, adjacent edge) wedges, and the constant 6

comes from the fact that each 3-clique closes 6 wedges.

�e generalization to higher-order clustering coe�cients follows

by simply looking at the fraction of (`-clique, adjacent edge) pairs,

or `-wedges, that are “closed”, i.e., induce an (`+1)-clique. Formally,

the `th-order clustering coe�cient is

C` = (`2 + `) |K`+1
|/|W` |,

whereK`+1
is the set of (`+1)-cliques,W` is the set of `-wedges, and

the (`2 + `) comes from the fact that each (` + 1)-clique closes that

many wedges. We can also measure local clustering with respect to

a node u. Formally, the local `th-order clustering coe�cient of node

u is

C` (u) = ` |K`+1
(u) |/|W` (u) |,

where K`+1
(u) is the set of (` + 1)-cliques containing node u and

W` (u) is the set of `-wedges centered at u, i.e., the set of (`-clique,

adjacent edge) pairs whose intersection is node u.

�eory. Next, we state our main result of this section, which says

that if the network exhibits higher-order clustering, i.e.,C` is large,

then there is a 1-hop neighborhood with small `-clique conductance.

For notation, let N (u) denote the nodes in the 1-hop neighborhood

of node u, i.e., N (u) = {v ∈ V | (u,v ) ∈ E} ∪ {u}.

Theorem 4.4. Let graph G = (V ,E) have `th-order clustering
coe�cient C` . Suppose that volK`

(N (u)) ≤ volK`
(V )/2 for each

node u. �en there exists a node u ∈ V such that

ϕK`
(N (u)) ≤

1 −C`

1 −C` + [C`/(1 +
√

1 −C` )]2

(1)

≤ min{2(1 −C` ), 1}. (2)

�e bound in �eorem 4.4 is monotonically decreasing and ap-

proaches 0 as C` approaches 1. �is result is a generalization of

a similar statement for edge conductance [18], but prior results

contain only the case of ` = 2 and only use the weaker bound (2)

of �eorem 4.4.

We now prove this result via several technical results relating

higher-order clustering coe�cients and motif conductance, where

the motif is a clique. We note that many of the results are general-

izations of previous theory developed by Gleich and Seshadhri [18].

�e following lemma relates the higher-order clustering coe�-

cient with neighborhood cuts, which we use to prove �eorem 4.4.

Lemma 4.5.

∑
v ∈V cutK`

(N (v )) ≤ (1 −C` ) · |W` |.

Proof. If an `-clique (u1, . . .u` ) gets cut from N (v ), then v
must directly connect with one of u1, . . . ,u` , say u1. Note that the

clique (u1, . . .u` ) and adjacent edge (u1,v ) form an open (` + 1)-
wedge since v can not connect to all of u1, . . . ,u` . �erefore, we

have an injective map from any cut clique on the le�-hand side of

the inequality to an open `-wedge. �

Next, we de�ne a probability distribution on the nodes, p` (u) =
|W` (u) |/|W` |, which connects the global and local `th-order clus-

tering coe�cient in the following lemma.

Lemma 4.6.

∑
u ∈V p` (u)C` (u) = C` .

Proof.∑
u ∈V p` (u)C` (u) =

∑
u ∈V

|W` (u ) |
|W` |

·
` · |K`+1 (u ) |
|W` (u ) |

= `
|W` |

·
∑
u ∈V |K`+1

(u) | = `
|W` |

· (` + 1) |K`+1
| = C` . �

�e following lemma creates a random variable whose expecta-

tion is bounded by 1−C` , which we use in the proof of �eorem 4.4.

Lemma 4.7.

∑
u ∈V p` (u)

cutK`
(N (u ))

|W` (u ) |
≤ 1 −C` .



Proof. Using �eorem 4.5,

∑
u ∈V p` (u)

cutK`
(N (u ))

|W` (u ) |
= 1

|W` |

∑
u ∈V cutK`

(N (u)) ≤ 1

|W` |
(1 −C` ) · |W` | = 1 −C` . �

We are �nally ready to prove our main result, and we will prove

the existence using the probabilistic method. Suppose we choose

a node u according to the probability distribution p` (u). Let X =
cutK`

(N (u))/|Wl (u) | be a random variable. According to Lemma

4.7, E[X ] ≤ 1 − C` . �en for any constant a > 1, by Markov’s

inequality, we have P[X > a(1−C` )] ≤ 1/a. Let b = (aC` − 1)/(a−
1), and p = P[C` (u) < b]. Now according to Lemma 4.6, we have

that

C` =
∑
C` (u )<b p` (u)C` (u) +

∑
C` (u )≥b p` (u)C` (u) < bp + (1 − p).

�us p < (1 − C` )/(1 − b) = 1 − 1/a. By the union bound,

the probability that cutK`
(N (u))/|W` (u) | > a(1 −C` ) or C` (u) <

b is less than 1. �erefore, there exists some node u such that

cutK`
(N (u)) ≤ a(1 −C` ) · |W` (u) | and C` (u) ≥ b. Now we show

that, for this u, we have

ϕ` (N (u)) ≤ [1 −C`] / [1 −C` + (aC` − 1)/(a − 1)] .

We �rst �nd a lower bound on volK`
(N (u)). First, each `-clique

cut would contribute at least one into volK`
(N (u)). Second, each

(` + 1)-clique in K`+1
(u) uniquely corresponds to an `-clique in

N (u) which is induced by the ` nodes in the (` + 1)-clique other

than u, thus will contribute ` into volK`
(N (u)). Note that each

(` + 1)-clique in K`+1
(u) closes ` di�erent `-wedges inW` (u), and

there are C` (u) |W` (u) | closed `-wedges. �erefore, by combining

all the observations here, we have

volK`
(N (u)) ≥ cutK`

(N (u)) + ` ·C` (u) |W` (u) |/`

≥ cutK`
(N (u)) + b |W` (u) |.

Now combining that cutK`
(N (u)) ≤ a(1 −C` ) · |W` (u) | and our

assumption that volK`
(N (u)) ≤ volK`

(N (u)),

ϕK`
(N (u)) =

cutK`
(N (u))

volK`
(N (u))

≤
cutK`

(N (u))

cutK`
(N (u)) + b |W` (u) |

≤
a(1 −C` ) · |W` (u) |

a(1 −C` ) |W` (u) | + b |W` (u) |
=

1 −C`

1 −C` +
aC`−1

a (a−1)

.

Finally, (1) is obtained by se�ing a = (1 +
√

1 −C` )/C` . �

Local minima as good seeds. �eorem 4.4 says that there must

be at least one node whose 1-hop neighborhood has small motif

conductance for clique motifs, provided there is higher-order clus-

tering in the network. We use this as motivation to consider nodes

whose 1-hop neighborhoods have small motif conductance as can-

didate seed nodes for MAPPR. Following the terminology of Gleich

and Seshadhri [18], we say that a node u is a locally minimal if

ϕM (N (u)) ≤ ϕM (N (v )) for all neighbors v of u. Between between

1% and 15% of nodes are local minima in the datasets we consider

in Section 5.3. In that section, we verify that these local minima are

in fact be�er seeds for MAPPR compared to random nodes, and we

show that running MAPPR with all of these seeds is su�cient for

reconstructing the global structure of the network.

5 EXPERIMENTS

In this section, we �rst evaluate the performance of our MAPPR

algorithm on networks with ground truth communities or clus-

ters, both on synthetic networks in Section 5.1 and on real-world

networks in Section 5.2.
1

Our evaluation procedure of both the

edge-based APPR and MAPPR is the following. For each ground

truth community, we use every node as a seed to obtain a set and

then pick the set with the highest F1 score for recovering the ground

truth. Next, we average of the F1 scores over all detected communi-

ties for the detection accuracy of the method. �is measurement

captures how well the community can be recovered, and has previ-

ously been used to compare seeded clustering algorithms [26].

In Section 5.3, we empirically evaluate the theory of Section 4.2

for �nding good seed nodes. We �rst show the existence of 1-hop

neighborhood clusters of small motif conductances in real-world

networks, and then use this idea to �nd seeds upon which running

MAPPR will output many clusters with small motif conductance.

5.1 Recovering communities in synthetic

networks with MAPPR

We �rst evaluate our MAPPR method for recovering ground truth in

two common synthetic random graph models—the planted partition

model and the LFR model. In both cases, we �nd that using triangle

motifs increases the range of parameters in which we are able to

recover the ground truth communities.

Planted partition model. �e planted partition model generates

an undirected unweighted graph with kn1 nodes. Nodes are parti-

tioned into k built-in communities, each of size n1. Between any

pair of nodes from the same community, an edge exists with proba-

bility p and between any pair of nodes from di�erent communities,

an edge exists with probability q. Each edge exists independently

of all other edges.

In our experiment, we examine the behavior of MAPPR and the

edge-based APPR methods by �xing parameters n1 = 50, k = 10,

p = 0.5, and takings di�erent values of q such that the community

mixing level µ = [(k − 1)q]/[p + (k − 1)q], which measures the

fraction of neighbors of a node that cross cluster boundary, varies

from 0.1 to 0.9. For each value of µ, we computed the average of

the “mean best” F1 score described above over 20 random instances

of the graph. For MAPPR, we used the triangle motif. We are

motivated in part by recent theoretical results of Tsourakakis et

al. showing that with high probability, the triangle conductance of

a cluster in the planted partition model is smaller than the edge

conductance [43]. Here we take an empirical approach and study

recovery instead of conductance.

Figure 3A illustrates the results. Using triangles with MAPPR

signi�cantly outperforms the edge-based APPR method when µ ∈
[0.4, 0.6]. In this regime, for any given node, the expected number

of intra-community edges and inter-community edges is roughly

the same. �us, the edge-based method degrades in performance.

However, the number of intra-community triangles remains greater

than the number of inter-community triangles, so the triangle-based

method is able to recover the planted partition.

LFR model. �e LFR model also generates random graphs with

planted communities, but the model is designed to capture several

properties of real-world networks with community structure such

as skew in the degree and community size distributions and overlap

in community membership for nodes [28]. For our purposes, the

1
As part of this paper, real-world datasets and implementations of the MAPPR algo-

rithms are available at h�p://snap.stanford.edu/mappr.

http://snap.stanford.edu/mappr


Table 1: Recovery of ground truth community structure in undirected graphs using edge-based and motif-based APPR

(MAPPR), where the motif is the triangle. Bold numbers denote better recovery or smaller conductance with 5+% relative

di�erence. F1 score, precision, and recall are all averages over the 100 ground truth communities.

F1 score Precision Recall Motif conductance

Network |V | |E | # comms. (sizes) edge triangle edge triangle edge triangle edge triangle

com-DBLP 317K 1.05M 100 (10–36) 0.264 0.269 0.342 0.366 0.310 0.329 0.393 0.384

com-Amazon 335K 926K 100 (10–178) 0.620 0.556 0.634 0.660 0.704 0.567 0.163 0.065

com-Youtube 1.13M 2.99M 100 (10–200) 0.140 0.165 0.233 0.390 0.147 0.188 0.536 0.739

com-LiveJournal 4.00M 34.7M 100 (10–10) 0.255 0.274 0.216 0.280 0.606 0.672 0.498 0.409

com-Orkut 3.07M 117M 100 (10–200) 0.063 0.078 0.072 0.117 0.212 0.166 0.702 0.510

com-Friendster 65.6M 1.81B 100 (10–191) 0.095 0.114 0.103 0.158 0.204 0.234 0.747 0.622
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Figure 3: Average F1 score on detected clusters in the planted

partition model (A) and LFR model (B) as a function of the

mixing parameter µ that speci�es the fraction of neighbors

of a node that cross cluster boundaries. We use the clas-

sical edge-based APPR and our triangle-based MAPPR to

recover ground truth clusters. �ere is a large parameter

regime where the triangle-based approach signi�cantly out-

performs the edge-based approach in both models.

most important model parameter is the mixing parameter µ, which

is the fraction of a node’s edges that connect to a node in another

community. We �x the other parameters as follows: n = 1000 is

the number of nodes, where 500 nodes belong to 1 community and

500 belong to 2; the number of communities is randomly chosen

between 43 and 50; the average degree is 20; and the community

sizes range from 20 to 50.

We again use the edge-based APPR method and MAPPR with

the triangle motif. Figure 3B shows the results. �e performance of

the edge-based method decays as we increase the mixing parameter

µ from 0.1 to 0.4, while the triangle-based method maintains an F1

score of approximately 0.9 in this regime. For mixing parameters as

large as 0.6, the F1 score for MAPPR is still three times larger than

that of the edge-based method, and throughout nearly the entire

parameter space, using triangles improves performance.

To summarize, incorporating triangles into personalized PageRank

dramatically improves the recovery of ground truth community

structure in synthetic models. In the next section, we run experi-

ments on both undirected and directed real-world networks.

5.2 Recovering communities in real-world

networks with MAPPR

We now compare the edge- and motif-based APPR methods on

real-world networks with ground truth communities. Although

these graphs have as many as 1.8 billion edges, the APPR method

takes at most a few seconds per seed once the graph is in memory.

Undirected graphs. We analyzed several well-known networks

with ground truth community structure constructed from Web

data: com-Amazon, com-DBLP, com-Youtube, com-LiveJournal,

com-Orkut, and com-Friendster [47]. For each network, we ex-

amined 100 communities whose sizes ranged between 10 and 200

nodes. Summary statistics of the datasets and our experiment are in

Table 1. In 5 out of 6 networks, MAPPR achieves a higher F1 score

than edge-based APPR. In 3 of the 5 networks, the F1 score provides

a relative improvement of over 5%. In all 6 networks, the aver-

age precision of the recovered clusters is larger, and in 4 of these

networks, the change is greater than 5%. We suspect this arises

from triangles encouraging more tight-knit clusters. For example,

dangling nodes connected by one edge to a cluster are ignored by

the triangle-based method, whereas such a node would increase

the edge-based conductance of the set. In 4 of the 6 networks, recall

in the triangle-based method provides relative improvements of at

least 5%.

Directed graphs. A major advantage of MAPPR is that it easily

handles directed graphs; we simply need to specify the directed

motifs. Here, we use the three di�erent directed triangle motifs in

Figure 1 (M1, the undirected triangle; M2, the cycle; and M3, the

feed-forward loop). We form our motif weighted matrixW with

respect to general subgraphs (i.e., not induced subgraphs). �us, a

triangle with all six directed edges contains 1 instance of motif M1,

2 instances of motif M2, and 2 instances of motif M3.

We analyze two directed networks. �e �rst is an e-mail network

between members of a European research institution (email-Eu),

where department membership of researchers are the ground truth



Table 2: Recovery of ground truth communities in directed graphs using edge-based and motif-based APPR for the three

triangularmotifs in Figure 1. Bold numbers denote (i) cases where amotif-basedmethod’s score is a 5+% relative improvement

over the edge-based method and (ii) cases where the edge-based method out-performs all 3 motif-based methods by 5+%.

F1 score Precision Recall

Network |V | |E | # comms. (sizes) edge M1 M2 M3 edge M1 M2 M3 edge M1 M2 M3

email-Eu 1.00K 25.6K 28 (10–109) 0.398 0.496 0.443 0.483 0.502 0.580 0.605 0.660 0.754 0.685 0.577 0.594

wiki-cats 1.79M 28.5M 100 (21–192) 0.239 0.246 0.234 0.231 0.334 0.368 0.391 0.360 0.377 0.327 0.226 0.328
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Figure 4: A: Distribution of set size and conductance from

using each node in email-Eu as a seed for edge-based APPR

and motif-based APPR (MAPPR) with the three motifs in

Figure 1. Smaller edge-based cluster concentrate in sizes of

70–100, a regime where also containing many motif-based

clusters with smaller conductance. B: Sweep pro�le for a sin-

gle seed in email-Eu for edge and the same threemotifs. �e

shape of the curves is similar, but theminima for the 3motif-

based curves occur for smaller set sizes and have smallermo-

tif conductances compared to the curve for edges.

communities. �e second network is the English Wikipedia hy-

perlink network (wiki-cats), where the article categories are the

ground truth communities (we only consider 100 categories for

our analysis). �e datasets and recovery results are summarized in

Table 2. For both networks, using motif M1 provides an improve-

ment in F1 score over the edge-based method. �e improvement is

drastic in email-Eu (25% relative improvement). In fact, all three

motifs lead to substantial improvements in this network. We also

see that in both networks, the motifs provide additional precision

but sacri�ce recall. �ese tighter clusters are expected for the same

reasons as for the undirected networks.

We investigate the results for email-Eu in more detail, as the

use of motifs dramatically improves the recovery of ground truth

clusters with respect to F1 score. First, we used every node in

the network as a seed for the APPR methods with edges and the

three motifs (Figure 4A). �e clusters bifurcate into small (< 100

nodes) and large (> 200 nodes) sizes. For the small clusters, the

edge-based ones concentrate in sizes of 70–100. In this range, there

are several clusters with much smaller motif-based conductance for

all three motifs. �is provides evidence that the 3 motifs are be�er

models for the community structure in the network. We also see

that of the large clusters, the edge-based ones tend to be the largest.

Since these sets are larger than the sizes of the communities in the

network, this observation provides evidence for why precision is

be�er when using triangle motifs with MAPPR.

Next, we examined the sweep pro�le for a single seed node in

the email-Eu network (Figure 4B). �e sweep pro�le highlights

key di�erences between the output of the motif-based and edge-

based algorithms. Although the general shape of the sweep pro�le

is the same across the 3 motifs and edges, the minimum of the

curves occurs for a smaller set and at a smaller conductance value

for the motifs. A plausible explanation is that the edge-based and

motif-based APPR methods are capturing roughly the same set,

but the constraint of triangle participation excludes some nodes.

�e smaller motif conductance values indicate that these motifs are

be�er models for the cluster structure in the network.

5.3 Finding many good seed nodes

We now empirically analyze the theory of Section 4.2. �e goal

of our experiments here is (i) to demonstrate that there are 1-hop

neighborhood clusters of small motif conductance as a test of how

well �eorem 4.4 holds in practice, and (ii) to use this idea to quickly

�nd many clusters with minimal motif conductance by running tar-

geted cluster expansion around a subset of the 1-hop neighborhood

clusters. Regarding (i), we �nd that real-world networks exhibit

much be�er results than predicted by the theory and the 1-hop

neighborhood with minimal motif conductance is competitive with

spectral graph theory approaches. Regarding (ii), we show that

locally minimal nodes are be�er seeds than random nodes. We

use this insight to �nd the global structure of clique conductance

clusters more quickly than exhaustive enumeration.

We evaluate 1-hop neighborhood cluster quality in terms of motif

conductance for 2-clique (edge), 3-clique (triangle), and 4-clique mo-

tifs using four undirected networks where we can exhaustively sam-

ple targeted clusters easily: ca-CondMat, a co-authorship network

constructed from papers posted to the condensed ma�er category

on arXiv [30]; fb-Harvard1, a snapshot of the friendships network

between Harvard students on Facebook in September 2005 [42];

email-Enron, an e-mail communication network of the employees

of Enron Corporation and their contacts [25]; and web-Google,

a Web graph released by Google for a programming contest [31].

Summary statistics for the networks are in Table 4.



Table 3: Comparison of Fiedler clusters and the best 1-hop neighborhood clusters in terms of motif conductance. A star (?)

denotes when 1-hop neighborhood clusters are the same across di�erent clique sizes, a dagger (†) denoteswhen Fiedler clusters

are the same, and a bullet (•) denotes when the neighborhood and Fiedler clusters are the same.

M = 2-cliques (edges) M = 3-cliques (triangles) M = 4-cliques

Neighborhood Fiedler Neighborhood Fiedler Neighborhood Fiedler

|S | ϕM (S ) |S | ϕM (S ) |S | ϕM (S ) |S | ϕM (S ) |S | ϕM (S ) |S | ϕM (S )

ca-CondMat 23
•

1.1·10
−2

23
•

1.1·10
−2

17
?

2.0·10
−3

18
†

1.5·10
−3

17
?

1.4·10
−4

18
†

1.1·10
−4

email-Enron 21
?

2.4·10
−2

25
†

1.7·10
−2

21
?

1.3·10
−2

25
†

6.7·10
−3

8 3.6·10
−3

25
†

1.6·10
−3

fb-Harvard1 4 2.0·10
−1

1,470 1.1·10
−1

5
?

1.4·10
−1

1,429 4.9·10
−2

5
?

7.7·10
−2

1,299 2.2·10
−2

web-Google 203 1.5·10
−3

5,335 9.2·10
−5

62
?

1.8·10
−4

10,803 5.9·10
−5

62
?

1.1·10
−5

8,001 2.2·10
−6

Table 4: Summary statistics of datasets. �e C` are the

higher-order clustering coe�cients [49].

Dataset |V | |E | C2 C3 C4

ca-CondMat 15,147 75,623 0.30 0.25 0.26

email-Enron 18,561 156,139 0.11 0.06 0.05

fb-Harvard1 13,319 793,410 0.14 0.07 0.07

web-Google 393,582 2,905,337 0.07 0.06 0.07

1-hop neighborhoods have small motif conductance. Plug-

ging the higher-order clustering coe�cients from Table 4 into the

bound from �eorem 4.4 yields weak, albeit non-trivial bounds

on the smallest neighborhood conductance (all bounds are ≥ 0.9

for the networks we consider). However, the spirit of the theorem

rather than the bound itself motivates our experiments: with large

higher-order clustering, there should be a neighborhood with small

clique conductance. We indeed �nd this to be true in our results.

Table 3 compares the neighborhood with smallest motif conduc-

tance for the 2-clique, 3-clique, and 4-clique motifs with the Fiedler

cluster obtained by a sweep procedure on the second eigenvector

of the normalized Laplacian matrix [14]. Here, the Fiedler cluster

represents a method that uses the global structure of the network

to compare against the local neighborhood clusters. In all cases,

the best neighborhood cluster has motif conductance far below the

upper bound of �eorem 4.4. For all clique orders, the best neigh-

borhood cluster always has conductance within a factor of 3.5 of the

Fiedler cluster in ca-CondMat, email-Enron, and fb-Harvard1.

With web-Google, the conductances are much smaller but the best

neighborhood still has conductance within an order of magnitude

of the Fiedler set. We conclude that the best neighborhood cluster

in terms of conductance, which comes from purely local constructs,

is competitive with the Fiedler vector that takes into account the

global graph structure. �is motivates our next set of experiments

that uses nodes that induce small neighborhood conductance as

seeds for the APPR method.

Local minima are good seeds. So far, we have used our the-

ory to �nd a single node whose 1-hop neighborhood has small

motif conductance for clique motifs. We examine this further by

using nodes whose neighborhoods induce good clusters as seeds

for MAPPR. Recall that we de�ned a node u to be locally minimal

if ϕM (N (u)) ≤ ϕM (N (v )) for all neighbors v of u. To test whether

local minima are good seeds for APPR, we �rst exhaustively com-

puted MAPPR clusters using every node in each of our networks

as a seed. Next, we used a one-sided Mann Whitney U test to test

the null hypothesis that the local minima yield APPR clusters with

Table 5: �ep-values fromMann-Whitney U tests of the null

hypothesis that themotif conductances of sets fromMAPPR

seededwith localminima are not less than themotif conduc-

tances of sets from MAPPR seeded with non-local minima.

In all but ca-CondMat with the standard edge motif, we re-

ject the null at a signi�cance level < 0.003.

motif ca-CondMat email-Enron fb-Harvard1 web-Google

edge 0.87 < 1·10
−16

8.17·10
−05 < 1·10

−16

triangle 2.07·10
−03 < 1·10

−16
4.32·10

−04 < 1·10
−16

4-clique 7.20·10
−10 < 1·10

−16
1.55·10

−05 < 1·10
−16

motif conductances that are not less than motif conductances from

using non-local minima as seeds (Table 5). �e p-values from these

tests say that we can safely reject the null hypothesis at signi�-

cance level < 0.003 for all cliques and networks considered except

for 2-cliques in ca-CondMat. In other words, local minima are

be�er seeds than non-local minima.

Finally, we use these local minimum seeds to construct network

community pro�le (NCP) plots for di�erent motifs. NCP plots are

de�ned as the optimal conductance over all sets of a �xed size k
as a function of k [31]. �e shapes of the curves reveal the cluster

structure of the networks. In practice, these plots are generated

by exhaustively using every node in the network as a seed for

the APPR method [31]. Here, we compare this approach to two

simpler ones: (i) using the neighborhood sizes and conductances

and (ii) using only local minima as seeds for APPR. In the la�er

case, between 1% and 15% of nodes are local minima, depending

on the network, so this serves as an economical alternative to the

typical exhaustive approach.

Figure 5 shows the NCP plots for ca-CondMat and fb-Harvard1

with the triangle and 4-clique motifs. Seeding with local minima is

su�cient for capturing the major trends of the NCP plot. In general,

the curves constructed from neighborhood information capture the

�rst downward spike in the plot, but do not capture larger sets with

small conductance. Finally, the triangle and 4-clique NCP plots

are quite similar for both networks. �us, we suspect that local

minima for lower-order cliques could also be used as good seeds

when looking for sets based on higher-order cliques.

6 DISCUSSION

Our work enables fast local clustering of graphs in terms of rich,

higher-order structures with theoretical guarantees on cluster qual-

ity. Our method is also an e�ective technique for �nding clusters in

directed graphs, a common data type with relatively few analytic



Figure 5: NCP plots for two networks with two di�erent

clique sizes. Curves are constructed from MAPPR with all

nodes as seeds (blue), MAPPR with just local minima as

seeds (green), and all 1-hop neighborhoods (purple). Using

localminima as seeds captures the trends of exhaustive PPR

using only a fraction of the seeds.

tools, and we found that using directed triangle motifs provided

substantial improvements in recovery of communities in a directed

e-mail network. We also found triangles critical for recovery in

common synthetic models. Lastly, we computed local motif-based

clusters for clique motifs through 1-hop neighborhoods and found

the centers of 1-hop neighborhoods with small motif conductance to

be good seeds. Neighborhoods also revealed correlations between

cliques of di�erent orders—in several cases, the same neighborhood

has the smallest motif conductance for di�erent clique motifs. Ex-

ploring this structure is an interesting avenue for future research.
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