
Parameterized Correlation Clustering
in Hypergraphs and Bipartite Graphs

Nate Veldt
Cornell University

Center for Applied Mathematics
nveldt@cornell.edu

Anthony Wirth
The University of Melbourne

Computing and Information Systems
awirth@unimelb.edu.au

David F. Gleich
Purdue University

Department of Computer Science
dgleich@purdue.edu

ABSTRACT

Motivated by applications in community detection and dense sub-
graph discovery, we consider new clustering objectives in hyper-
graphs and bipartite graphs. These objectives are parameterized
by one or more resolution parameters in order to enable diverse
knowledge discovery in complex data.

For both hypergraph and bipartite objectives, we identify rele-
vant parameter regimes that are equivalent to existing objectives
and share their (polynomial-time) approximation algorithms. We
first show that our parameterized hypergraph correlation clustering
objective is related to higher-order notions of normalized cut and
modularity in hypergraphs. It is further amenable to approximation
algorithms via hyperedge expansion techniques.

Our parameterized bipartite correlation clustering objective gen-
eralizes standard unweighted bipartite correlation clustering, as
well as the bicluster deletion problem. For a certain choice of pa-
rameters it is also related to our hypergraph objective. Although
in general it is NP-hard, we highlight a parameter regime for the
bipartite objectivewhere the problem reduces to the bipartitematch-
ing problem and thus can be solved in polynomial time. For other
parameter settings, we present several approximation algorithms
using linear program rounding techniques. These results allow us to
introduce the first constant-factor approximation for bicluster dele-
tion, the task of removing a minimum number of edges to partition
a bipartite graph into disjoint bi-cliques.

In several experimental results, we highlight the flexibility of
our framework and the diversity of results that can be obtained
in different parameter settings. This includes clustering bipartite
graphs across a range of parameters, detecting motif-rich clusters
in an email network and a food web, and forming clusters of retail
products in a product review hypergraph, that are highly correlated
with known product categories.

KEYWORDS

hypergraphs, bipartite graphs, correlation clustering
ACM Reference Format:

Nate Veldt, Anthony Wirth, and David F. Gleich. 2020. Parameterized Cor-
relation Clustering in Hypergraphs and Bipartite Graphs. In Proceedings of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’20, August 23–27, 2020, Virtual Event, CA, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7998-4/20/08. . . $15.00
https://doi.org/10.1145/3394486.3403238

the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD ’20), August 23–27, 2020, Virtual Event, CA, USA. ACM, New York, NY,
USA, 9 pages. https://doi.org/10.1145/3394486.3403238

1 INTRODUCTION

Finding sets of related objects in a large dataset, i.e., clustering, is
one of the fundamental tasks in data mining and machine learning,
and is often used as a first step in exploring and understanding a
new dataset.When the data to be clustered is represented by a graph
or network, the task is referred to as graph clustering or community
detection [19, 45]. A good graph clustering is one in which nodes
in the same cluster share many edges with each other, but nodes in
different clusters share few edges. While these basic principles are
shared by nearly all graph clustering techniques, there are many
ways to formalize the notion of a graph cluster [19, 45, 54]. However,
no one method or objective function is capable of solving all graph
clustering tasks [41].

One outcome is that there are many graph clustering objectives
that rely on one or more tunable resolution parameters, which can
control the size, structure, or edge density of the clusters formed
by optimizing the objective [7, 16, 43, 50, 54, 55]. In addition to pro-
viding a way to detect clusters at different resolutions in a graph,
parametric clustering objectives often make it possible to interpo-
late between other existing and commonly studied graph clustering
objectives. Recently, we showed [54] that a number of popular
graph clustering objectives such as modularity [39], normalized
cut [47], and cluster deletion [46] can be captured as special cases
of a parametric variant of correlation clustering [9].

Nearly all existing techniques for parametric graph clustering
focus on a simple graph setting, where all nodes are of the same
type and are inter-related by pairwise connections, represented
by edges. However, graph and complex network datasets often
have additional structure, which can be exploited for the purpose
of more in-depth data analysis. As an example, there has been a
recent surge of interest in higher-order methods for clustering [4,
10, 35, 36, 51, 53, 58–60]. These determine the clustering of the data
not only via its graph edges, but also based on its motifs (small,
frequently appearing subgraphs), or indeed based on hyperedges
in a hypergraph. Motifs and hyperedges admit encoding multiway
relationships between sets of three or more nodes. This provides
a more faithful way to represent complex systems characterized
by interactions that are inherently multiway. For example, in co-
authorship datasets, papers are frequently written bymore than two
authors. Applications of higher-order and hypergraph clustering
include image segmentation and computer vision problems [1, 30],
circuit design and VLSI layout [23, 29], and bioinformatics [38, 49].

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

1868

https://doi.org/10.1145/3394486.3403238
https://doi.org/10.1145/3394486.3403238

Bipartite graphs model interactions between two different types
of objects. These have a close relationship with hypergraphs in
general, as witnessed in the example of co-authorship data. In a
hypergraph, each author is a node and the set of authors in each
paper is represented by a hyperedge. In a bipartite graph, one set
of nodes represents authors, the other set papers: nodes i and j
are adjacent whenever person i is an author of paper j. Which
representation is best depends on the task; importantly, either of
these is more informative than a simple network in which each
edge indicates whether that pair of authors have ever co-authored.

Just as there are many objective functions for graph clustering,
many different objectives for clustering hypergraphs and bipartite
graphs have been developed, each of which strikes different bal-
ances in terms of size and structure of output clusters [2, 5, 8, 15,
20, 21, 27, 30, 34, 35, 37, 60]. The prevalence and variety of different
methods indicates that hypergraphs and bipartite graphs can also
exhibit clustering structure at different resolutions. However, these
existing methods for clustering hypergraphs and bipartite graphs
largely ignore parametric clustering objectives. Thus, in this paper
we present a rigorous framework for parametric clustering in these
settings. Our objectives are based on parameterized versions of cor-
relation clustering and we show how, in certain parameter regimes,
our objectives are related to a number of these previous objectives
for bipartite and hypergraph clustering. Furthermore, our methods
come with new approximation results. In summary,

(1) We present HyperLam, a parametric hypergraph clustering
objective that we prove is related to hypergraph generaliza-
tions of the normalized cut and modularity objectives.

(2) We present a parametric bipartite correlation clustering ob-
jective (PBCC), which captures standard bipartite correlation
clustering and bicluster deletion [5] as special cases. We also
prove that in certain parameter regimes it is equivalent to a
variant of our HyperLam objective.

(3) We prove that HyperLam admits an O(logn) approximation
by combining certain expansion techniques with approxi-
mation algorithms for correlation clustering in graphs. We
also consider faster heuristic approaches based on applying
greedy agglomeration methods.

(4) While PBCC is NP-hard in general, we prove that in a certain
parameter regime it is equivalent to bipartite matching and
can thus be solved in polynomial time.

(5) Via linear programming relaxation techniques, we show a
number of approximation algorithm that apply to different
parameter settings of PBCC, including the first constant
factor approximation for bicluster deletion, the problem of
partitioning a bipartite graph into disjoint bicliques by re-
moving a minimum number of edges.

As a brief overview of our paper, we begin with small technical
preliminaries on correlation clustering, graph clustering, and hy-
pergraph clustering. Then we state our two new objectives for
parametric hypergraph and bipartite clustering in Sections 3 and 4,
and prove their equivalence with existing objectives. We discuss
algorithms and heuristics in Section 5 before showing how these
algorithms work in a variety of scenarios (Section 7).

2 PRELIMINARIES

We begin with technical preliminaries on correlation clustering,
graph clustering, and hypergraph clustering.

2.1 Correlation Clustering

A standard weighted instance of correlation clustering is given by a
graphG = (V ,W +,W −), where each pair of nodes (i, j) ∈ V×V with
i , j is associated with positive and negative weights w+i j ∈ W

+

and w−i j ∈W
−. Given this input, the objective is to minimize the

weight of mistakes or disagreements. If nodes i and j are clustered
together, they incur a mistake with penalty w−i j , and if they are
separated, they incur a mistake with penalty w+i j . For instances
where at most one of (w+i j ,w

−
i j) is non-zero, this can be viewed as a

clustering problem in a signed graph. The objective can formally
be stated as a binary linear program (BLP):

minimize
∑
i<j w

+
i jxi j +w

−
i j (1 − xi j)

subject to xi j ≤ xik + x jk for all i, j,k
xi j ∈ {0, 1} for all i < j .

(1)

The objective was first presented for signed graphs, by Bansal et
al. [9] and by Shamir et al. [46]. Since its introduction, numer-
ous variations on the objective have been presented for different
weighted cases and graph types [2, 3, 14, 17, 34, 42, 54]. In bipartite
correlation clustering [2, 5, 8, 15], nodes can be organized into two
different sets, in such a way that w+i j = w−i j = 0 for any pair of
nodes i and j in the same set. In the complete, unweighted bipartite
signed graph case, the best approximation factor proven is 3 [15].

2.2 Graph Clustering

Graph clustering is the task of separating the nodes of a graph
into clusters in such a way that nodes inside a cluster share many
edges with each other, but few with the rest of the graph. For an
overview of graph clustering and community detection, we refer
to surveys by Fortunato and Hric [19], and Schaeffer [45]. Given a
graph G = (V , E), we let C = {S1, S2, . . . , Sk } represent a disjoint
clustering of V , with Si ∩ Sj = ∅ for i , j, and

⋃
i Si = V . Given

a set of nodes S ⊆ V , let S = V \S denote the complement set,
and cut(S) be the weight of edges between S and S . One of the
most common approaches to graph clustering is to set up and solve
(or approximate) a combinatorial objective function that encodes
some notion of clustering structure. One common objective used
for bipartitioning a graph is the normalized cut objective, defined
for a set S ⊆ V to be

ϕ(S) = cut(S)
vol(S) +

cut(S)
vol(S)

, (2)

where vol(S) =
∑
i ∈S di , withdi being the degree of node i . Another

very popular approach is to maximize the modularity objective [39],
which measures the difference between the number of edges inside
a cluster, and the expected number of edges in the cluster, where
expectation is defined by some underlying graph null model.

Flexible parametric frameworks for graph clustering. Recently, we
introduced a framework for graph clustering based on correlation
clustering called LambdaCC [54]. Given a graph G = (V , E), the
LambdaCC framework replaces an edge (i, j) ∈ E with a positive
edge of weight 1 − λdidj . For every pair (i, j) < E, a negative edge

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

1869

of weight λdidj is introduced. The resulting signed graph can then
be partitioned with respect to the correlation clustering objective.
LambdaCC generalizes several other objectives including normal-
ized cut [47], modularity [39], and cluster deletion [46].

2.3 Hypergraph clustering

We letH = (V , E) denote a hypergraph, where V is a set of nodes,
and E is a set of hyperedges, which involve two or more nodes. In
hypergraphs, the notion of cuts and clustering becomes even more
complex, as there can be numerous ways to partition the nodes
of a hyperedge, and numerous ways to generalize a graph-based
objective.We say that a hyperedge e ∈ E is cut if it spans at least two
clusters of a clustering, C. In many clustering applications, any way
of separating the nodes of a hyperedge is associated with a penalty
equal to the weight of the hyperedge, though other more general
notions of hyperedge cuts have also been considered [13, 22, 35, 36].
Given a set of nodes S ⊆ V in a hypergraphH , we let ∂S = {e ∈ E :
S ∩e , ∅, S̄ ∩e , ∅} denote the boundary of S , and use cutH(S) to
denote the hypergraph cut penalty for S . The most basic type of cut
penalty is to simply count the number of edges on the boundary:
cutH(S) = |∂S |. In this paper we also will consider the linear cut
penalty, defined as follows:

cutH(S) =
∑
e ∈E min{|S ∩ e |, |S̄ ∩ e |} . (3)

Hypergraph generalizations of the normalized cut objective have
also been introduced in practice [35, 36, 60]. Here we consider the
following definition, first introduced for generalized hypergraph
cut functions by Li et al. [35]:

ϕH(S) =
cutH(S)

volH(S)
+
cutH(S)

volH(S)
, (4)

where cutH is any hypergraph cut function (e.g., |∂S | or (3)), and
volH(S) =

∑
s ∈S ds is the hypergraph volume of S . In this paper

we will always consider the hypergraph degree ds of a node to
be the number of hyperedges a node participates in, though other
definitions are possible [35, 36]. We also note that hypergraph
generalizations of the modularity objective have been considered
in different contexts [27, 32].

3 PARAMETRIC HYPERGRAPH CLUSTERING

Our first contribution is a hypergraph clustering objective that
differentially treats hyperedges and pairwise edges in a parametric
fashion. We further develop equivalence results with existing fixed-
parameter objectives; algorithms are discussed in Section 5. Given
a hypergraphH = (V , E) and a resolution parameter λ ∈ (0, 1), we
introduce a negative edge between each pair of nodes (i, j) ∈ V ×V ,
with weight λwiw j , where wi is a weight associated with node i .
We consider either unit node weights (wi = 1 for all nodes), or
degree-based weights: wi = di for each i ∈ V . We treat each
original hyperedge inH as a positive edge of weight 1. In order to
accommodate a broad range of possible hyperedge cut penalties,
we use the following general abstraction: let PV be the family of
all clusterings, and define ζ : E × PV → R to be a function that
outputs a penalty for the way in which clustering C ∈ PV separates
the nodes of a hyperedge e ∈ E. The HyperLam objective for a

clustering C ofH is then:

HyperLam(C, λ) =
∑
e ∈E ζ (e, C) +

∑
i<j λwiw j (1 − zi j) . (5)

where zi j is a binary indicator for whether nodes i and j are sepa-
rated (zi j = 1) or clustered together (zi j = 0) in C. This objective is
inspired by the parametric LambdaCC objective for graphs [54].

In practice, there may be many meaningful cut functions ζ to
consider—here we focus mostly on two. The first is the standard
all-or-nothing penalty, typically considered in the higher-order cor-
relation clustering literature, which assigns a penalty proportional
to the weight of the hyperedge if and only if the hyperedge is cut
(at least two of its nodes are separated). Formally, this is defined as

ζ (e, C) =

{
0 if e ⊆ S for some S ∈ C ,
1 otherwise.

(6)

When this standard cut penalty is applied, objective (5) can be
viewed as an instance of higher-order correlation clustering [20, 21,
30, 34] with a very special type of negative hyperedge set. Namely,
there are no negative hyperedges of size three or more, but ev-
ery pair of nodes defines a negative hyperedge of size two (i.e., a
negative edge). The other cut function we consider is a multiway
generalization of the linear hypergraph cut penalty (3), defined by

ζ (e, C) = |e | −max
S ∈C
|e ∩ S | . (7)

Given a clustering C, this function assigns a penalty equal to the
minimum number of nodes of a hyperedge e that must be moved
in order for e to be contained in a single cluster.

Given any hyperedge cut function ζ , the goal is to optimize (5)
over all possible clusterings of nodes V . Our first theoretical result
is to show that our new objective captures a hypergraph generaliza-
tion of normalized cut [35], just as the LambdaCC graph clustering
framework generalizes normalized cut [54]. With unit node weights
(wi = 1 for all i), Theorem 3.1 becomes a statement about a hyper-
graph variant of the sparsest cut clustering objective.

Theorem 3.1. For degree-weighted HyperLam, there exists some λ ∈
(0, 1), such that optimizing (5) over biclusterings of the form C =
{S, S̄} for some S ⊆ V , will produce the minimum hypergraph nor-
malized cut partition (4). Furthermore, if the linear penalty (7) is used
and we optimize over an arbitrary number of clusters, there exists
some λ′ such that (5) will be minimized by the minimum hypergraph
normalized cut objective under the linear hypergraph cut function (3).

A proof is included in a full version of the manuscript [57].

4 PARAMETRIC BIPARTITE CLUSTERING

Next, we present a parameterized variant of bipartite correlation
clustering in graphs, which we prove generalizes a number of other
bipartite graph clustering, and comes with several novel approxima-
tion guarantees. LetG = (V1,V2, E) be a bipartite graph in whichV1
and V2 are node sets and E is a set of edges between nodes in V1
andV2. In order to define an instance of Parametric Bipartite Corre-
lation Clustering (PBCC), we first define parameters µ1, µ2, and β ,
all in the interval [0, 1]. We then associate each e ∈ E with a positive
edge of weight 1− β , and every e ∈ (V1 ×V2) − {E} with a negative
edge with weight β . Additionally, each pair of nodes in V1 is given
a negative edge of weight µ1, and each pair of nodes in V2 is given
a negative edge of weight µ2. The result is a complete, weighted

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

1870

µ2
β

1-β

µ1

V1 V2

Figure 1: Parameterized BCC is given by a complete signed

graph with edge weights parameterized by µ1, µ2 and β .
Edges of weight β correspond to missing edges in some un-

derlying bipartite graph G = (V1,V2, E).

Table 1: Equivalence and approximation results for PBCC; ε
represents a small, graph dependent number.

Parameters Equivalence Approx.

β = µ1 = µ2 = λ LambdaCC see [54], [21]

µ1 = µ2 ≥ (1 − β) Bipart. Matching 1 (Thm 4.1)

µ1 = µ2 = 0, β ≥ 1 − ε Bicluster deletion 4 (Thm 5.2)

µ1 = µ2 = 0, β ≥ 1
2 Generalized BCC 6 − 1

β (Thm 5.3)

µ1 = µ2 ∈ [0, 1], β ≥ 1
2 - 5 (Thm 5.4)

µ1 = λ, µ2 = 0, β = 0 HyperLam O(logn)

instance of correlation clustering, where the underlying positive
edge structure is a bipartite graph. We illustrate an instance of the
problem in Figure 1. Our PBCC objective is
PBCC(C) =

∑
i ∈V1, j ∈V2 [β(1 −Ai j)(1 − zi j) + (1 − β)Ai jzi j]
+
∑
(i , j)∈V1×V1 µ1(1 − zi j) +

∑
(i , j)∈V2×V2 µ2(1 − zi j) ,

(8)

where Ai j = 1 if (i, j) ∈ E, but is zero otherwise, and zi j is the
indicator for node separation in C (zi j = 0 means (i, j) are clus-
tered together) as before. Objective (8) generalizes several other
well-studied problems. When µ1 = µ2 = 0 and β = 1/2, the prob-
lem corresponds to the standard unweighted bipartite correlation
clustering problem (BCC) [2, 5]. When µ1 = µ2 = β , it is equivalent
to applying the LambdaCC framework [54] to a bipartite graph.
Table 1 summarizes other equivalence results and approximations
for PBCC.

If β > |V1 | |V2 |/(|V1 | |V2 | + 1) and µ1 = µ2 = 0, then making a
mistake at a single negative edge of weight β introduces a greater
weight of disagreements than placing each node into a singleton
cluster. Therefore, the objective will be optimized by making a
minimum number of positive-edge mistakes, subject to all clusters
being bicliques. Thus, in this parameter regime, PBCC is equivalent
to bicluster deletion, the problem of removing a minimum number
of edges from a bipartite graph to partition it into disjoint bicliques.

Although PBCC is NP-hard in general, our next theorem, proven
in the extended version [57], shows that in a certain parameter
regime, PBCC is equivalent to solving a bipartite matching prob-
lem on G = (V1,V2, E). Therefore, the problem can be solved in
polynomial time in this regime.

Algorithm 1 Pivot

Input: Unweighted signed graph G = (V , E+, E−)
Output: Clustering C = Pivot(G)
Select a pivot node k ∈ V
Form cluster S = {v ∈ V : (k,v) ∈ E+} ∪ {v}

5: Output clustering C = {S, Pivot(G\S)}

Algorithm 2 GenRound

Input: CC instance G = (V ,W +,W −), parameter δ ∈ [0, 1].
Output: Clustering C of G.
Solve LP-relaxation of (1) to obtain distances xi j , for each i , j .
Ẽ+ ← {(i, j) : xi j < δ }, Ẽ− ← {(i, j) : xi j ≥ δ }

5: Apply Pivot to G̃ = (V , Ẽ+, Ẽ−).

Theorem 4.1. If parameters µ1, µ2, and β satisfy min{µ1, µ2} ≥
(1 − β), then the optimal solution to PBCC for these parameters is the
same as finding a maximum bipartite matching on G = (V1,V2, E).

When µ1 = λ, µ2 = 0, and β = 0, PBCC is equivalent to a special
instance of HyperLam with a linear hyperedge cut penalty (7).
Consider applying the HyperLam objective to a hypergraphH =
(V , E) with unit node weights: wi = 1 for all i ∈ V . When we
use the linear hyperedge cut penalty (7), the HyperLam objective
is equivalent to an instance of correlation clustering defined by
performing a star expansion [61]. This replaces each hyperedge e
with an auxiliary node ve , and links every node in e to ve with a
unit-weight edge. This results in an instance of PBCC whereV1 = V
is the set of original nodes, each pair of which has a negative edge
of weight µ1 = λ. The auxiliary nodes constitute V2, with µ2 = 0,
and edges between V and V2 all have weight 1 − β = 1.

5 APPROXIMATIONS AND HEURISTICS

We now turn our attention to approximation guarantees that can
be obtained for our objectives in different parameter regimes. We
begin by reviewing a general strategy for approximating variants
of correlation clustering, through which we prove approximation
guarantees for PBCC. In order to approximate HyperLam, we com-
bine existing approximation algorithms for correlation clustering
with techniques for reducing a hypergraph to a related pairwise
graph. We conclude with heuristic approaches for HyperLam.

5.1 General LP Rounding Algorithm for CC

Pivot (aka Algorithm 1) is a simple algorithm for unweighted cor-
relation clustering. When pivots are chosen uniformly at random,
Ailon et al. [3] showed that this algorithm returns a 3-approximation
for complete unweighted correlation clustering. Later, van Zuylen
and Williamson [52] produced a de-randomized 3-approximation.
Derived from this is a generic approximation algorithm scheme for
new parametric correlation clustering variants. Pseudocode for this
method, which we call GenRound, is given in Algorithm 2.

Theorem 5.1. (Theorem 3.1 in [52]). Given a weighted instance of
correlation clustering G = (V ,W +,W −), let ci j = w+i jxi j +w

−
i j (1 −

xi j). GenRound returns an α-approximation for the min-disagree

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

1871

objective (1) if the threshold parameter, δ , is chosen so that the graph
G̃ = (V , Ẽ+, Ẽ−) satisfies the following conditions:

(1) For all (i, j) ∈ Ẽ+, we havew−i j ≤ αci j , and for all (i, j) ∈ Ẽ
−,

we havew+i j ≤ αci j .

(2) For every triangle (i, j,k) in G̃, with {(i, j), (j,k)} ⊆ Ẽ+ and

(i,k) ∈ Ẽ−, we havew+i j +w
+
jk +w

−
ik ≤ α

(
ci j + c jk + cik

)
.

When applying Pivot in Algorithm 2, selecting the pivot node
uniformly at random gives an expected α-approximation. A deter-
ministic algorithm with the same approximation factor α can be
obtained via a careful selection of pivot nodes [52].

5.2 Graph Reductions for HyperLam

Although HyperLam is NP-hard to optimize, we can obtain approx-
imation algorithms for the objective using two different techniques
for converting hypergraphs to graphs.

Weighted clique expansion: Replace each hyperedge e ∈ E
with a clique on e where each edge has weight 1/(|e | − 1). If two
nodes appear together in multiple hyperedges, assign a weight
equal to the sum of weights from each such clique expansion.

Star expansion: Replace each hyperedge e ∈ E by adding an
auxiliary nodeve and linkingve to every node in e with a (positive)
edge of weight 1. If we use weights wi = 1 for all i ∈ V , this is
equivalent to an instance of PBCC with µ1 = λ, µ2 = 0, and β = 0.

For each expansion technique, there is a negative edge of weight
λwiw j between each pair (i, j) ∈ V ×V , wherewi is the weight for
node i . The result is an instance of weighted correlation clustering
that can be approximated with existing algorithms.

The weighting scheme for the clique expansion is chosen specif-
ically to approximately model the all-or-nothing hyperedge cut
penalty (6). For three-uniform hypergraphs, the relationship is ex-
act [25]. For a k-node hyperedge, with k > 3, the minimum penalty
for splitting the clique comes from placing all but one node in the
same cluster, giving a penalty equal to (k − 1)/(k − 1) = 1. The
maximum possible penalty, when all k nodes in e are placed in
different clusters, is

(k
2
) 1
k−1 =

k
2 . Thus, the penalty at each positive

hyperedge in the resulting reduced graph will be within a factor k/2
of the original all-or-nothing penalty for any clustering C.

Meanwhile, the star expansion enables us to exactlymodel the lin-
ear cut penalty (7). Each auxiliary nodeve is attached only to nodes
that define a hyperedge e in the original hypergraph. Therefore, in
the optimal clustering of the star expansion graph,ve will be placed
in the cluster that has the most nodes from e . The penalty then will
equal the number of nodes that are clustered away from ve , which
is exactly the linear penalty (7). Thus, applying existing algorithms
for correlation clustering [14, 17], we get an O(k logn) approxima-
tion for HyperLam with all-or-nothing penalty via the weighted
clique expansion, and an O(logn) approximation for HyperLam
with linear hyperedge penalty via the star expansion.

5.3 A Four-Approx for Bicluster Deletion

We now show howGenRound and Theorem 5.1 combine to develop
a 4-approximation for bicluster deletion: the first constant-factor
approximation for this problem. Rather than the edge weights pre-
sented in the last section, we view bicluster deletion as a general

weighted correlation clustering problem with the following weights

(w+i j ,w
−
i j) =


(0, 0) if i and j are in the same bipartition of G
(1, 0) if (i, j) ∈ E+

(0,∞) if (i, j) ∈ E−.

Above, E+ and E− denote positive and negative edges between the
two sides of the bipartite graph. To ensure no mistakes are made at
negative edges, we add the constraint xi j = 1 to BLP (1), for every
(i, j) ∈ E−. The LP-relaxation of this problem is given by

minimize
∑
(i , j)∈E+ xi j

subject to xi j = 1 for all (i, j) ∈ E−
xi j ≤ xik + x jk for all i, j,k
0 ≤ xi j ≤ 1 for all i < j .

(9)

Theorem 5.2. Applying GenRound to LP (9), with δ = 1/2, re-
turns a 4-approximation to bicluster deletion.

The proof, included in the full version [53], relies on verifying
that the conditions of Theorem (5.1) hold with α = 4.

5.4 Generalized Results for PBCC

We now turn to approximation algorithms for a wider range of
parameter settings. In the remainder of the section, we specifically
consider µ = µ1 = µ2. As we did for bicluster deletion, our goal is
to find a threshold parameter δ and an approximation factor α such
that the two conditions of Theorem 5.1 hold. We defer proofs to
the full version of the manuscript [57].

Ailon et al. [2] proved a 4-approximation for unweighted bi-
partite correlation clustering, which is equivalent to PBCC with
µ = 0 and β = 1/2. We show how to select δ in GenRound so that
not only can we recover this same approximation guarantee when
µ = 0 and β = 1/2, but also obtain guarantees for all β ∈

[1
2 , 1

)
.

Theorem 5.3. When µ = µ1 = µ2 = 0 and β ≥ 1
2 , Algorithm 2

with δ = 2β/(6β − 1) returns a (6 − 1/β)-approximation for PBCC.

Considering a more general parameter regime, where µ1 = µ2 ∈
[0, 1], we obtain a 5-approximation for all β ≥ 1/2.

Theorem 5.4. When µ1 = µ2 and β ≥ 1
2 , Algorithm 2 with

δ = 2/5 returns a 5-approximation to PBCC.

5.5 Modularity Connections and Heuristics

Returning to the HyperLam objective, applying our weighted clique
expansion and introducing a negative edge of weight λdidj for
node pair (i, j) is equivalent to solving a weighted variant of the
LambdaCC graph clustering objective [54]. Since LambdaCC is
equivalent to a generalization of modularity with a resolution pa-
rameter [39, 54], we can also approximately optimize the Hyper-
Lam objective by applying our weighted clique expansion and then
running heuristic algorithms for modularity such as the Louvain
algorithm [11] or, more appropriately, generalizations of Louvain
with a resolution parameter [26]. A similar approach will also work
for the star expansion: we set the weight of a node in V to be its
hyperedge degreewv = dv , and the weight of an auxiliary node ve
(obtained from expanding a hyperedge) to be wve = 0. This also
corresponds to a weighted variant of LambdaCC, since each pair of
nodes (i, j) in the graph share a negative edge of weight λwiw j . In

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

1872

many cases this weight will be zero, but we can still apply general-
ized Louvain-style heuristics to optimize the objective.

Kumar et al. [32] previously considered a modularity-based ap-
proach for hypergraph clustering based on the same type of clique
expansion. These authors applied the same weight, 1/(|e | − 1), to
each edge in a clique expansion of a hypergraph |e |, as this pre-
serves the degree distribution of nodes in the original hypergraph.
They then considered applying the modularity objective [39] to
the resulting graph. Their approach corresponds to applying a
weighted clique expansion to an instance of HyperLam, and set-
ting λ = 1/(volH(V)). Thus, this approach can be viewed as a
special case of our hyperedge expansion procedure for HyperLam.
The connection to correlation clustering we show, along with the
resulting approximation algorithms for the all-or-nothing hyper-
graph cut, provide further theoretical motivation for this choice of
weighted clique expansion. Despite this connection to a previous
clique expansion technique for hypergraph modularity, we note
that our original hypergraph objective (5) nevertheless differs from
generalizations of modularity defined directly for hypergraphs [27],
as opposed to modularity objectives applied to clique expansions
of hypergraphs.

6 RELATEDWORK

To anchor our work, we highlight related results on algorithms
for correlation clustering, techniques for parametric clustering in
standard graphs, and recent results on clustering hypergraphs.

Correlation Clustering Bansal et al. [9] first introduced the
problem of correlation clustering, providing a constant factor ap-
proximation for the complete unweighted case. Amit was the first
to consider the problem in the bipartite setting [5], providing an
11-approximation for the complete unweighted setting. Later, Ailon
et al. [2] presented a 4-approximation. Most recently, Chawla et
al. [15] improved the best approximation factor to 3.

Higher-order correlation clustering was first considered by Kim
et al. [30] in the content of image segmentation. Li et al. [34] were
the first to develop approximation algorithms for the complete 3-
uniform case, giving a 9-approximation. We later gave a 4(k − 1)
approximation for the k-uniform setting, which was then improved
to 2k by Li et al. [37]. For weighted hypergraphs, Fukunaga [20]
presented an O(k logn) approximation algorithm, where k is the
maximum size of negative hyperedges.

Parametric Graph Clustering Our introduction of the Lamb-
daCC framework situates graph clustering within correlation clus-
tering [54]. We proved equivalence results with modularity, nor-
malized cut, and sparsest cut, and gave a 3-approximation when
λ ≥ 1/2, based on LP-rounding. We were later able to show that
the LP relaxation has an integrality gap of O(logn) for some small
values of λ [21]. LambdaCC is in turn related to other graph para-
metric clustering objectives, such as stability [16], various Potts
models [43, 50], and generalizations of modularity [7].

HypergraphClusteringDifferent higher-order generalizations
of modularity have been previously developed [27, 32], along with
higher-order variants of conductance [10] and normalized cut [35,
60]. In hypergraph clustering, the most common penalty for a cut
hyperedge is the weight of that hyperedge, regardless of how the hy-
peredge is cut. However, other penalties have also been considered

in the context of hypergraph partitioning and clustering [13, 35, 36].
A more comprehensive overview of generalized hypergraph cut
functions is included in recent work by one of the authors [53].

7 EXPERIMENTS

We demonstrate our parametric objectives and algorithms in analyz-
ing an assortment of different types of datasets. Our primary goal
is to highlight the diversity of results we can achieve. We begin by
running our approximation algorithms for PBCC on several bipar-
tite datasets to illustrate the algorithmic performance and output in
different parameter regimes. We then apply the HyperLam frame-
work to motif clustering. Finally, we apply our framework to detect
product categories in an Amazon product review hypergraph.

Implementation Details. We implement our algorithms in Ju-
lia, using Gurobi to solve LP relaxations. Code for all algorithms
and experiments are available online at https://github.com/nveldt/
ParamCC. We focus on studying the differences among the objec-
tive functions rather than optimizing implementations. Our motif
clustering experiments were run on a laptop with 8GB of RAM. All
other experiments were run on a larger machine with four 16-core
Intel Xeon E7-8867 v3 processors. Running large instances with
Louvain-style algorithms was not a bottleneck and these always
finished in a few minutes or less. On the bipartite graphs we con-
sider, running our PBCC algorithms typically took a few seconds
or a few minutes. Solving the correlation clustering LP relaxation
for larger graphs is often very expensive; this is, however, an active
research area [12, 44, 48, 56] and solvers have been produced for
around 20,000-node graphs. This leaves us with a theory/practice
gap between the effective Louvain-based heuristics and more prin-
cipled approximations that we intend to study in the future.

7.1 PBCC on Real Bipartite Graphs

We run our PBCC approximation algorithms on five bipartite graphs
constructed from real data1, with a range of parameter settings.
• The Cities graph encodes which set of 46 global firms (nodes on
side V1) have offices in 55 different major cities (nodes on side V2).
• Newgroups100 is made up of a set of 100 documents (V1) and 100
words (V2); edges indicate words used in each document. We have
extracted a random subset of 100 documents (25 from each of four
categories: sci∗, comp∗, rec∗, and talk∗) from a larger dataset, often
used as a benchmark for hypergraph clustering [24, 36, 60].
• The Zoo dataset encodes 100 animals and their associations
with 15 different binary attributes (e.g., “hair”, “feathers”, “eggs”).
• The last two bipartite graphs are constructed from reviewers
on Amazon (V1) that have reviewed products (V2) within certain
categories [40]. The Fashion category has 404 reviewers and 31
products, and Appliances has 44 reviewers for 48 products.
Figure 2 displays a posteriori approximation ratios for our method
(objective score divided by LP lower bound), first for µ1 = µ2 = 0
and β ∈ [0, 1], and then for β = 1/2 and µ = µ1 = µ2 ∈ [0, 0.2]. After
solving the LP relaxation for each (µ, β) pair, we try rounding with δ
values from 0.05 to 0.95 in increments of 0.05, taking the result
with the best objective score, since the rounding procedure is much

1Cities: https://www.lboro.ac.uk/gawc/datasets/da6.html; Newsgroups: www.cs.nyu.
edu/~roweis/data/; Zoo: https://archive.ics.uci.edu/ml/datasets/zoo. Amazon (5-
core): https://nijianmo.github.io/amazon/index.html.

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

1873

https://github.com/nveldt/ParamCC
https://github.com/nveldt/ParamCC
https://www.lboro.ac.uk/gawc/datasets/da6.html
www.cs.nyu.edu/~roweis/data/
www.cs.nyu.edu/~roweis/data/
https://archive.ics.uci.edu/ml/datasets/zoo
https://nijianmo.github.io/amazon/index.html

0.2 0.4 0.6 0.8

1.2

1.5

1.8

2.1

2.4

R
at

io
 to

 L
P

Lo
w

er
 B

ou
nd

Cities

News100

Zoo

Appliances

Fashion

(a) µ = 0, 0 ≤ β ≤ 1

0.00 0.05 0.10 0.15 0.20

1.2

1.5

1.8

2.1

R
at

io
 to

 L
P

Lo
w

er
 B

ou
nd

(b) β = 0.5, 0 ≤ µ ≤ 0.2

Figure 2: A posteriori approximation ratios for running our

LP-based PBCC algorithms on real-world bipartite graphs.

faster than the initial LP solve. We note that the approximation
factor curve varies significantly from dataset to dataset. However,
in all cases we obtain much better approximation factors than the
ones given in Table 1, even for β values where our algorithms have
no formal guarantees. In certain regimes we also observe abrupt
changes in approximation factors, e.g., for Fashion when β = 0.5
and µ is near zero (Figure 2b). We also tested µ > 0.2 when β = 0.5.
In this parameter regime, the problem is nearly the same as bipartite
matching, though our LP-based approach only provides a posteriori
guarantees of around a factor 2. This motivates the question of
what other approximation algorithms might perform better when
the problem is “almost” bipartite matching.

7.2 HyperLam for Motif Clustering

HyperLam can detect motif-rich clusters at different resolutions in
a graph. In motif clustering, a small, frequently repeated subgraph
(a motif) is identified, and each motif instance is associated with a
hyperedge [6, 10, 35, 51]. Applying a hypergraph clustering tech-
nique penalizes the number of cut motifs, rather than just the cut
edges. This encourages keeping whole motifs inside clusters.

Triangles are known to be important motifs for identifying com-
munity structure in networks [31, 51]. We therefore apply the Hy-
perLam framework to cluster the Email-EU dataset [33, 59] based
on triangles. Each edge in the graph (which we treat as undirected)
represents an email sent between members of a European research
institution. A metadata label indicating each researcher’s depart-
ment comes with each node.

To find clusters at different resolutions in the graph, we approxi-
mate the HyperLam objective by first applying a clique expansion
based on triangle motifs. Since the motif has three nodes, the all-
or-nothing cut is the same as the linear penalty, and the clique
expansion perfectly models both. We cluster the resulting weighted
graph with a weighted version of Lambda-Louvain [54], which
makes greedy local node moves similar to the Louvain method [11],
but optimizes a different objective. We compare against running
Lambda-Louvain on the original graph. We also compare against
standard graph algorithms Metis [28] and Graclus [18], varying
the number of clusters k , and recursive spectral partitioning, for a
range of different minimum cluster sizesmsize . We test these last
three methods on both the original graph and clique-expanded
graph, but show results only for the clique-expanded graph, as
this leads to the best outcome for these methods. Finally, we run

(a) Email, ARI scores (b) Florida Bay, ARI Scores

(c) Email, runtime (seconds) (d) Florida Bay, runtime (seconds)

(e) Email, runtime/ARI (f) Florida Bay, runtime/ARI

Figure 3: (a) HyperLam with triangle motifs better captures

the relationship between community structure and depart-

ment labels of researchers at a European research insti-

tution, across all clusters sizes. (b) Optimizing HyperLam

using the bifan motif and the inhomogeneous hyperedge

splitting function of Li et al. [35], we find clusterings with

higher correlation with biological classifications of species

in a food web. Figures (c) and (d) display runtimes, while (e)

and (f) display the trade-off between runtime and ARI score.

Larger dots mark the best ARI score for each method.

hMetis (a hypergraph variant of Metis) on the hypergraph formed
by associating motifs with hyperedges, varying cluster number, k .

After forming multiple clusterings with each method for many
parameter values (k ,msize , or λ), we measure the Adjusted Rand
Index score between each clustering and the known department
metadata labels. Scores for each cluster size are displayed in Fig-
ure 3a. Although the department labels do not exactly match with
community structure in the network, there is a strong correlation
between the two, and the higher ARI scores obtained by running
HyperLam with the triangle motif indicate that our method is best
able to detect this relationship.

We perform a similar experiment on the Florida Bay food web,
in which nodes indicate species (e.g., Isopods, Eels, Meroplankton),
and directed edges indicating carbon exchange [10, 35]. Follow-
ing the approach of Li and Milenkovic [35], we consider the bifan
motif, in which two nodes {v1,v2} have uni-directional edges to

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

1874

two other nodes {v3,v4}, and any edge combination within sets
{v1,v2} and {v3,v4} is allowed. We identify each instance of the
motif as a hyperedge. Li and Milenkovic specifically use an inho-
mogeneous hyperedge cutting penalty, which can be modeled by
simply adding undirected edges (v1,v2) and (v3,v4). Thus, we con-
vert the input graph into a new graph, and cluster with a weighted
version of Lambda-Louvain, to optimize the HyperLam objective.
We again run hMetis on the hypergraph defined by motifs, and
Lambda-Louvain on the undirected version of the original graph.
We ran {Metis,Graclus, Recursive spectral} on the new graph ob-
tained by expanding bifan motifs, as this led to better results than
running them on the original graph. Figure 3b demonstrates that
applying our HyperLam framework with the bifan motif structure
leads to the highest ARI clustering scores with the biological classi-
fications identified by Li et al. [35] (e.g. producers, fish, mammals).
Acknowledging that our implementations are not optimized for
speed, Figures 3e and 3f show that Metis, Graclus, and HyperLam
methods constitute the efficient frontier.

7.3 Clustering Amazon Products Categories

In our last experiment we illustrate differences that arise when
applying the HyperLam framework with different hyperedge cut
functions. In order to do so, we apply our framework to a hyper-
graph constructed from Amazon review data, similar to the Fashion
and Appliances hypergraphs in the first experiment. This time, we
extract nine product categories, associating each product in these
categories with a node, and defining a hyperedge to be a set of all
products that are reviewed by the same person. This results in a
hypergraph with 13,156 nodes, 31,544 hyperedges, with the max-
imum and mean hyperedge sizes being 219 and 8.1, respectively.
Each node is associated with exactly one category label.

As outlined in Section 5, we apply a weighted clique expansion
and a star expansion to the Amazon review hypergraph, eachmodel-
ing a different cut penalty.We scale the graphs so that they share the
same total volume, then cluster them both with Lambda-Louvain,
using various values of λ. Running Lambda-Louvain on the clique
expansion took just over two minutes on average, while runtimes
were just over four minutes on average for the star expansion.

The hypergraph has a single large connected component, indi-
cating that reviewers do review products across different categories.
At the same time, 95% of all hyperedges in the hypergraph are com-
pletely contained inside one of the sets of nodes defining a product
category. Thus, we expect that clustering the hypergraph based on
hyperedge structure will yield clusters that correlate highly with
product categories. We confirm this by computing ARI scores be-
tween category labels and the clusterings returned by optimizing
HyperLam for both graph expansions (Figure 4).

In order to better understand the structure of clusters formed
by our methods, and their relationship with product categories,
we measure how well each clustering detects individual product-
category node sets in the hypergraph. For each category (e.g., “Ap-
pliances”), we measure how well a HyperLam clustering “tracks”
that category by taking the best F1 score between any of the Hy-
perLam clusters and the product-category node set in question.
For example, if one of the clusters returned by HyperLam exactly
matches the “Appliances” node set, then we have perfectly “tracked”

1 2 3 4
0.0

0.1

0.2

0.3

0.4

0.5

λ * vol(G)

AR
I S

co
re

s

HyperLam (Star)
HyperLam (Clique)

(a) ARI scores

1 2 3 4

0.2

0.4

0.6

0.8

λ * vol(G)

F1
 S

co
re

s

I&S
Pantry

(b) Tracking categories

Figure 4: (a) The clique and star expansion lead to cluster-

ings that are correlated with product categories in an Ama-

zon product hypergraph. (b) We compute the best F1 score

between clusters formed byHyperLam, and individual prod-

uct category clusters. The star expansion (results with solid

lines) is able to better track the two largest clusters, “Indus-

trial and Scientific" (black) and “Prime Pantry” (red), com-

pared to the clique expansion (dashed lines).

this category, and we report an F1 score of 1. Figure 4b illustrates
that the star expansion is able to better track the two largest cate-
gories, “Prime Pantry” and “Industrial & Scientific”, each of which
has roughly 5000 nodes. This helps explain why the star expan-
sion obtains higher ARI scores in general. On the other hand, we
observed that the clique expansion tracks the “Software” category
(802 nodes) better. This highlights the fact that different hyperedge
cut functions can leads to substantially different types of clusters.

8 DISCUSSION

We have presented a new, flexible, and general framework for para-
metric clustering of hypergraph and bipartite graph datasets. This
framework has deep connections to existing objective functions
in the literature and there exist polynomial time approximation
results as well as heuristic algorithms. While such frameworks are
extremely useful to expert practitioners to engineer and investigate
datasets, they are often challenging for less sophisticated users who
have a tendency to rely on default parameters. Towards that end,
there is a general need for statistical and automated techniques to
help guide users to the most successful use of these methods, which
is something we hope to design in the future.

Another challenge involves scaling of the parameters. In our ex-
periments, we often scale these by the volume of the graph (the total
sum of edge-weighted degrees) as that has proven to be successful
in practice. However, it is unclear if this is the best approach in all
circumstances, or whether in some situations the absolute values
of the parameters should be preferred. Finally, as our experiments
highlight, there are distinct phase transitions in the behavior among
these different regimes; finding ways to identify these characteris-
tic regions would also make these parametric objectives useful to
automatically find characteristically different clusterings.

ACKNOWLEDGMENTS

This research was supported by NSF IIS-1546488, CCF-1909528,
NSF Center for Science of Information STC, CCF-0939370, DOE
DESC0014543, NASA, the Sloan Foundation, and the Melbourne
School of Engineering.

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

1875

REFERENCES

[1] Sameer Agarwal, Jongwoo Lim, Lihi Zelnik-Manor, Pietro Perona, David Krieg-
man, and Serge Belongie. 2005. Beyond Pairwise Clustering (CVPR ’05).

[2] Nir. Ailon, Noa. Avigdor-Elgrabli, Edo. Liberty, and Anke. van Zuylen. 2012.
Improved Approximation Algorithms for Bipartite Correlation Clustering. SIAM
J. Comput. 41, 5 (2012), 1110–1121.

[3] Nir Ailon, Moses Charikar, and Alantha Newman. 2008. Aggregating inconsistent
information: ranking and clustering. Journal of the ACM (JACM) 55, 5 (2008), 23.

[4] Ilya Amburg, Nate Veldt, and Austin R Benson. Clustering in graphs and hyper-
graphs with categorical edge labels (WWW ’20).

[5] Noga Amit. 2004. The bicluster graph editing problem. Master’s thesis. Tel Aviv
University.

[6] AArenas, A Fernández, S Fortunato, and SGómez. 2008. Motif-based communities
in complex networks. Journal of Physics A: Mathematical and Theoretical 41, 22
(2008).

[7] A Arenas, A Fernández, and S Gómez. 2008. Analysis of the structure of complex
networks at different resolution levels. New Journal of Physics 10, 5 (2008).

[8] M. Asteris, A. Kyrillidis, D. Papailiopoulos, and A. Dimakis. Bipartite correlation
clustering: Maximizing agreements (AISTATS ’16).

[9] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. 2004. Correlation Clustering.
Machine Learning 56 (2004), 89–113.

[10] Austin R. Benson, David F. Gleich, and Jure Leskovec. 2016. Higher-order organi-
zation of complex networks. Science 353, 6295 (2016), 163–166.

[11] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-
vre. 2008. Fast unfolding of communities in large networks. Journal of Statistical
Mechanics: Theory and Experiment 2008, 10 (2008), P10008.

[12] Justin Brickell, Inderjit S. Dhillon, Suvrit Sra, and Joel A. Tropp. 2008. The Metric
Nearness Problem. SIAM J. Matrix Anal. Appl. 30, 1 (2008), 375–396.

[13] Ümit V. Çatalyürek and Cevdet Aykanat. 1999. Hypergraph-Partitioning Based
Decomposition for Parallel Sparse-Matrix Vector Multiplication. IEEE Transac-
tions on Parallel and Distributed Systems 10, 7 (1999), 673–693.

[14] Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. 2005. Clustering
with qualitative information. J. Comput. System Sci. 71, 3 (2005), 360 – 383.
Learning Theory 2003.

[15] Shuchi Chawla, Konstantin Makarychev, Tselil Schramm, and Grigory Yaroslavt-
sev. 2015. Near optimal LP rounding algorithm for correlation clustering on
complete and complete k-partite graphs (STOC ’15). ACM.

[16] J.-C. Delvenne, S. N. Yaliraki, and M. Barahona. 2010. Stability of graph commu-
nities across time scales. Proceedings of the National Academy of Sciences 107, 29
(2010), 12755–12760.

[17] Erik D. Demaine, Dotan Emanuel, Amos Fiat, and Nicole Immorlica. 2006. Corre-
lation clustering in general weighted graphs. Theoretical Computer Science 361, 2
(2006), 172 – 187. Approximation and Online Algorithms.

[18] Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis. 2007. Weighted Graph Cuts
without Eigenvectors A Multilevel Approach. IEEE Transactions on Pattern
Analysis and Machine Intelligence 29, 11 (2007), 1944–1957.

[19] Santo Fortunato and Marc Barthélemy. 2007. Resolution limit in community
detection. Proceedings of the National Academy of Sciences 104, 1 (2007), 36–41.

[20] Takuro Fukunaga. 2018. LP-Based Pivoting Algorithm for Higher-Order Correla-
tion Clustering. In Computing and Combinatorics.

[21] David F. Gleich, Nate Veldt, and Anthony Wirth. 2018. Correlation Clustering
Generalized (ISAAC 2018).

[22] J. Gong and Sung Kyu Lim. 1998. Multiway partitioning with pairwise movement
(ICAD ’98).

[23] S. W. Hadley, B. L. Mark, and A. Vannelli. 1992. An efficient eigenvector approach
for finding netlist partitions. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 11, 7 (1992).

[24] Matthias Hein, Simon Setzer, Leonardo Jost, and Syama Sundar Rangapuram.
2013. The Total Variation on Hypergraphs - Learning on Hypergraphs Revisited
(NIPS’13).

[25] Edmund Ihler, DorotheaWagner, and FrankWagner. 1993. ModelingHypergraphs
by Graphs with the Same Mincut Properties. Inf. Process. Lett. 45, 4 (1993).

[26] Lucas G. S. Jeub, Marya Bazzi, Inderjit S. Jutla, and Peter J. Mucha. 2011-2017. A
generalized Louvain method for community detection implemented in MATLAB.
(2011-2017). http://netwiki.amath.unc.edu/GenLouvain

[27] Bogumił Kamiński, Valérie Poulin, Paweł Prałat, Przemysław Szufel, and François
Théberge. 2019. Clustering via hypergraph modularity. PloS one 14, 11 (2019).

[28] George Karypis and Vipin Kumar. 1998. A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs. SIAM J. Sci. Comput. 20, 1 (1998),
359–392.

[29] George Karypis and Vipin Kumar. 1999. Multilevel K-way Hypergraph Partition-
ing (DAC ’99). ACM, 343–348.

[30] Sungwoong Kim, Sebastian Nowozin, Pushmeet Kohli, and Chang D. Yoo. 2011.
Higher-Order Correlation Clustering for Image Segmentation (NIPS ’11).

[31] Christine Klymko, David F. Gleich, and Tamara G. Kolda. 2014. Using Triangles
to Improve Community Detection in Directed Networks. In The Second ASE
International Conference on Big Data Science and Computing, BigDataScience.

[32] Tarun Kumar, Sankaran Vaidyanathan, Harini Ananthapadmanabhan, Srinivasan
Parthasarathy, and Balaraman Ravindran. 2020. A New Measure of Modularity
in Hypergraphs: Theoretical Insights and Implications for Effective Clustering. In
Complex Networks and Their Applications VIII. Springer International Publishing.

[33] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2007. Graph evolution:
Densification and shrinking diameters. ACM Transactions on Knowledge Discovery
from Data (TKDD) 1, 1 (2007), 2.

[34] Pan Li, H. Dau, Gregory J. Puleo, and Olgica Milenkovic. 2017. Motif clustering
and overlapping clustering for social network analysis (INFOCOM ’17). 1–9.

[35] Pan Li and Olgica Milenkovic. 2017. Inhomogeneous Hypergraph Clustering
with Applications (NIPS ’17). 2308–2318.

[36] Pan Li and Olgica Milenkovic. 2018. Submodular Hypergraphs: p-Laplacians,
Cheeger Inequalities and Spectral Clustering (ICML ’18). 3020–3029.

[37] Pan Li, Gregory. J. Puleo, and Olgica. Milenkovic. 2019. Motif and Hypergraph
Correlation Clustering. IEEE Transactions on Information Theory (2019), 1–1.

[38] Tom Michoel and Bruno Nachtergaele. 2012. Alignment and integration of
complex networks by hypergraph-based spectral clustering. Physical Review E
86 (2012), 056111. Issue 5.

[39] Mark EJ Newman and Michelle Girvan. 2004. Finding and evaluating community
structure in networks. Physical review E 69, 026113 (2004).

[40] Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019. Justifying Recommendations
using Distantly-Labeled Reviews and Fine-Grained Aspects (EMNLP-IJCNLP ’19).
188–197.

[41] Leto Peel, Daniel B. Larremore, and Aaron Clauset. 2017. The ground truth about
metadata and community detection in networks. Science Advances 3, 5 (2017).

[42] Gregory. J. Puleo and Olgica. Milenkovic. 2018. Correlation Clustering and
Biclustering With Locally Bounded Errors. IEEE Transactions on Information
Theory 64, 6 (June 2018), 4105–4119.

[43] Jörg Reichardt and Stefan Bornholdt. 2004. Detecting Fuzzy Community Struc-
tures in Complex Networks with a Potts Model. Phys. Rev. Lett. 93 (2004), 218701.

[44] Cameron Ruggles, Nate Veldt, and David F. Gleich. A Parallel Projection Method
for Metric Constrained Optimization (SIAM CSC ’20).

[45] Satu Elisa Schaeffer. 2007. Graph clustering. Computer Science Review (2007).
[46] Ron Shamir, Roded Sharan, and Dekel Tsur. 2004. Cluster graph modification

problems. Discrete Applied Mathematics 144 (2004), 173–182.
[47] Jianbo Shi and J. Malik. 2000. Normalized cuts and image segmentation. IEEE

Transactions on Pattern Analysis and Machine Intelligence 22, 8 (2000), 888–905.
[48] Rishi Sonthalia and Anna C. Gilbert. 2020. Project and Forget: Solving Large-Scale

Metric Constrained Problems. (2020). arXiv:cs.LG/2005.03853
[49] Ze Tian, TaeHyun Hwang, and Rui Kuang. 2009. A hypergraph-based learn-

ing algorithm for classifying gene expression and arrayCGH data with prior
knowledge. Bioinformatics 25, 21 (2009), 2831–2838.

[50] V. A. Traag, P. Van Dooren, and Y. Nesterov. 2011. Narrow scope for resolution-
limit-free community detection. Phys. Rev. E 84 (Jul 2011), 016114. Issue 1.

[51] Charalampos E. Tsourakakis, Jakub Pachocki, and Michael Mitzenmacher. 2017.
Scalable Motif-aware Graph Clustering (WWW ’17). 1451–1460.

[52] Anke van Zuylen and David P. Williamson. 2009. Deterministic Pivoting Al-
gorithms for Constrained Ranking and Clustering Problems. Mathematics of
Operations Research 34, 3 (2009), 594–620.

[53] Nate Veldt, Austin R. Benson, and Jon Kleinberg. 2020. Hypergraph Cuts with
General Splitting Functions. (2020). arXiv:cs.DS/2001.02817

[54] Nate Veldt, David F. Gleich, and Anthony Wirth. 2018. A Correlation Clustering
Framework for Community Detection (WWW ’18). 439–448.

[55] Nate Veldt, David F. Gleich, and Anthony Wirth. 2019. Learning Resolution
Parameters for Graph Clustering (WWW ’19).

[56] Nate Veldt, David F. Gleich, Anthony Wirth, and James Saunderson. 2019. Metric-
Constrained Optimization for Graph Clustering Algorithms. SIAM Journal on
Mathematics of Data Science 1, 2 (2019), 333–355.

[57] Nate Veldt, AnthonyWirth, and David F. Gleich. 2020. Parameterized Correlation
Clustering in Hypergraphs and Bipartite Graphs. (2020). arXiv:cs.DS/2002.09460

[58] Hao Yin, Austin R. Benson, and Jure Leskovec. 2018. Higher-order clustering in
networks. Phys. Rev. E 97 (2018), 052306. Issue 5.

[59] Hao Yin, Austin R Benson, Jure Leskovec, and David F Gleich. 2017. Local
higher-order graph clustering (KDD ’17). 555–564.

[60] Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. 2006. Learning with
Hypergraphs: Clustering, Classification, and Embedding (NIPS ’06).

[61] J. Y. Zien, M. D. F. Schlag, and P. K. Chan. 1999. Multilevel spectral hypergraph
partitioning with arbitrary vertex sizes. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 18, 9 (1999), 1389–1399.

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

1876

http://netwiki.amath.unc.edu/GenLouvain
http://arxiv.org/abs/cs.LG/2005.03853
http://arxiv.org/abs/cs.DS/2001.02817
http://arxiv.org/abs/cs.DS/2002.09460

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Correlation Clustering
	2.2 Graph Clustering
	2.3 Hypergraph clustering

	3 Parametric Hypergraph Clustering
	4 Parametric Bipartite Clustering
	5 Approximations and Heuristics
	5.1 General LP Rounding Algorithm for CC
	5.2 Graph Reductions for HyperLam
	5.3 A Four-Approx for Bicluster Deletion
	5.4 Generalized Results for PBCC
	5.5 Modularity Connections and Heuristics

	6 Related Work
	7 Experiments
	7.1 PBCC on Real Bipartite Graphs
	7.2 HyperLam for Motif Clustering
	7.3 Clustering Amazon Products Categories

	8 Discussion
	Acknowledgments
	References

