
Non-exhaustive, Overlapping k-means

Joyce Jiyoung Whang∗ Inderjit S. Dhillon∗ David F. Gleich†

Abstract

Traditional clustering algorithms, such as k-means, output
a clustering that is disjoint and exhaustive, that is, every
single data point is assigned to exactly one cluster. How-
ever, in real datasets, clusters can overlap and there are
often outliers that do not belong to any cluster. This is
a well recognized problem that has received much atten-
tion in the past, and several algorithms, such as fuzzy k-
means have been proposed for overlapping clustering. How-
ever, most existing algorithms address either overlap or out-
lier detection and do not tackle the problem in a unified
way. In this paper, we propose a simple and intuitive ob-
jective function that captures the issues of overlap and non-
exhaustiveness in a unified manner. Our objective function
can be viewed as a reformulation of the traditional k-means
objective, with easy-to-understand parameters that capture
the degrees of overlap and non-exhaustiveness. By studying
the objective, we are able to obtain a simple iterative algo-
rithm which we call NEO-K-Means (Non-Exhaustive Over-
lapping K-Means). Furthermore, by considering an exten-
sion to weighted kernel k-means, we can tackle the case of
non-exhaustive and overlapping graph clustering. This ex-
tension allows us to apply our NEO-K-Means algorithm to
the community detection problem, which is an important
task in network analysis. Our experimental results show
that the new objective and algorithm are effective in find-
ing ground-truth clusterings that have varied overlap and
non-exhaustiveness; for the case of graphs, we show that our
algorithm outperforms state-of-the-art overlapping commu-
nity detection methods.

1 Introduction

The traditional clustering problem involves exhaustively
assigning each data point to a single group (or cluster)
such that nearby points are also assigned to the same
group. When separations between groups are clear and
the data does not contain any outliers, then classical
methods such as the k-means algorithm may succeed
in correctly assigning points to groups in many realistic
data models. In this paper, we revisit the clustering
problem from the perspective of real-world data where
groups still exist but may lack clean separations and the
data contain outliers. In this setting, a more reasonable
goal is a non-exhaustive, overlapping clustering where a
data point may be outside of any cluster, and clusters
are allowed to overlap with each other.

There is substantial prior research that has exam-
ined both of these problems individually – as would be

∗Department of Computer Science, The University of Texas at
Austin. Email: {joyce, inderjit}@cs.utexas.edu

†Department of Computer Science, Purdue University. Email:
dgleich@purdue.edu

expected for an area as well studied as clustering. For
example, non-exhaustive clustering is highly related to
outlier detection in a dataset, which itself has an exten-
sive literature. Regarding overlap, both soft-clustering
[1], which only makes probabilistic assignments, and
overlapping clustering models are common [2]. Further-
more, many variations of the k-means algorithm have
been proposed over the years [3] including recent work
that considers overlapping clustering [4], [5], [6]. We
discuss the related work in more detail in Section 4 in
the context of the limitations of existing methods, and
our new contribution. A key difference between our ap-
proach and existing ideas is that we treat the issues of
non-exhaustiveness and overlap in a unified framework.

The result of our investigations is a novel im-
provement to the k-means clustering objective that en-
ables a parametric trade-off between a clustering qual-
ity measure, overlap among the clusters, and non-
exhaustiveness (the number of outliers not assigned to
any group). To optimize the new objective, we present
a simple iterative algorithm called non-exhaustive, over-
lapping k-means, or NEO-K-Means in short. Further-
more, by considering an extension to weighted ker-
nel k-means, we can also tackle the problem of non-
exhaustive, overlapping graph clustering. In the con-
text of graph clustering, we extend a traditional nor-
malized cut-based graph clustering objective to the
non-exhaustive, overlapping setting, and show that this
extended graph clustering objective is mathematically
equivalent to the weighted kernel NEO-K-Means objec-
tive with a specific weight and kernel. This equivalence
enables us to apply our NEO-K-Means algorithm to the
overlapping community detection problem which is an
important task in network analysis. Experimental re-
sults show that our new objective and algorithm are
effective in finding ground-truth clusters; for the case of
graphs, we show that our algorithm outperforms state-
of-the-art overlapping community detection methods.

2 Non-exhaustive, Overlapping k-means

Developing a general purpose clustering algorithm is a
challenging task. Even though many different clustering
methods have been developed, k-means [7] is still one
of the most popular clustering techniques due to its
simplicity and empirical success [3]. We begin our

936 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

08
/1

9/
15

 to
 1

62
.1

7.
27

.1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

discussion by briefly reviewing k-means, and attempting
our first and obvious extension of the k-means objective
function. However, this obvious extension has serious
limitations; after recognizing this, we propose our final
objective function and a simple iterative algorithm for
non-exhaustive, overlapping clustering.

2.1 k-means. Let us review the standard k-means
setting. Given a set of data points X = {x1,x2, · · ·xn},
k-means seeks a partition of the data points into k clus-
ters C1, . . . , Ck such that they cover all points (formally,
C1 ∪ C2 ∪ · · · ∪ Ck = X), and the partitions are disjoint
(Ci ∩ Cj = ∅ ∀i �= j). The goal of k-means is to pick
the clusters to minimize the distance from the cluster
centroid, or the mean of cluster, to each of its assigned
data points. The k-means objective may be written as:

(2.1)

min
{Cj}k

j=1

k∑
j=1

∑
xi∈Cj

‖xi −mj‖
2, where mj =

∑
xi∈Cj

xi

|Cj |
.

It has been shown that minimizing the above ob-
jective function is an NP-hard problem even for just
two clusters. However, there is an efficient heuristic k-
means algorithm [7], also known as Lloyd’s algorithm,
that proceeds by repeatedly assigning data points to
their closest clusters and recomputing cluster centroids.
This algorithm monotonically decreases the objective
function.

2.2 An Intuitive, but Problematic, Extension.

To extend the k-means objective function to a non-
exhaustive, overlapping clustering setting, we first in-
troduce an assignment matrix U = [uij]n×k such that
uij = 1 if xi belongs to cluster j; uij = 0 otherwise.
Using this notation, if we seek a traditional disjoint and
exhaustive clustering, the number of ones in the assign-
ment matrix U should be always equal to n because each
data point should be assigned to exactly one cluster.

On the other hand, in a non-exhaustive, overlapping
clustering, there are no restrictions on the assignment
matrix U ; there can be multiple ones in a row, meaning
that a data point can belong to multiple clusters. Also,
there can be rows of all zeros, meaning that some data
points can have no membership in any cluster. So,
now, we need to decide how many assignments we will
make in U , i.e., we need to control the number of ones
in U . One way to do this is to consider UTU which
is a k × k matrix whose diagonal entries are equal to
cluster sizes. The trace of UTU is equal to the sum
of cluster sizes which is also equal to the total number
of assignments in the assignment matrix U . To control
how many additional assignments we will make in U , we
add a constraint that the number of total assignments
in U should be equal to n + αn. We define our “first

extension of k-means” as follows:

(2.2)

min
U

k∑
j=1

n∑
i=1

uij‖xi −mj‖
2, where mj =

∑n

i=1 uijxi∑n

i=1 uij

s.t. trace(UTU) = (1 + α)n.

We require 0 ≤ α ≤ (k−1) and note that α 	 (k−1) to
avoid assigning each data point to every cluster. Similar
to k-means, the above objective function is designed
to minimize the sum of squared distances between
every data point to its cluster centroid, but now the
assignment is not necessarily restricted to be disjoint
and exhaustive.

However, the seemingly reasonable objective func-
tion (2.2) has a limitation. To illustrate this, we test this
objective function on synthetic data. As shown in the
leftmost plot in Figure 1, we generate two ground-truth
clusters which contain both overlap and outliers (details
about this dataset are described in Section 5). Red data
points are only assigned to cluster 1, blue data points
are only assigned to cluster 2, green data points are as-
signed to both of the clusters, and black data points are
not assigned to any cluster. Using a k-means like algo-
rithm, we can optimize (2.2), and Figure 1 (b) shows
the clustering result. There are 1,000 data points, and
we set α=0.1 (which is the ground-truth value of α).
So, 1,100 assignments are made in U . We can see that
(2.2) fails to correctly recover the ground-truth clusters.
Some data points that are relatively far from the cluster
centers are not assigned to any cluster even though they
are not outliers. This result indicates that just control-
ling the total number of assignments in U is not enough,
and we need another constraint to correctly control the
non-exhaustiveness. Based on these investigations, we
now propose our final objective function in the following
subsection.

2.3 The NEO-K-Means Objective. Recall that in
our first extension of k-means objective function (2.2),
we just added a constraint on the total number of
assignments in the assignment matrix U , and it resulted
in more false positive outliers than expected. To fix this
problem, we introduce another important constraint
which controls the degree of non-exhaustiveness. To
state our new optimization problem, let us define the
indicator function �{exp} to be �{exp} = 1 if exp is
true; 0 otherwise, and we let 1 denote a k × 1 column
vector having all the elements equal to one. Then, the
vector U1 denotes the number of clusters to which each
data point belongs. Thus, (U1)i = 0 means that xi

does not belong to any cluster. Now, by adding a non-
exhaustiveness constraint to (2.2), we define our NEO-
K-Means objective function as follows:

937 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

08
/1

9/
15

 to
 1

62
.1

7.
27

.1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

−8 −6 −4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8 Cluster 1
Cluster 2
Cluster 1 & 2
Not assigned

(a) Ground-truth clusters

−8 −6 −4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8 Cluster 1
Cluster 2
Cluster 1 & 2
Not assigned

(b) First extension of k-means

−8 −6 −4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8 Cluster 1
Cluster 2
Cluster 1 & 2
Not assigned

(c) NEO-K-Means

Figure 1: (a) Two ground-truth clusters are generated (n=1,000, α=0.1, β=0.005). Green points indicate overlap between

the clusters, and black points indicate outliers. See Section 5 for details. (b) Our first extension of k-means objective

function defined in (2.2) makes too many outlier assignments and fails to recover the ground-truth. (c) The NEO-K-Means

objective defined in (2.3) adds an explicit term for non-exhaustiveness that enables it to correctly detect the outliers and

find natural overlapping clustering structure which is very similar to the ground-truth clusters (α and β are automatically

estimated by the heuristics discussed in Section 2.5).

(2.3)

min
U

k∑
j=1

n∑
i=1

uij‖xi −mj‖
2, where mj =

∑n

i=1 uijxi∑n

i=1 uij

s.t. trace(UTU) = (1 + α)n,
∑n

i=1 �{(U1)i = 0} ≤ βn.

We allow at most βn data points to be unassigned
to any cluster, i.e., at most βn data points can be
considered as outliers. We require 0 ≤ βn and note
that βn 	 n to cause most data points to be assigned
to clusters. Specifically, by the definition of “outliers”,
βn should be a very small number compared to n. The
parameters α and β offer an intuitive way to capture the
degree of overlap and non-exhaustiveness; by “turning
the knob” on these parameters, the user can explore the
landscape of overlapping, non-exhaustive clusterings. If
α=0 and β=0, the NEO-K-Means objective function is
equivalent to the standard k-means objective presented
in (2.1). To see this, note that setting the parameter
β=0 requires every data point to belong to at least
one cluster, while setting α=0 makes n assignments.
Putting these together, the resulting clustering will be
disjoint and exhaustive. Note that by setting α=0,
objective (2.2) does not have this property.

To see if the objective function (2.3) yields a reason-
able clustering, we test it on the same dataset we used
in the previous subsection. Figure 1 (c) shows the result
(α and β are automatically estimated by the heuristics
discussed in Section 2.5). We see that NEO-K-Means
correctly finds all the outliers, and produces very similar
overlapping structure to the ground-truth clusters.

2.4 The NEO-K-Means Algorithm. We now pro-
pose a simple iterative algorithm which monotonically
decreases the NEO-K-Means objective until it converges
to a local minimum. Having the hard constraints in
(2.3), we will make n+αn assignments such that at most

βn data points can have no membership in any clus-
ter. Note that the second constraint can be interpreted
as follows: among n data points, at least n − βn data
points should have membership to some cluster. When
our algorithm makes assignments of points to clusters, it
uses two phases to satisfy these two constraints. Thus,
each cluster Cj decomposes into two sets C̄j and Ĉj that
record the assignments made in each phase.

Algorithm 1 describes the NEO-K-Means algo-
rithm. We first initialize cluster centroids. Any ini-
tialization strategies that are used in k-means may also
be applied to our algorithm. Given cluster centroids, we
compute all the distances [dij]n×k between every data
point and clusters, and for every data point, record
its closest cluster and that distance. Then, the data
points are sorted in an ascending order by the dis-
tance to its closest cluster. To ensure at least n − βn
data points are assigned to some cluster (i.e., to satisfy
the second constraint), we assign the first n − βn data
points to their closest clusters. Let C̄j denote the assign-

ments made by this step. Thus,
∑k

j=1 |C̄j | = n − βn.
Then, we make βn + αn more assignments by tak-
ing βn + αn minimum distances among [dij]n×k such

that xi /∈ C̄j . Let Ĉj denote the assignments made

by this step. Thus,
∑k

j=1 |Ĉj | = βn + αn. Finally,∑k

j=1(|C̄j | + |Ĉj |) = n + αn. Once all the assignments
are made, we update cluster centroids by recomputing
the mean of each cluster. We repeat this procedure un-
til the change in objective function is sufficiently small
or the maximum number of iterations is reached. Note
that the algorithm does not forcibly choose βn points as
outliers; indeed, the number of outliers is less than βn
and depends on the the distances between data points
and their “secondary” clusters. We note that, if α = 0
and β = 0, then the NEO-K-Means algorithm is identi-
cal to the standard k-means algorithm. Our algorithm

938 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

08
/1

9/
15

 to
 1

62
.1

7.
27

.1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Algorithm 1 NEO-K-Means

Input: X = {x1,x2, · · ·xn}, the number of clusters k, the
maximum number of iterations tmax, α, β

Output: C1, C2, · · · , Ck

1: Initialize cluster means {mj}
k
j=1, t = 0.

2: while not converged and t < tmax do

3: Compute cluster means, and then compute distances
between every data point and clusters [dij]n×k.

4: Initialize T = ∅, S = ∅, p = 0, and C̄j = ∅, Ĉj = ∅ ∀j.
5: while p < (n+ αn) do
6: if p < (n− βn) then
7: Assign xi∗ to C̄j∗ such that (i∗, j∗) = argmin

i,j

dij
where {(i, j)} /∈ T , i /∈ S.

8: S = S ∪ {i∗}.
9: else

10: Assign xi∗ to Ĉj∗ such that (i∗, j∗) = argmin
i,j

dij
where {(i, j)} /∈ T .

11: end if

12: T = T ∪ {(i∗, j∗)}.
13: p = p+ 1.
14: end while

15: ∀j, update clusters Cj = C̄j ∪ Ĉj .
16: t = t+ 1.

17: end while

guarantees monotonic decrease in the objective function
as the following result shows:

Theorem 1. Algorithm 1 monotonically reduces the
NEO-K-Means objective in (2.3) while satisfying the
constraints specified by α and β.

Proof. Let J (t) denote the objective at the t-th itera-
tion. Then,

J
(t) =

k∑

j=1

∑

xi∈C
(t)
j

‖xi −m
(t)
j ‖2

≥
k∑

j=1

∑

xi∈C̄
(t+1)
j

‖xi −m
(t)
j ‖2 +

k∑

j=1

∑

xi∈Ĉ
(t+1)
j

‖xi −m
(t)
j ‖2

=

k∑

j=1

∑

xi∈C
(t+1)
j

‖xi −m
(t)
j ‖2 since C

(t+1)
j = C̄

(t+1)
j ∪ Ĉ

(t+1)
j

≥
k∑

j=1

∑

xi∈C
(t+1)
j

‖xi −m
(t+1)
j ‖2 (property of centroids)

= J
(t+1)

The first inequality follows from the update scheme
used to form C̄j and Ĉj by our algorithm (see steps 7
and 10 in Algorithm 1). Clearly the algorithm always
maintains feasibility, i.e., the constraints specified by
the parameters α and β are always satisfied.

2.5 Parameter Selection. We now discuss how to
choose the parameters α and β. Since parameter
selection is usually considered as a challenging task,
many existing clustering algorithms leave this as an

open problem. For example, in k-means-- algorithm
[8], the number of outliers is a required input. Many
other clustering methods (e.g., [1], [5], [6]) also have
their own model parameters that should be set by a
user. While some model parameters of other clustering
methods tend to be non-intuitive to set or it can be
hard to predict the effect of a particular parameter
setting, the NEO-K-Means parameters α and β are
intuitive parameters that allow users to specify how
much overlap/non-exhaustiveness they want. So, users
might be able to estimate these parameters from the
domain knowledge. If any overlap and outlier statistics
are unknown, we can estimate α and β values by using
the heuristics discussed in the following subsections.
The high level idea of our parameter estimation is to
first run a disjoint, exhaustive clustering and perform
cheap distance-based computation.

2.5.1 Choosing β. We first run a traditional k-
means. Let di denote the distance between data point xi

and its closest cluster. We compute the mean (denoted
by μ) and the standard deviation (denoted by σ) of di
(i=1,· · · ,n). If a distance di is greater than μ+δσ, then
we consider the data point xi as an outlier, where δ is
a constant which controls how far from is it from the
mean. We empirically observe that usually δ = 6 leads
to a reasonable estimate for β.

2.5.2 Choosing α. We use two different strategies
for choosing α. We empirically observe that the first
strategy is better when the overlap is small and the
second strategy is better when the overlap is large.

The first strategy considers the distribution of dis-
tances in each cluster. For each Cj , we consider the
distances between the center of Cj and the data points
which are assigned to Cj , and compute the mean (de-
noted by μj) and the standard deviation (denoted by
σj) of these distances. Then, for a data point xl /∈ Cj ,
we compute the distance between xl and Cj , denoted by
dlj . If dlj is less than μj + δσj (usually, −1 ≤ δ ≤ 3.5
gives a good estimate), we consider the data point xl

should be on the overlapped region. In this way, we can
count the number of points which should be considered
in the overlapped region, so, we can estimate α.

The second strategy considers normalized distances.
Given a data point xi, let dij denote the distance be-
tween xi and Cj . We compute the normalized dis-

tance which is defined by d̄ij = dij/
∑k

l=1 dil (note that∑k

l=1 d̄il = 1). Then, we count the number of d̄ij whose
value is less than 1/(k + 1). Notice that if a data point
is equidistant from every cluster, then the normalized
distance is equal to 1/k. To get a stronger bound, we
set the threshold to be 1/(k+1). If the normalized dis-
tance is less than this threshold, we consider that the

939 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

08
/1

9/
15

 to
 1

62
.1

7.
27

.1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

data point should be in the overlapped region. In this
way, we can estimate the amount of overlap.

2.6 Weighted Kernel NEO-K-Means. Now, let
us discuss weighted kernel k-means. In kernel k-
means, each data point is first mapped into a higher
dimensional feature space, and then clustered using k-
means in the feature space. A weighted version of kernel
k-means [9] also has been introduced to differentiate
each data point’s contribution to the objective function
by assigning a weight to each data point. Let φ denote a
nonlinear mapping, and wi denote a nonnegative weight
for data point xi. Then, the weighted kernel k-means
objective [9] is defined as follows:

(2.4)

min
{Cj}k

j=1

k∑
j=1

∑
xi∈Cj

wi‖φ(xi)−mj‖
2,

where mj =

∑
xi∈Cj

wiφ(xi)∑
xi∈Cj

wi

.

Most algorithms to optimize this objective exploit
the well-known kernel trick to avoid forming the feature
space explicitly and use the kernel matrix of inner
products instead. Let us consider the weighted kernel
NEO-K-Means objective function. Just like in (2.4), we
introduce a nonlinear mapping φ and a weight wi for
each data point xi. Then the weighted kernel NEO-K-
Means objective is defined as follows:

(2.5)

min
U

k∑

c=1

n∑

i=1

uicwi‖φ(xi)−mc‖
2,

where mc =

∑n

i=1 uicwiφ(xi)∑n

i=1 uicwi

s.t. trace(UTU) = (1 + α)n,
∑n

i=1 �{(U1)i = 0} ≤ βn.

The extension of NEO-K-Means to the weighted
kernel case enables us to tackle the problem of non-
exhaustive, overlapping graph clustering (also known as
overlapping community detection), which we describe in
the next section.

3 Graph Clustering using NEO-K-Means

In this section, we first review some of the traditional
graph clustering objectives, and then present an ex-
tension of the traditional graph cut objectives to non-
exhaustive, overlapping clustering setting. We show
that this extended graph clustering objective is equiv-
alent to the weighted kernel NEO-K-Means objective.
Thus, we present a principled method to compute non-
exhaustive, overlapping graph clustering by applying
the NEO-K-Means algorithm.

3.1 Graph Clustering via Normalized Cut.

Given a graph G = (V, E), the corresponding adjacency

matrix is defined as A = [aij] such that aij is equal to
the edge weight between vertex i and j if there is an
edge, and zero otherwise. We assume we are working
with undirected graphs, where the matrix A is sym-
metric. We also assume that there is no self-loop in the
graph, i.e., the diagonal elements of A are all zeros. The
traditional graph partitioning problem seeks k pairwise
disjoint clusters such that C1 ∪ C2 ∪ · · · ∪ Ck = V.

Normalized cut [10] is a popular measure to evaluate
the quality of a graph partitioning or graph clustering.
Let links(Cp, Cq) denote the sum of edge weights be-
tween two sets Cp, Cq. Then, the normalized cut of a
graph is defined as follows:

(3.6) NCut(G) = min
C1,C2,···Ck

∑k

j=1

links(Cj ,V\Cj)

links(Cj ,V)
.

Using a linear algebraic formulation, the normalized
cut objective may be expressed as follows:

(3.7)

NCut(G) = min
y1,y2,···yk

k∑
j=1

yT
j (D −A)yj

yT
j Dyj

= max
y1,y2,···yk

k∑
j=1

yT
j Ayj

yT
j Dyj

,

whereD is the diagonal matrix of vertex degrees, and yj

denotes an indicator vector for cluster Cj , i.e., yj(i) = 1
if a vertex vi belongs to cluster Cj , zero otherwise.

3.2 Extending Graph Cut Objectives to Non-

exhaustive, Overlapping Clustering. Note that the
traditional normalized cut objective (3.7) is for dis-
joint, exhaustive graph clustering. To consider non-
exhaustive, overlapping graph clustering, we first intro-
duce an assignment matrix Y = [yij]n×k such that yij=1
if a vertex vi belongs to cluster Cj ; yij=0 otherwise. Let
yj denote jth column of Y . Then, we can extend (3.7)
to non-exhaustive, overlapping graph clustering by in-
troducing the same constraints as in (2.3):

(3.8)

max
Y

k∑
j=1

yT
j Ayj

yT
j Dyj

s.t. trace(Y TY) = (1 + α)n,
∑n

i=1 �{(Y 1)i = 0} ≤ βn.

By adjusting α and β, we can control the degree of
overlap and non-exhaustiveness. If α=0, and β=0, the
above objective enforces disjoint and exhaustive cluster-
ing, thus is equivalent to the traditional normalized cut
objective. We have focused on the normalized cut ob-
jective, but other graph clustering objectives (e.g., ratio
association [10]) also can be extended to non-exhaustive,
overlapping clustering using the same approach.

3.3 Equivalence of the Objectives. We now show
that (2.5) is equivalent to (3.8) by defining an appro-
priate kernel and weights. Let W = [wii]n×n denote a

940 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

08
/1

9/
15

 to
 1

62
.1

7.
27

.1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

diagonal weight matrix whose diagonal entries are equal
to vertex weights, letK denote a kernel matrix such that
Kij = φ(xi) · φ(xj), and let uc denote the cth column
of U . Then, (2.5) can be rewritten as follows:

(3.9)

min
U

k∑
c=1

n∑
i=1

uicwi‖φ(xi)−mc‖
2

= min
U

k∑
c=1

(
n∑

i=1

uicwiKii −
uc

TWKWuc

uc
TWuc

)

Let us define the kernel as K ≡ γW−1+W−1AW−1

where γ is a positive constant typically chosen to make
K positive definite. Then (3.9) can be expressed as
follows:

(3.10)

= min
U

k∑
c=1

(
n∑

i=1

uicwi

γ

wi

−
uc

TAuc

uc
TWuc

)

= min
U

(
γ(1 + α)n−

k∑
c=1

uc
TAuc

uc
TWuc

)

= max
U

k∑
c=1

uc
TAuc

uc
TWuc

Now, in (3.10), let us define the weight matrix as
W ≡ D. Notice that U = Y in (3.8). Putting these
together, we can see that the weighted kernel NEO-
K-Means objective (2.5) is equivalent to the extended
normalized cut objective (3.8).

3.4 Algorithm. The equivalence between (3.8) and
(2.5) implies that we can optimize the non-exhaustive,
overlapping graph clustering objectives using the
weighted kernel NEO-K-Means algorithm. The differ-
ence between standard k-means and weighted kernel k-
means is how to compute the distance between a data
point and clusters. Using our definitions of kernel and
weights, the distance between a vertex vi and cluster Cj
can be quantified as follows:

dist(vi, Cj) =

(3.11)

−
2 links(vi, Cj)

deg(vi) deg(Cj)
+

links(Cj , Cj)

deg(Cj)2
+

γ

deg(vi)
−

γ

deg(Cj)

where deg(vi) denotes the degree of vertex vi, and
deg(Cj) denotes the sum of edge weights of vertices in
Cj . Then, Algorithm 1 can be applied to graph data by
computing the distances using (3.11).

Popular software for graph partitioning, e.g., Gra-
clus [9] and Metis [11], employs a multilevel approach.
In this framework, an input graph is coarsened by merg-
ing nodes level by level. As a result, a series of smaller
graphs are created. Once the input graph is coars-
ened into a small enough graph, an initial partition-
ing is performed. The clustering result of the coarsest

level graph is first projected onto the graph at the level
above it. Many different heuristics can be used at any
of these coarsening or projection stages in order to im-
prove the overall performance. The clustering is then
refined through a refinement algorithm which plays the
most important role in optimizing an objective function.

We also exploit the multilevel framework for non-
exhaustive, overlapping graph clustering. While we use
similar heuristics for coarsening and initial partitioning
phases as in [9], we implement the weighted kernel NEO-
K-Means algorithm for the refinement phase. Besides
the multilevel refinement, any reasonable initialization
can be directly given, and we can apply the weighted
kernel NEO-K-Means algorithm to optimize the non-
exhaustive, overlapping graph clustering objective.

4 Related Work

Both the aspects of overlap and non-exhaustiveness in
clustering have been studied before, albeit rarely con-
sidered together in a unified manner as we do. We rec-
ognize that [12] also considers both overlap and non-
exhaustiveness by modifying the traditional k-medoid
algorithm, but their methodologies include complicated
heuristics. A few recent papers study the clustering
problem with outlier detection. In particular, [8] have
proposed the k-means-- algorithm, which discovers clus-
ters and outliers in a unified fashion; however it does
not find overlapping clusters. We focus our discus-
sion on overlapping clustering as that literature is the
most closely related to our contribution. Soft clustering
methods, such as fuzzy k-means [1], relax the binary
assignment constraint and replace it by a probabilis-
tic assignment. Thresholding these probabilities may
result in both overlapping assignments to clusters and
non-exhaustive partitions, although it is difficult to con-
trol these effects. There have been many attempts to
extend k-means to overlapping clustering. For example,
[4] defines OKM. However, it has been recognized that
OKM tends to yield large overlap among the clusters,
which the restricted OKM method [5] should address.
Separately, [6] also has reformulated the OKM objec-
tive function by adding a sparsity constraint. On the
other hand, from the Bayesian perspective, [2] proposed
a generative model, called MOC, where each data point
is assumed to be generated from an exponential family.

In the context of graph clustering, many different
types of overlapping graph clustering, or overlapping
community detection methods, have been presented.
We recently proposed a seed expansion based commu-
nity detection algorithm [13]. In this algorithm, good
seeds are detected in a network, and the seeds are ex-
panded using a personalized PageRank scheme. Com-
pared to this seed-and-grow algorithm, our NEO-K-

941 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

08
/1

9/
15

 to
 1

62
.1

7.
27

.1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Means algorithm adopts a more principled approach.
Among the existing methods, the scalable alternatives
include demon [14] and bigclam methods [15]; which
we compare against. We also compare with oslom [16]
which detects outliers and produces statistically signifi-
cant overlapping communities. Many other methods are
discussed in a recent survey [17], although the majority
of successful approaches tend to suffer scalability issues
on large networks like those we consider. Our derivation
of the relationship between NEO-K-Means and over-
lapping community detection is inspired by [9] which
showed the connection between k-means and graph par-
titioning.

5 Experimental Results

We show the experimental results of NEO-K-means on
both vector data and graph data.

5.1 Evaluation Metrics. To evaluate the resulting
set of clusters from each method, we focus primarily
on the average F1 score which measures how well each
algorithm finds the ground-truth clusters. Formally,
given a set of algorithmic clusters C, and the ground-
truth clusters S, the average F1 score is computed by
averaging the F1 score of the best match between each
ground-truth cluster and algorithmic clusters [13]. The
F1 score of a single ground-truth cluster Si is computed
as the harmonic mean of precision(Si) and recall(Si):

precision(Si) =
|Cj

⋂
Si|

|Cj |
, recall(Si) =

|Cj
⋂
Si|

|Si|
,

where Cj ∈ C, and F1(Si) = F1(Si, Cj∗) such that
j∗ = argmax

j

F1(Si, Cj). In other words, we pick the

algorithmic cluster Cj with the highest F1 score. The
average F1, denoted by F̄1, is computed as follows:

F̄1 =
1

|S|

∑
Si∈S

F1(Si).

5.2 Vector Data. We compare NEO-K-Means with
fuzzy k-means [1] (denoted by fuzzy), MOC [2] (de-
noted by moc), OKM [4] (denoted by okm), restricted
OKM [5] (denoted by rokm), and explicit/implicit spar-
sity constrained clustering [6] (denoted by esp and isp,
respectively). For NEO-K-Means, we use our method-
ologies for estimating α and β (discussed in Section 2.5).
We initialize all the methods using k-means with exactly
the same centroids, run each of the algorithms 5 times,
and pick the assignment matrix which leads to the best
objective function value of each method. If an algorithm
happens to return empty clusters or clusters that con-
tain all the data points, we exclude these clusters when
we compute F1 score. Table 1 shows a summary of our
vector datasets. ‘dim.’ denotes the dimension of the
data points, and ¯|C| denotes the average cluster size.

5.2.1 Synthetic Data. Three synthetic datasets are
generated from the Gaussian distribution. We first

Table 1: Vector datasets.

n dim. ¯|C| outliers k

synth1 5,000 2 2,750 0 2
synth2 1,000 2 550 5 2
synth3 6,000 2 3,600 6 2
yeast 2,417 103 731.5 0 14
music 593 72 184.7 0 6
scene 2,407 294 430.8 0 6

fix the cluster centroid of each cluster, and then draw
n−βn data points from the Gaussian distribution whose
mean is the cluster centroid and covariance matrix is
the identity. To create the ground-truth clusters, we
first assign all the data points to its closest cluster, and
then make additional assignments by taking minimum
distances such that the total number of non-zeros of the
ground-truth cluster matrix is equal to n+αn. Finally,
βn outliers are added to the data matrix, and these data
points are not assigned to any cluster in the ground-
truth cluster matrix.

The first three rows of Table 2 shows the F1 scores
on the synthetic datasets. Because the datasets are
simple, almost all the methods achieve high F1 scores
(above 0.9) except moc. On synth3, one of the clusters
produced by moc contains all the data points in the
cluster. As a result, moc gets a particularly low F1 score
on this dataset. We can see that NEO-K-Means achieves
the highest F1 score on all of the datasets. While synth1
does not contain outliers, synth2 and synth3 contain
five and six outliers, respectively. We observe that
NEO-K-Means finds the correct number of outliers, and
perfectly finds all the outliers. On the other hand, all
the other baseline methods do not have a functionality
of non-exhaustive clustering, so they assign the outliers
to some clusters.

5.2.2 Real-world Data. We use three real-world
multi-label datasets from [18], which are presented in
Table 1: ‘yeast’, ‘music’, and ‘scene’. On these datasets,
we treat each label as a ground-truth cluster. Details
of each of these datasets are described in [18]. The F1

scores are presented in the last three rows of Table 2.
On ‘yeast’ dataset, among 14 clusters, moc returns 13
empty clusters, and one cluster that contains all the
data points. So we cannot report the F1 score of moc.
We can see that NEO-K-Means always shows the best
F1 score while the algorithmic performance of the other
methods varies. For instance, rokm is the worst for
‘music’, but is the second best for the ‘scene’ dataset.

5.3 Community Detection in Graph Data.

5.3.1 Karate Club Network. As an illustration of
the method, we first apply our NEO-K-Means algorithm
on Zachary’s Karate Club network, which is a classical

942 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

08
/1

9/
15

 to
 1

62
.1

7.
27

.1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Table 2: F1 scores on vector datasets. NEO-K-Means (the last column) achieves the highest F1 score across all
the datasets while the performance of other existing algorithms is not consistent across all the datasets.

moc fuzzy esp isp okm rokm NEO

synth1 0.833 0.959 0.977 0.985 0.989 0.969 0.996

synth2 0.836 0.957 0.952 0.973 0.967 0.975 0.996

synth3 0.547 0.919 0.968 0.952 0.970 0.928 0.996

yeast - 0.308 0.289 0.203 0.311 0.203 0.366

music 0.534 0.533 0.527 0.508 0.527 0.454 0.550

scene 0.467 0.431 0.572 0.586 0.571 0.593 0.626

Table 3: Average normalized cut of each algorithm on large real-world networks. Lower normalized cut indicates
better clustering. NEO-K-Means achieves the lowest normalized cut on all the datasets.

demon oslom bigclam sse NEO

Amazon 0.555 0.221 0.392 0.116 0.105

DBLP 0.606 0.355 0.617 0.204 0.188

Flickr - - 0.596 0.515 0.331

LiveJournal - - 0.912 0.643 0.373

example for testing clustering algorithms. This network
represents friendship relationships between 34 members
in a karate club at a US university in 1970. In
this network, node 1 and node 34 are known to be
the instructor and the student founder of the club,
respectively. These two nodes are central in the network
forming two natural clusters around them. We run the
NEO-K-Means with α=0.2, and β=0, so in this setting,
the algorithm will make 41 assignments in total, i.e., 7
nodes can belong to both clusters (note that the number
of common friends of node 1 and node 34 is four, so we
are looking for something a little less than twice the
obvious overlap). Figure 2 shows the clustering result
of NEO-K-Means. We can see that the nodes that are
assigned to both clusters have strong interactions with
both of the underlying clusters.

Figure 2: Clustering result of NEO-K-Means on Karate
Club network. NEO-K-Means is able to reveal the
natural underlying overlapping structure of the network.

5.3.2 Large Real-world Networks. For compar-
isons on large real-world networks, we use four real-

Table 4: Graph datasets

No. of vertices No. of edges

Amazon 334,863 925,872
DBLP 317,080 1,049,866
Flickr 1,994,422 21,445,057

LiveJournal 1,757,326 42,183,338

world networks from [19], which are presented in Ta-
ble 4. We compare the weighted kernel NEO-K-Means
algorithm with state-of-the-art overlapping community
detection methods: the seed set expansion method (de-
noted by sse) [13], bigclam [15], demon [14], and oslom
[16]. For the comparison with sse, we use ‘graclus cen-
ters’ seeding method because it produces better aver-
age normalized cut values than ‘spread hubs’ seeding
method. As in [13], we set k as 15,000 for Flickr and
LiveJournal, and 25,000 for DBLP and Amazon. For
NEO-K-Means, we set α=10, β=0 for Flickr and Live-
Journal, and α=40, β=0.0001 for DBLP and Amazon.
We choose small values of β and large values of α be-
cause (i) we expect that there are graph-based pre-
processing techniques that remove obvious outliers (for
example, connected components analysis) and (ii) real-
world networks have vertices in many clusters.

We first compare the methods in terms of the av-
erage normalized cut. Recall that the normalized cut
of a graph clustering is computed by (3.6). A lower
normalized cut should indicate a better clustering. We
compute the average normalized cut by dividing the
total normalized cut by the returned number of clus-
ters. Table 3 shows the average normalized cut of each
algorithm. The demon and oslom programs fail on
the Flickr and LiveJournal networks. We can see that
NEO-K-Means achieves the lowest normalized cut value

943 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

08
/1

9/
15

 to
 1

62
.1

7.
27

.1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Table 5: F1 score of each algorithm on Amazon and DBLP. NEO-K-Means shows the highest F1 score on Amazon,
and comparable F1 score with sse on DBLP.

demon oslom bigclam sse NEO

Amazon 0.165 0.318 0.269 0.467 0.490

DBLP 0.137 0.132 0.151 0.176 0.174

Table 6: Average normalized cut and F1 score of NEO-K-Means with different α and β on Amazon dataset.

α=30, β=0 α=35, β=0 α=45, β=0 α=30, β=0.0001 α=35, β=0.0001 α=45, β=0.0001

ncut 0.107 0.104 0.104 0.106 0.104 0.104
F1 0.488 0.490 0.490 0.488 0.490 0.490

across all the networks. This indicates that the weighted
kernel NEO-K-Means is effective in optimizing the nor-
malized cut objective. In Amazon and DBLP, the
ground-truth communities are known. Table 5 shows F1

scores on these networks. The NEO-K-Means method
shows the best F1 score on Amazon, but is slightly out-
performed by sse on DBLP. However, we note the sse
is a highly tuned, complicated heuristic, whereas the
NEO-K-means algorithm is a more principled method.
Table 6 shows the results of NEO-K-Means with differ-
ent α and β on Amazon dataset. We can see that the
results are not too sensitive to the particular α and β
picked.

6 Conclusions & Future Work

We present a novel extension of the k-means formula-
tion that simultaneously considers non-exhaustive and
overlapping clustering called NEO-K-Means. The un-
derlying objective and algorithm seamlessly generalize
the classic k-means approach and enable a new class of
applications. When we evaluate this new method on
synthetic and real-world data, it shows the best per-
formance in terms of finding the ground-truth clusters
among a large class of state-of-the-art methods. Fur-
thermore, we show that a weighted kernel k-means vari-
ation of the NEO-K-Means provides a principled way to
find a set of overlapping communities in large scale net-
works. We conclude that NEO-K-Means is a useful algo-
rithm to analyze much of the complex data emerging in
current data-centric applications. We plan to extend the
method to clustering with other Bregman divergences,
and study simultaneous discovery of overlap and outlier
detection for the co-clustering problem.

Acknowledgments This research was supported by NSF

grants CCF-1117055 and CCF-1320746 to ID, and by NSF

CAREER award CCF-1149756 to DG.

References

[1] J. C. Bezdek, R. Ehrlich, and W. Full. FCM: The
fuzzy c-means clustering algorithm. Computers & Geo-

sciences, 1984.

[2] A. Banerjee, C. Krumpelman, J. Ghosh, S. Basu, and
R. J. Mooney. Model-based overlapping clustering. In
KDD, 2005.

[3] A. K. Jain. Data clustering: 50 years beyond k-means.
Pattern Recognition Letters, 2010.

[4] G. Cleuziou. An extended version of the k-means
method for overlapping clustering. ICPR, 2008

[5] C.-E. ben N’Cir, G. Cleuziou, and N. Essoussi. Identi-
fication of non-disjoint clusters with small and param-
eterizable overlaps. In ICCAT, 2013.

[6] H. Lu, Y. Hong, W. N. Street, F. Wang, and H. Tong.
Overlapping clustering with sparseness constraints. In
ICDM Workshops, 2012.

[7] S. P. Lloyd. Least squares quantization in PCM. IEEE
Trans. Inf. Theory, 1982.

[8] S. Chawla and A. Gionis. k-means--: a unified approach
to clustering and outlier detection. In SDM, 2013.

[9] I. S. Dhillon, Y. Guan, and B. Kulis. Weighted graph
cuts without eigenvectors: a multilevel approach. IEEE
TPAMI, 2007.

[10] J. Shi and J. Malik. Normalized cuts and image seg-
mentation. IEEE TPAMI, 1997.

[11] G. Karypis and V. Kumar. Multilevel k-way partition-
ing scheme for irregular graphs. JPDC, 1998.

[12] Y.-L. Chen and H.-L. Hu. An overlapping cluster
algorithm to provide non-exhaustive clustering. Eur.

J. Oper. Res., 2006.
[13] J. J. Whang, D. F. Gleich, and I. S. Dhillon. Overlap-

ping community detection using seed set expansion. In
CIKM, 2013.

[14] M. Coscia, G. Rossetti, F. Giannotti, and D. Pedreschi.
Demon: a local-first discovery method for overlapping
communities. In KDD, 2012.

[15] J. Yang and J. Leskovec. Overlapping community
detection at scale: a nonnegative matrix factorization
approach. In WSDM, 2013.

[16] A. Lancichinetti, F. Radicchi, J. Ramasco, and S. For-
tunato. Finding statistically significant communities in
networks. PLOS ONE, 2011.

[17] J. Xie, S. Kelley, and B. K. Szymanski. Overlapping
community detection in networks: the state of the art
and comparative study. ACM Comput. Surv., 2013.

[18] http://mulan.sourceforge.net/datasets.html

[19] http://snap.stanford.edu/

944 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

08
/1

9/
15

 to
 1

62
.1

7.
27

.1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

