Learning Resolution Parameters for Graph Clustering

Nate Veldt
Mathematics Department,
Purdue University
West Lafayette, Indiana
Iveldt@purdue.edu

ABSTRACT

Finding clusters of well-connected nodes in a graph is an extensively
studied problem in graph-based data analysis. Because of its many
applications, a large number of distinct graph clustering objective
functions and algorithms have already been proposed and analyzed.
To aid practitioners in determining the best clustering approach
to use in different applications, we present new techniques for
automatically learning how to set clustering resolution parameters.
These parameters control the size and structure of communities
that are formed by optimizing a generalized objective function. We
begin by formalizing the notion of a parameter fitness function,
which measures how well a fixed input clustering approximately
solves a generalized clustering objective for a specific resolution
parameter value. Under reasonable assumptions, which suit two
key graph clustering applications, such a parameter fitness function
can be efficiently minimized using a bisection-like method, yielding
a resolution parameter that fits well with the example clustering.
We view our framework as a type of single-shot hyperparameter
tuning, as we are able to learn a good resolution parameter with
just a single example. Our general approach can be applied to learn
resolution parameters for both local and global graph clustering
objectives. We demonstrate its utility in several experiments on
real-world data where it is helpful to learn resolution parameters
from a given example clustering.

KEYWORDS

Graph clustering; community detection; resolution parameters

ACM Reference Format:

Nate Veldt, David F. Gleich, and Anthony Wirth. 2019. Learning Resolution
Parameters for Graph Clustering. In Proceedings of the 2019 World Wide
Web Conference (WWW ’19), May 1317, 2019, San Francisco, CA, USA. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3308558.3313471

1 INTRODUCTION

Partitioning a collection of items into groups of similar items — that
is, clustering - is a fundamental computational task. So commonly
applied, there is a large and still-growing suite of objective func-
tions, algorithms, and techniques for identifying good clusters. One
powerful mathematical model for clustering is the graph, compris-
ing nodes and (undirected) edges. For a broad overview of graph

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.

WWW 19, May 13-17, 2019, San Francisco, CA, USA

© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-6674-8/19/05.

https://doi.org/10.1145/3308558.3313471

1909

David F. Gleich
Computer Science Department,
Purdue University
West Lafayette, Indiana
dgleich@purdue.edu

Anthony Wirth
School of Computing and
Information Systems,
The University of Melbourne
Parkville, VIC, Australia
awirth@unimelb.edu.au

clustering, refer to any one of a number of surveys [11, 13, 28, 31].
Nearly all clustering approaches favor clusters with high internal
edge density and a low external edge density. A related, but not
identical, notion is that a good cluster is a set of nodes with a small
cut (i.e., few edges leaving the set), and a nontrivial size (e.g., a large
number of nodes, or many internal edges).

Although most clustering approaches follow these general prin-
ciples, there are many different ways to formalize such goals math-
ematically. In practice, this array of objective functions yields a
large variety of different output clusterings. Indeed, many existing
(theoretical) approaches to graph clustering assume that the user
knows a priori which objective function is appropriate for their
context or job. The main design task, leading to a practical solution,
is then to develop good algorithms that exactly, or approximately,
optimize the objective. However, we propose that it is more natural
to assume that the user starts with some a priori knowledge about
the desired structure of clusters in a given application domain. More
specifically, they can provide at least one example of what a good
clustering should look like. The revised goal is to find an objective
function whose optimization yields the desired type of output.

Our approach. In this article, we show how to bootstrap from this
one quality clustering to learn the appropriate objective function,
chosen from a parameterized family of objective functions. The ef-
ficiency of our technique relies on the clustering objective function
being linear, with linear constraints, tuned by a single parameter .
Given this type of objective, we formalize the notion of a parameter
fitness function, which relies on a fixed example clustering Cy of
a network, and takes a parameter f as input. The fitness function
computes the ratio between the objective score of Cy, when f is
chosen as the input parameter, and a lower bound on the optimal
clustering objective for that 8. Specifically, we use a concave piece-
wise linear lower bound over a wide family of what we refer to
as relaxed clusterings. Minimizing the fitness function produces a
parameter (and a corresponding objective function) that Cy exactly
or at least nearly optimizes. Thus the aim, which can be realized
via a guided binary search, is to identify the parameter setting in
which Cy most stands out. In the remainder of this introduction,
we flesh out the context for our technique.

Parameters. There are multiple families of objective functions
whose members are specified by a tunable resolution parameter.
This parameter controls the size and structure of clusters that are
formed by optimizing the objective. Key examples of such general-
ized clustering objective functions include the Hamiltonian objective
studied by Reichardt and Bornholdt [29], the stability objective
of Delvenne et al. [10], and a multi-resolution variant of the map
equation [32].

https://doi.org/10.1145/3308558.3313471
https://doi.org/10.1145/3308558.3313471

In this manuscript we focus on a related clustering framework
that we developed in previous work [37], based on correlation clus-
tering [5]. This framework is named LAMBDACC, after its resolution
parameter A, which implicitly controls both the internal edge den-
sity as well as the cut sparsity of nodes formed by minimizing the
objective. Furthermore, LAMBDACC generalizes several well-studied
objectives such as modularity clustering, sparsest cut, normalized
cut, and cluster deletion. All of these objectives can be viewed as
special cases of the objective for appropriate settings of A.

Global and local. The above objectives are specifically designed
for global clustering, in which the goal is to find a multi-cluster
partitioning of an input graph. Local clustering objectives relying
on resolution parameters also exist; these focus on finding a single
cluster in a localized region of a graph. Flow-based methods such as
FlowImprove [4], Locallmprove [26], and SimpleLocal [35] fit into
this category. These methods repeatedly solve minimum s-¢ cut
problems for different values of a parameter «, in order to minimize
a ratio-style objective related to a cluster quality measure called
conductance. This a can be viewed as a resolution parameter that
balances a trade-off between forming a cluster with a small cut, and
forming a cluster with a large overlap with a seed set in the graph.

Given the unifying power and versatility of generalized cluster-
ing objective functions, the challenge of finding the right clustering
technique for a specific application can often be reduced to find-
ing an appropriate resolution parameter. However, very little work
has addressed how to set these parameters in practice, in particu-
lar to capture the specific clustering structure present in a certain
application domain. In the past, solving generalized objective func-
tions for a range of resolution parameters has been used to detect
hierarchical clusterings in a network [29], or as a way to identify sta-
ble clusterings, which consistently optimize the objective over a
range of parameter values [10, 17, 32]. While both are important
applications of resolution-based clustering, the ability to detect a
specified type of clustering structure is important regardless of
a clustering’s stability or the hierarchical structure of a network.
Finally, while tuning hyperparameters is a standard procedure in
the broader machine learning literature, most existing approaches
are not specifically designed for tuning graph clustering resolution
parameters. Furthermore hyperparameter tuning techniques typi-
cally rely on performing cross validation over a large number of
training examples. We are concerned with learning good resolu-
tion parameters from a single example clustering that represents a
meaningful partitioning in a certain application domain.

Our Contributions. In this paper we develop an approach for
learning how to set resolution parameters for both local and global
graph clustering problems. Our results for global graph clustering
rely heavily on the LaMBDACC framework we developed in past
work [37]. We begin by formally defining a parameter fitness func-
tion for a given clustering. We then prove that under reasonable
assumptions on the input clustering and clustering objective func-
tion used, we can find the minimizer of such a fitness function to
within arbitrary precision using a simple bisection-like method. Our
approach can be viewed as a type of single-shot hyperparameter
tuning, as we are able to learn an appropriate setting of a resolution
parameter when given a single example clustering. We display the
utility of our approach in several local and global graph clustering

1910

experiments. Our approach allows us to obtain improved commu-
nity detection results on synthetic and real-world networks. We
also show how our method can be used to measure the correlation
between metadata attributes and community structure in social
networks.

2 GRAPH CLUSTERING BACKGROUND

This section reviews the global LAMBDACC [37] clustering objective
and a local clustering objective that is based on regionally biased
minimum cut computations [4, 26]. While there do exist many other
objectives for local and global clustering, we focus on these two as
they both rely crucially on resolution parameters.

Basic Notation. In this paper we consider unweighted and undi-
rected graphs G = (V, E), though many of the ideas can be extended
to weighted graphs. Global graph clustering separates G into dis-
joint sets of nodes so that every node belongs to exactly one cluster.
For local clustering, one is additionally given a set of reference or
seed nodes R C V and the objective is to find a good cluster that
shares a nontrivial overlap with R. The degree of anode i € V is the
number of edges incident to it; we denote this by d;. The volume of
aset S C V is given by vol(S) = Y ;cs d; and cut(S) measures how
many edges cross from S to its complement set S = V\S. Further
notation will be presented as needed in the paper.

2.1 Global Clustering with LAMBDACC

The LAMBDACC objective is a special case of correlation clustering
(CC) [5], a framework for partitioning signed graphs. In correlation
clustering, each pair of nodes (u, v) in a signed graph is associated
with either a positive edge or a negative edge, as well as a nonneg-
ative edge weight e, indicating the strength of the relationship
between u and v. Given this input, the goal is to produce a clus-
tering which minimizes the weight of disagreements or mistakes,
which occur when positive edges are placed between clusters or
negative edges are placed inside clusters.

The LAMBDACC framework takes an unsigned graph G = (V, E),
a resolution parameter A € (0, 1), and node weights w,, for each
u € V. It converts this input into a signed graph over which the
correlation clustering objective can then be minimized. The signed
graph G = (V,E*,E7) is constructed as follows: for every (u,v) €
E,if 1 — Awywy, > 0, form a positive edge (u,v) in é, otherwise
form a negative edge. In either case, the weight of this edge is
euv = |1 — Awywy|. For every non-edge in the original graph
((4,v) ¢ E), form a negative edge (u,v) € E~ in G with weight
euv = Awywy. The LAMBDACC objective function then corresponds
to the correlation clustering objective applied to G:

min Z ey (1 = byv) + Z euvduv, (1)

(u,v)€E* (i,j)€E~

where 6, is a zero-one indicator function which encodes whether
a clustering has placed nodes u, v together (6, = 1), or apart
(8uw = 0). There are two main choices for node weights: w;, = 1
for all u € V is the standard LAMBDACC objective. For this simple
case, we note that a node pair (u, v) which defines an edge in G will
always correspond to a positive edge in G. In some applications it is
useful to consider a degree-weighted version in which w;, = dy,. In
this case, if 1 < 1/(d2,,,) then we can still guarantee that E = E.

However, for larger values of A it may be possible that an edge in
G gets mapped to a negative edge in G.

As a generalization of standard unweighted correlation cluster-
ing, LAMBDACC is NP-hard, though many approximation algorithms
and heuristics for correlation clustering have been developed in
practice [2, 5, 8, 9]. In our previous work [37], we showed that a
3-approximation for standard LAMBDACC can be obtained for any
A > 1/2 by rounding the following LP relaxation of objective (1):

Z(u0)eE(1=Dxuv + X(u,0)ee M1 = Xuo)
subjectto xyp < Xyw + Xow forall u,v, w)
0<xyp <1 forallu < v.

minimize

Furthermore, even when a priori approximations are not guaran-
teed, solving the LP relaxation can be a very useful way to obtain
empirical lower bounds for the objective in polynomial time. In
follow up work [15], we provided improved approximations for
A < 1/2 based on rounding the LP, but noted an Q(log n) integrality
gap for some small value of A.

Equivalence Results. LAMBDACC generalizes and unifies a large
number of other clustering approaches. When A = 1/(2|E|), the
degree-weighted version is equivalent to the popular maximum
modularity clustering objective [23, 24]. Standard LAMBDACC inter-
polates between the sparsest cut objective for a graph-dependent
small value of A, and the cluster deletion problem when A > |E|/(1+
|El). Given its relationship to modularity, LAMBDACC is known to
also be related to the stochastic block model [25] and a multi-cluster
normalized cut objective [42].

2.2 Local Clustering Objectives

We next consider a class of clustering objectives that share some sim-
ilarities with (1), but are designed for finding a single local cluster in
a specific region of a large graph. With the input graph G = (V, E),
we additionally identify a set of seed or reference nodes R around
which we wish to form a good community. One common measure
for the “goodness” of a cluster S is the conductance objective:

#(S) = cut(S)/(min{vol(S), vol(S)}), 3)

which is small when S is connected very well internally but shares
few edges with S. A number of graph clustering algorithms have
been designed to minimize local variants of (3). These substitute
the denominator of (3) with a measure of the overlap between an
output cluster S and the reference set R. One such objective is the
following local conductance measure:

Br(S) =) _____
vol(RN S) — evol(RN S)

which is minimized over all sets S such that the denominator of
@R (S) is positive. This objective includes a locality parameter ¢
that controls how much overlap there should be between the seed
set and output cluster. For a general overview of this clustering
paradigm and its relationship to spectral and random-walk based
techniques, we refer the reader to the work of Fountoulakis et
al. [14]. Specific algorithms which minimize variants of (4) include
FlowImprove [4], which always uses parameter ¢ = vol(R)/vol(R),
and Locallmprove [26] and SimpleLocal [35], both of which choose
larger values of ¢ in order to keep computations more local. In the
extreme case where we consider ¢ = oo, the problem reduces to

4

1911

finding the minimum conductance subset of a reference set R, which
can be accomplished by the Minimum Quotient Improvement (MQI)
algorithm of Lang and Rao [20].

Objective (4) can be efficiently minimized by repeatedly solving
a minimum s-t cut problem on an auxiliary graph constructed from
G, which introduces a sink node s attached to nodes in R, and a
source node t attached to nodes in R = V\R. Edges are weighted
with respect to the locality parameter ¢ and another parameter a. In
order to detect whether there exists some set S with g (S) < «, one
can solve a local clustering objective corresponding to the minimum
s-t cut objective on the auxiliary graph. We refer to this simply as
the local flow clustering objective:

min f,(S) = cut(S) + avol(R N S) + aevol(RN S). (5)

If the set S minimizing f,, satisfies f (S) < avol(R), then rearrang-
ing terms one can show that ¢g(S) < a. Thus, by performing binary
search over « or repeatedly solving (5) for smaller and smaller «,
one can minimize the local conductance measure (4).

Previous research has largely treated a as a temporary parameter
used in one step of a larger algorithm seeking to minimize (4).
Algorithms which minimize (4) do so by finding the smallest « such
that the minimum of (5) is avol(R). We depart from this approach
by instead treating & as a tunable resolution parameter for balancing
two conflicting goals: finding clusters with a small cut, and finding
clusters that have a large overlap with the seed set R. In the case
where ¢ is treated as infinitely large and we are simply looking for
subsets of a seed set R satisfying vol(R) < vol(R), then in effect
we are trying to solve the optimization problem:

min cut(S) — avol(S) + avol(R) such that S C R. (6)

This goal is related to, but ultimately should be contrasted with,
the goal of minimizing the ratio cut(S)/vol(S). The objectives are
similar in that they both tend to prefer sets with small cut and large
volume. We argue that treating « as a tunable parameter is in fact
more versatile than simply minimizing the ratio score. In multiple
applications it may be useful to find clusters with small cut and
large volume, but different applications may put a different weight
on each aspect of the objective. We observe that ¢ also plays an
important role in the size and structure of the output community
when it is less than co. For simplicity, in this paper we can treat
this as a fixed constant, and in our experimental section we simply
focus on objective (6).

2.3 Parametric Linear Programs

Before moving on we provide key background on parametric linear
programming which will be important in our theoretical results. A
standard linear program is a problem of the form

min c’x such that Ax < b (7)
X

where c, b are vectors and A is a constraint matrix. A parametric
linear program is a related problem of the form

min c!x+ ﬁ(Ac)Tx such that Ax < b (8)
X

where Ac is another vector of the same length as ¢ and f is a
parameter controlling the difference between (7) and (8). We state
a well-known result about the solutions of (8) for different f. This
result is not new; it follows directly from Proposition 2.3b from [1].

THEOREM 1. Let L(f) be the minimum of (8) for a fixed . If we
are given bounds a and b such that L(f) € R forall f € [a,b], then L
is a piecewise linear and concave function in f over this interval.

Parametric LPs in Graph Clustering Applications. In our work
it is significant to note that the linear programming relaxation of
LaMBDACC is a parametric linear program in A. Furthermore, the
local flow clustering objective can be cast as a parametric linear
program in «, since this objective corresponds simply to a special
case of the minimum s-¢ cut problem, which can be cast as an LP.

2.4 Related Work

Our work builds on previous results that introduced generalized
objective functions with resolution parameters, including the Hamil-
tonian objective [29], clustering stability [10], a multiscale variant
of the map equation [32], and the LAMBDACC framework [37]. Re-
cently Jeub et al. [17] introduced a technique for sampling val-
ues of a resolution parameter and applying hierarchical consensus
clustering techniques. Our work on learning clustering resolution
parameters differs from theirs in that we do not aim to provide
hierarchical clusterings of a network. Instead we assume that there
is a known fixed clustering, for which we wish to learn a single
specific resolution parameter.

There exist many techniques for localized community detection
based on seed set expansion. Among numerous others, these in-
clude spectral and random-walk based methods [3, 33], flow-based
methods [4, 20, 26, 35], and other approaches which perform diffu-
sions from a set of seed nodes and round embeddings via a sweep
cut procedure [18, 39]. We build on these by interpreting hyperpa-
rameters associated with such methods as resolution parameters
which can be learned to produce clusters of a certain type.

3 THEORETICAL RESULTS

The major theoretical contribution of our work is a new framework
for learning clustering resolution parameters based on minimizing
a parameter fitness function for a given example clustering. We
present results for a generic clustering objective and fitness func-
tion, and later show how to apply our results to LAMBDACC and
local flow clustering.

3.1 Problem Formulation

Let C denote a set of valid clusterings for a graph G = (V, E). We
consider a generic clustering objective function fz : C = Ryxg
that depends on a resolution parameter . The function takes as
input a clustering C € C, and outputs a nonnegative clustering
quality score for C. We assume that smaller values of fj are better.
We intentionally allow fz to be very general in order to develop
broadly applicable theory. For intuition, one can think of fz as
being the LAMBDACC function (1) with f = A. Alternatively, one
can picture fg to be the local flow objective (5) with f = « and
with C representing the set of bipartitions, i.e. for any C € C,
C ={S,S) for somesetS C V.

Given some objective function fp, a standard clustering para-
digm is to assume that an appropriate value of § has already been
chosen, and then the goal is to produce some clustering C that
exactly or approximately minimizes fg. In our work, we address
an inverse question: given an example clustering Cy, how do we

1912

determine a parameter § such that Cyx approximately minimizes
fp? Ideally we would like to solve the following problem:

Goal 1: Find § > 0 such that f5(Cx) < fg(C) forallC € C. (9)

In practice, however, Cx may not exactly minimize a generic clus-
tering objective for any choice of resolution parameter. Thus we
relax this to a more general and useful goal:

Goal 2: Find the minimum A > 1 such that for some § > 0
fp(Cx) < Afg(C) forall C € C. (10)

This second goal is motivated by the study of approximation algo-
rithms for clustering. In effect this asks: if we are given a certain
clustering Cx, is Cx a good approximation to f for any choice of
B? Note that this generalizes (9): if § can be chosen to satisfy Goal 1,
then the same f will satisfy Goal 2 with A = 1. Furthermore, it has
the added advantage that, if solved, Goal 2 will produce a value A
which communicates how well clusterings like Cx can be detected
using variants of the objective function fg.If A is near 1, it means
that fz is able to produce similar clusterings for a correct choice of
B, whereas if A is very large this indicates that C will be difficult
to find even for an optimal f§, and thus a different approach will be
necessary for detecting clusterings of this type.

Clustering Relaxations. While Goal 2 is a more reasonable target
than Goal 1, it may still be a very challenging problem to solve when
objective fz is hard to optimize, e.g., if it is NP-hard. We thus con-
sider one final relaxation that is slightly weaker than (10), but will
be more feasible to work with. Let C denote a superset of C which
includes not only clusterings for G, but also some notion of a re-
laxed clustering, and let g C — R be an objective that assigns

a score for every C € C. Furthermore, assume g represents a lower
bound function for fg: gg(C) < fg(C) forall fand all C € C. Our
consideration of g4 is motivated by the fact that many NP-hard
clustering objectives permit convex relaxations, which can be opti-
mized in polynomial time over a larger set of relaxed clusterings
that contain all valid clusterings of G as a subset. For example, the
LamBDACC objective is NP-hard to optimize for every A € (0, 1),
but the linear programming relaxation for every A can be solved in
polynomial time, and is defined over relaxed clusterings in which
pairs of nodes are assigned distances between 0 and 1. These re-
laxations can be rounded to produce good approximations to the
original NP-hard objective [8, 9]. Since gg is indeed easier to opti-
mize than fg, the following goal will be easier to approach but still
provide strong guarantees for learning a good value of :

Goal 3: Find the minimum A > 1 such that for some > 0

f5(Cx) < Agg(C) forall C € C. (11)

If we can solve (11), this still guarantees that Cy is a A-approximation
to fp for an appropriately chosen f. For problems where fg is very
challenging to optimize, but g is not, this will be a much more
feasible approach. In the next section we will focus on developing
theory for addressing Goal 3, though we note that in applying this
theory we can still choose g3 = fg and therefore instead address
the stronger Goal 2 whenever this is feasible. We will take this
approach when applying our theory to the local flow objective.

3.2 Parameter Fitness Function

We now present a parameter fitness function whose minimization is
equivalent to solving (11). Functions fz and gg take a clustering or
relaxed clustering as input and output an objective score. However,
we wish to view f as an input parameter and we treat an example
clustering Cy as a fixed input. Thus for convenience we introduce
new related functions:

F(p) = fp(Cx) (12)
G(p) = min gg(C) (13)
CeC

The ratio of these two functions defines the parameter fitness func-
tion that we seek to minimize:

F(p)
P(p) G (14)
Observe that this function is always greater than or equal to 1
since G(f) < F(P) for any f. The minimizer of P is a resolution
parameter f3 that minimizes the ratio between the clustering score
of a fixed Cx and a lower bound on fg. Thus, by minimizing (14)
we achieve Goal 3 in (11) with A = ming P(f).

In Section 2.3, we noted that the local flow clustering objective
can be characterized as a parametric linear program, as can the LP
relaxation of LAMBDACC. Furthermore, for a fixed clustering, both
objective functions can be viewed as a linear function in terms of
their resolution parameter. Motivated by these facts, we present a
theorem which characterizes the behavior of the parameter fitness
function # under certain reasonable conditions on the functions
F and G. In the subsequent section we will use this result to show
that # can be minimized to within arbitrary precision using an
efficient bisection-like method.

THEOREM 2. Assume F(B) = a + bp for nonzero real numbers
a and b. Let G be concave and piecewise linear in 8, and assume
F(B) = G(B) = 0 forall p € [£,r] where £ and r are nonnegative
lower and upper (i.e. left and right) bounds for . Then P satisfies the
following two properties:

(a) If = < B < B*, then P(B) cannot be strictly greater than

both P(B~) and P(BF).
(b) IfP(B~) = P(BT), then P achieves its minimum in [, f¥].

Proor. Note that for some y € (0,1), = (1-y)Bt +yp~. By
concavity of G and linearity of F, we know
pip) - FOZDB 2 vB) (=)FEY) +yF)
G-yt +yp) ~ (1=1)G(BT) +yG(h7)
(1-y)F(B*) yF(B™) + -
< max{ {0 Loy~ PO P60}
which proves the first property. Now assume that P(87) = P(S7).
Using property 1, we know as f§ increases from its lower to upper
limit, cannot increase and then decrease. Thus, either P attains
its minimum on [, %], else P is a constant for all § € [f~, f¥].If
the latter is true, then for some f§ € [f~,] and some sufficiently
small € > 0, G must be linear in the range (f — ¢, + €), since we
know that G is piecewise linear. Therefore, G(f) = ¢ + dff and

P(B) = (a+bp)/(c +dp) = constant (15)

for f € (f — €, p + €) and for some c,d € R. This ratio of linear
functions can only be a constantif a = ¢ = 0, or b = d = 0, or if

1913

P(B1)
Q(B1)

P(Bs)

B B3 B2

Figure 1: Function P satisfies both properties (a) and (b)
in Theorem 2. If P(f1) = P(p2), querying P at any point
B3 € [pi1, P2] gets us closer to a minimizer. Function Q only
satisfies property (a). If Q(f1) = Q(f2), we can get stuck mak-
ing queries inside a flat region of Q not near a minimizer.

a =cand b = d. Since we assumed a and b were nonzero, the last
case must hold, and thus P () = 1 for every € [, 7], so the
minimizer is obtained in this case, since P(f) > 1 for all j. O

In the next section we present a method for finding the mini-
mizer of a function satisfying properties (a) and (b) in Theorem 2
to within arbitrary precision. Before doing so, we highlight the
importance of ensuring that both properties hold. In Figure 1 we
plot two toy functions, £ and Q. Although both satisfy property
(a), only P additionally satisfies (b). Assume we do not have ex-
plicit representations of either function, but we can query them at
specific points to help find their minimizers. Consider Figure 1. If
we query P at points f; and S to find that P (1) = P(f2), then
choosing any third point 3 € (B, f2) will get us closer to the
minimizer. However, if Q(f1) = Q(f2) for some f1, f2, we cannot
be sure these points are not part of a flat region of Q somewhere far
from the minimizer. It thus becomes unclear how to choose a third
point f3 at which to query Q. If we choose some 3 € (f1, f2) and
find that Q(f3) = Q(B2) = Q(f1), the minimizer may be within
[B1, 2], within [fo, B3], or in a completely different region. Thus
it is important for the denominator of a parameter fitness func-
tion to be piecewise linear in addition to being concave, since this
piecewise linear assumption guarantees property (b) will hold.

3.3 Minimizing P

We now outline an approach for finding a minimizer of to within
arbitrary precision when Theorem 2 holds. Our approach is closely
related to the standard bisection method for finding zeros of a
continuous function f. Recall that standard bisection starts with
a and b such that sign(f(a)) # sign(f(b)), and then computes
f(c) where ¢ = (a + b)/2. Checking the sign of f(c) allows one to
determine whether the zero of f is located within the interval [a, c]
or [b, c]. Thus each new query of the function f halves the interval
in which a zero must be located.

Assume P satisfies properties (a) and (b) in Theorem 2 over
an interval [, r]. To satisfy Goal 3, given in (11) in Section 3.1, it
suffices to find any minimizer of ¥, which we do by repeatedly
halving the interval in which the minimizers of # must lie. Our
approach differs from standard bisection in that we are trying to
find a minimizer instead of the zero of some function. The key
algorithmic difference is that querying ¥ at a single point between
two bounds will not always be sufficient to cut the search space in

P(r)
Pl
P(m) P(rmia)
P P(m
P(lmia
) m r 14 bnia ™M Tmid r

Figure 2: We evaluate P at left and right bounds (blue points),
and at a midpoint m (red point). Left: If P({) < P(m) < P(r),
then we know the minimizer of # is in [{,m], and we re-
cursively call the one-branch phase (Algorithm 1) with new
bounds ¢ and m. Right: If P(m) < P({) < P(r), we don’t know
if the minimizer is in the left branch [{, m] or right branch
[m, r]. Evaluating # at the midpoint of each branch (purple
points), we rule out branch [m, r] and recursively call Algo-
rithm 2 with new endpoints £ and m and midpoint ¢,,;;.

half. Consider Figure 2. Our method starts in a one-branch phase in
which we know a minimizer lies between ¢ and r. If we compute
m = (€ + r)/2 and find that P (m) is between P (£) and P (r), this
does in fact automatically cut our search space in half, as this
implies that # is monotonic on either [£, m] or [m, r]. However, if
P(m) < min{P(£), P(r)}, then it is possible for the minimizer to
reside within either the left branch [£, m] or the right branch [m, r].
In this case, the method enters a two-branch phase in which it takes
the midpoint of each branch (£,,,;g = (£+m)/2 and ry,;q = (m+7r)/2)
and evaluates P (p,;49) and P (rp,;q). If P returns the same value
for two of the inputs (e.g., P(£) = P(m)), then by property (b) we
have found a new interval containing the minimizer(s) of # that is
at most half the length of [£, r]. Otherwise, we can use property (a)
to deduce that the minimizer will be located within [£, m], [m, r],
or [€mid> Tmid], and we recurse on the two-branch phase.

Algorithms 1 and 2 handle the one- and two-branch phases of the
method respectively. The guarantees of our method are summarized
in Theorem 3. We omit the full proof, since it follows directly from
considering different simple cases and applying properties of # to
halve the search space as outline above.

THEOREM 3. Consider a fixed clustering Cx and a corresponding
parameter fitness function Pc _ satisfying the assumptions of The-
orem 2. Running Algorithm 1 with input {,r and a tolerance € will
produce a resolution parameterﬁ that is within € of the minimizer of
Px over the interval [€,r], in at most log,((r — £)/€) recursive calls.

4 APPLICATION TO SPECIFIC OBJECTIVES

Theorem 2 and our approach for minimizing # can be immediately
applied to learn resolution parameters for the LAMBDACC global
clustering objective and the local flow clustering objective.

4.1 Local Clustering

For local clustering we consider the objective function f, given
in (5) and note that the set of valid clusterings C is the set of
bipartitions. The example clustering we are given at the outset of the
problemis C, = {X, X} where X C V is some nontrivial set of nodes
representing a “good” cluster for a given application. We assume we

1914

Algorithm 1 CheckOneBranch(¢,r, €)

Base case:
if r — ¢ < e then
return £
Recursive call:
5: Midpoint: m = (£ +7r)/2
switch ¢, m,r do
case P({) = P(m) = P(r)
return m
case P () < P(m) < P(r)
10: return CheckOneBranch(¢, m, €)
case P(£) > P(m) > P(r)
return CheckOneBranch(m,r, €)
case P(£) > P(m) < P(r)
return CheckTwoBranches(¢, m,r, €)

Algorithm 2 CheckTwoBranches({, m,r, €)

Base case:
if r — ¢ < € then
return m
Recursive call:
5: Left midpoint: £,,;y = (€ + m)/2
Right midpoint: ;g = (m+7r)/2
switch £,,;4, m, rpiq do
case P ((pig) = P(m) = P (rmiq)
return m
10: case P (Cpig) = P(m) # P(rmiq)
return CheckOneBranch(¢,,;4, m, €)
case P ((mig) # P(m) = P (rmia)
return CheckOneBranch(m, rp,;q4, €)
case P (Cpig) < P(m) < P(rmiq)
15: return CheckTwoBranches(¢, £,,;4, m, €)
case P (Cppig) > P(m) > P(rmiq)
return CheckTwoBranches(m, ry,;4, 1, €)
case P (Cpig) > P(m) < P(rmia)
return CheckTwoBranches(¢,,;q, m, Finids €)

are also given a reference set R (with vol(R) < vol(R)) that defines
a region of the graph in which we are searching for clusters. As
noted previously, f, can be viewed as a parametric linear program,
and furthermore it will evaluate to a non-negative finite number
for any a > 0. Thus by Theorem 1, G() = ming f,(S) is concave
and piecewise linear and we can apply Theorem 2. More explicitly,
the local clustering parameter fitness function is

cut(X) + avol(X N R) + aevol(X N R)
ming [cut(S) + avol(S N R) + aevol(S N R)]

Px(a) = (16)

If we focus on finding clusters that are subsets of R, using objec-
tive (6), we have a simplified fitness function:

cut(X) — avol(X) + avol(R)
mingcg[cut(S) — avol(S) + avol(R)]"

Px(a) = (17)

When we apply Algorithm 1 to minimize (16) or (17), we can query
Px in the time it takes to evaluate a linear function and the time it

takes to solve the s-¢ cut problem (5). This can be done extremely
quickly using localized min-cut computations [20, 26, 35, 38].
Functions (16) and (17) should be minimized over « € [a*, cut(R)],

where o is either the minimum of (4) if we are minimizing (16),
or is the minimum conductance for a subset of R if we are mini-
mizing (17). One can show that for any « outside this range, objec-
tives (5) and (6) will be trivially minimized by S = R, so it is not
meaningful to optimize these objectives for these a. In practice one
can additionally set stricter upper and lower bounds if desired.

4.2 Global Clustering Approach

We separately consider the standard and degree-weighted versions
of LAMBDACC when applying Theorem 2 to global graph clustering.

Standard LAMBDACC. For the standard objective, it is useful to
consider the scaled version of LAMBDACC obtained by dividing (1)
by 1 — A and substituting for a new resolution parameter y =
A/(1 — A). Then the objective is

min ¥, o)eg(l = Suv) + X(u,0)2E Y Suv- (18)

The denominator of the parameter fitness function for this scaled
LaMBDACC problem would be

G(y) = minyeyx Z(u,v)eE Xyov + Z(u,v)ng y(1 = xyuo) (19)

where X represents the set of linear constraints for the linear pro-
gram (2). Note that G(y) will be finite for every y > 0, so Theorem 1
holds. Thus G is concave and piecewise linear as required by The-
orem 2. Next, for a fixed clustering Cy, let Py be the number of
positive mistakes (pairs of nodes that are separated despite sharing
an edge) and Ny be the number of negative mistakes (pairs of nodes
that are clustered together but share no edge). Then objective (18)
for this clustering is Py + y Ny, and we see that this fits the linear
form given in Theorem 2 as long as the example clustering satisfies
Py > 0 and Ny > 0, which will be the case for nearly any nontriv-
ial clustering one might consider. Finally, note that the parameter
fitness function for (18) would be exactly the same as the parameter
fitness function for the standard LAMBDACC objective, since scaling
by (1 — 1) makes no difference if we are going to minimize the
ratio between the clustering objective and its LP relaxation. The
parameter fitness function for standard LAMBDACC is therefore

(1 — A)Pyx + ANy
minx [ZuveE(l - A)xuv + Zuve_E /1(1 - xuv)]

and it satisfies the assumptions of Theorem 2 as long as Py > 0,
Nx > 0, and we optimize over A € (0, 1).

Pe,(A) =

(20)

Degree-weighted LAMBDACC. Showing how Theorem 2 applies to
degree-weighted LAMBDACC requires slightly more work, though
the same basic principles hold. The LP-relaxation of the objective is
still a parametric linear program, thus is still concave and piecewise
linear in A over the interval (0, 1). The denominator of the parameter
fitness function in this case would be:

min Y, »yeg+ euv(l = duv) + X, v)eE- tuvuv- (21)

where e, is defined in the degree-weighted fashion (see Sec-
tion 2.1). For a fixed example clustering Cx encoded by a function
Ox = (8uw), we can rearrange this into the form a + Ab where a =

Z(u,v)eE(l_5uv) and b = 2(u,v)¢E dudybuy — 2 (u,v)€E dudy (1-

1915

o
©

o
®

ARl scores with ground truth
)
2

o
>

—— Leaming A
—+— Modularity

et (-T:\\ 0:
025 03 035 04 045 05 &. 0
L a5

Figure 3: Left: ARI scores for detecting ground truth in LFR
graphs. Solid lines indicate mean scores, and colored regions
show the range of scores across 5 test graphs for each p.
Right: one of the 5 LFR test graphs for y = 0.3. Modular-
ity (A = 1/(2|E|)) makes mistakes by putting distinct ground
truth clusters together (highlighted). For this example our
approach perfectly detects the ground truth.

o
o

o
N

duv)- These values are simple to compute, and as long as they are
both nonzero, the results of Theorem 2 apply. In some extreme
cases it is possible that a = 0 or b = 0, but we expect this to be rare.
Furthermore, our general approach may still work even when a = 0
or b = 0, Theorem 2 simply does not analyze this case. We leave
it as future work to develop more refined sufficient and necessary
conditions such that Algorithm 1 is guaranteed to minimize .

5 EXPERIMENTS

We consider several local and global clustering experiments in
which significant benefit can be gained from learning resolution
parameters rather than using previous off-the-shelf algorithms
and objective functions. We implement Algorithms 1 and 2 in the
Julia programming language for both local and global parameter
fitness functions. Computing the LAMBDACC linear programming
relaxation can be challenging due to the size of the constraint set.
For our smaller graphs we apply Gurobi optimization software, and
for larger problems we use recently developed memory-efficient
projection methods [30, 36]. For the local-flow objective we use a
fast Julia implementation we developed in recent work [38]. Our
experiments were run on a machine with two Intel Xeon E5-2690 v4
processors. Code for our experiments and algorithms are available
at https://github/nveldt/LearnResParams.

5.1 Learning Parameters for Synthetic Datasets

Although modularity is a widely-applied objective function for com-
munity detection, Fortunato and Barthélemy [12] demonstrated
that it is unable to accurately detect communities below a certain
size threshold in a graph. In our first experiment we demonstrate
that learning resolution parameters for LAMBDACC allows us to
overcome the resolution limit of modularity, and better detect com-
munity structure in synthetic networks. We generate a large number
of synthetic LFR benchmark graphs [19], in a parameter regime
that is chosen to be difficult for modularity. All graphs contain 200
nodes, average degree 10, max degree 20, and community sizes
between 5 and 20 nodes. We test a range of mixing parameters ,
which controls the fraction of edges that connect nodes in different
communities (¢ = 0 means all edges are inside the communities).

https://github/nveldt/LearnResParams

For each y from 0.2 to 0.5, in increments of 0.05, we generate six
LFR networks, one for training and five for testing. On the training
graph, we minimize the degree-weighted LAMBDACC parameter
fitness function to learn a resolution parameter Aj,. This takes
between roughly half an hour (for p = 0.2) to just over three
hours (for y = 0.5), solving the underlying LAMBDACC LP with
Gurobi software. We then cluster the five test LFR examples using a
generalized version of the Louvain method [7], as implemented by
Jeub et al. [16]. We separately run the method with two resolution
parameters: A = 1/(2|E|), the standard setting for modularity, and
A = Apess- Learning Ay, significantly improves adjusted Rand index
(ARI) scores for detecting the ground truth (see Figure 3).

5.2 Local Community Detection

Next we demonstrate that a small amount of semi-supervised infor-
mation about target communities in real-world networks can allow
us to learn good resolution parameters, leading to more robust
community identification. Additionally, minimizing the parameter
fitness function provides a way to measure the extent to which
functional communities in a network correspond to topological
notions of community structure in networks.

Data. We consider four undirected networks, DBLP, Amazon,
Orkut, LiveJournal, which are all available on the SNAP reposi-
tory [22], and come with sets of nodes that can be identified as
“functional communities” (see Yang and Leskovec [40]). For exam-
ple, members of the social network Orkut may explicitly identify
as being part of a user-formed group. Such user groups can be
viewed simply as metadata about the network, though these still
correspond to some notion of community organization that may
be desirable to detect. Following an approach taken in previous
work [38], we specifically consider the ten largest communities
from the 5000 best functional communities as identified by Yang
and Leskovec [40].

Experimental Setup and Results. We treat each functional com-
munity as an example cluster X. We build a superset of nodes R
by growing X from a breadth first search until we have a superset
of size 5|X|, breaking ties arbitrarily. The size of R is chosen so
that it comprises a localized region of a large graph, but is still
significantly larger than the target cluster X hidden inside of it. We
compare two approaches for detecting X within R. As a baseline
approach we extract the best conductance subset of R. Then as
our new approach we assume we are given cut(X) and vol(X) as
additional semi-supervised information. This allows us to minimize
the parameter fitness function (17), without knowing what X is.
This outputs a resolution parameter ay, and we then minimize
cut(S) — axvol(S) + avol(R) over S C R to output a set Sx.

Table 1 reports conductance, set size, runtimes, and F1 scores
for both approaches, averaged over the ten communities in each
network. Learning resolution parameters leads to significantly bet-
ter F1 scores on every dataset. Additionally, learning resolution
parameters for local clustering can be done much more quickly
than learning A for LAMBDACC.

New Insights. In addition to improving semi-supervised commu-
nity detection, minimizing Py allows us to measure how well a
functional community matches the topological notion of a cluster.

1916

C

® dbp @
S 0.8 ® amazon)
= (livejournal @
£ 3 jou - °
c ® orkut c ®
5 06 .‘ S 0.5 P
2) c °
L 04® e E bt °
- °
i
0.2 0 o e@m..
1 15 2 25 0 0.2 0.4 0.6 0.8
Px(a) o(X)

Figure 4: Left: F1 scores for detecting clusters X by learning o
vs. the minimum of Px. Right: F1 scores obtained by finding
mingcr ¢(S) vs. p(X). See the main text for discussion.

Figure 4 shows a scatter plot of F1 community recovery scores
against the minimum of Px for each experiment from Table 1. We
note a downward sloping trend: small values of Px near 1 tend to
indicate that a cluster is highly “detectable,” whereas a higher value
of Px gives some indication that the functional community may
not in fact correspond to a good structural community. We also plot
the F1 recovery scores for finding the minimum conductance subset
of R against the conductance of functional communities. In this
case we do not see any clear pattern, and we learn very little about
the relationship between structural and functional communities.

5.3 Meta-Data and Global Clustering

Next we use our techniques to measure how strongly metadata
attributes in a network are associated with actual community struc-
ture. In general, sets of nodes sharing metadata attributes should
not be viewed as “ground truth” clusters [27], although they may
still shed light on the underlying clustering structure of a network.

Email Network. We first consider the largest connected compo-
nent of an email network [21, 41]. Each of the 986 nodes in the graph
represents a faculty member at a European university, and edges
represent email correspondence between members. We remove
edge weights and directions, and consider an example clustering Cy
formed by assigning faculty in the same academic department to the
same cluster. We use our bisection method to approximately mini-
mize the global parameter fitness function for the degree-weighted
LamBDACC objective. We run our method until we find the best reso-
lution parameter to within a tolerance of 1078, yielding a resolution
parameter A, = 6.5 X 107> and a fitness score of Pc, (Ax) = 1.34.

To assess how good or bad a score of 1.34 is for this particular ap-
plication, we construct a new fake metadata attribute by performing
a random permutation of the department labels, which gives a clus-
tering Cfye. Approximately minimizing Pc,, yields a resolution
parameter Agge = 3.25X 107> and a score PCrue (Afake) = 2.16. The
gap between the minima of ¢, and ¢, indicates that although
the true metadata partitioning does not perfectly map to clustering
structure in the network, it nevertheless shares some meaningful
correlation with the network’s connectivity patterns. To further
demonstrate this, we run the generalized Louvain algorithm [7, 16],
using the resolution parameters Ax and Af,. Running the cluster-
ing heuristic with A, outputs a clustering that has a normalized
mutual information score (NMI) of 0.71 and an adjusted Rand index
(ART) score of 0.55 with Cy. Using A, we get NMI and ARI scores
of only 0.05 and 0.003 respectively when comparing with Cpyge-

Table 1: Output statistics on SNAP datasets for finding the minimum conductance (mc) subset, and learning a resolution pa-
rameter (Ir). Runtime is given in seconds. We also provide average size (|T|) and conductance (¢(T)) for target communities.

Graph 4 |E| |T| ¢(T) ¢ run. size
Ir mec Ir mc Ir mc Ir
DBLP 317,080 1,049,866 3902 049 0.01 047 0.02 0.16 4.9 11.4 31 11680

Amazon 334,863 925,872 190 0.03
LiveJournal 3,997,962 34,681,189 988 0.45
Orkut 3,072,441 117,185,083 3877 0.65

0.73 0.80 0.00 0.02 0.3 0.7 142 288
0.30 0.54 0.06 0.10 13.7 313 1556 2940
044 0.62 042 046 1298 272.6 2353 5727

Social Networks. We repeat the above experiment on the smallest
social network in the Facebook 100 datasets [34], Caltech36. This
network is a subset of Facebook with n = 769 nodes, defined by
users at the California Institute of Technology at a certain point in
September 2005. Every node in the network comes with anonymized
metadata attributes reporting student/faculty status, gender, major,
second major, residence, graduation year, and high school. We treat
each metadata attribute as an example clustering Cyx. Any node
with a value of 0 for an attribute we treat as its own cluster, as this
indicates the node has no label for the given attribute. We do not
run Algorithm 1 for each individual Cy, since this would involve
redundant computations of the LAMBDACC LP relaxations for many
of the same values of A. Instead, we evaluate the denominator of P,
which is the same for all example clusterings, at 20 equally spaced
A values between 1/(8|E|) and 2/(|E|). We set values of A to be
inversely proportional to the number of edges, since we expect the
effect of a resolution parameter to depend on a network’s size. We
note for example that the resolution parameter corresponding to
modularity is A = 1/(2|E[), which is also inversely proportional to
|E|. Computing all of the LP bounds is the bottleneck in our compu-
tations, and takes just under 2.5 hours using a recently developed
parallel solver for the correlation clustering relaxation [30].

Having evaluated the denominator of # at these values, we can
quickly find the minimizer of # for each metadata attribute and a
permuted fake metadata attribute to within an error of less than
107°. The smallest values of the parameter fitness function P for
both real and permuted (fake) metadata attributes are given below:

S/F Gen Maj. Maj.2 Res. Yr HS

min Py 130 173 203 212 135 157 211
minPrr, 1.65 180 212 212 211 209 212

We note that the smallest values of P, as well as the largest gap
between ¥ for true and fake metadata clusterings, are obtained for
the student/faculty status, residence, and graduation year attributes.
This indicates that these attributes share the strongest correlation
with the community structure at this university, which is consistent
with independent results on the Facebook 100 datasets [34, 37].

5.4 Local Clustering in Social Networks

In our final experiment we continue exploring the relationship be-
tween metadata and community structure in Facebook 100 datasets.
We find that minimizing a local parameter fitness function # can
be a much better way to measure the community structure of a set
of nodes than simply considering the set’s conductance.

1917

Data. We perform experiments on all Facebook 100 networks,
focusing on the student/faculty status, gender, residence, and grad-
uation year metadata attributes. For the Caltech dataset in the last
experiment, these attained the lowest scores for a global parameter
fitness function, and furthermore these are the only attributes with
a significant number of sets with nontrivial conductance. For the
graduation year attribute, we focus on classes between 2006 to 2009,
since these correspond to the four primary classes on each campus
when the networks were crawled in September of 2005 [34].

Experimental Setup. We return to an approach similar to our first
experiment. For each network and metadata attribute, we consider
sets of nodes identified by the same metadata label, e.g., X may rep-
resent all students in the class of 2008 at the University of Chicago.
We will refer to these simply as metadata sets. A label of zero indi-
cates no attribute is known, so we ignore these sets. We also discard
sets that are larger than half the graph, or smaller than 20 nodes.
We restrict to considering metadata sets with conductance at most
0.7, since conductance scores too close to 1 indicate that a set has
little to no meaningful connectivity pattern. For each remaining
metadata set X, we grow a superset R around X using a breadth
first search, and stop growing when R contains half the nodes in
the graph or is three times the size of X. We then minimize Px as
given by (17) to learn a resolution parameter ax. This allows us to
find Sx = argmingp cut(S) —axvol(S), and we then compute the
F1 score between Sx and X. Our goal here is not to develop a new
method for community detection. Rather, computing the F1 score
and the minimum of Py provide ways to measure how well a meta-
data set conforms to a topological notion of community structure,
and how detectable the set is from an algorithmic perspective.

Results. While computing conductance scores provides a good
first order measure of a node’s community structure, we find that
minimizing $ provides more refined information for the detectabil-
ity of clusters. In Figure 5 we show scatter plots of F1 detection
scores against both min Py as well as ¢(X) for each metadata set X.
We see that especially for the gender and residence metadata sets
across all networks, there is a much clearer relationship between F1
scores and min Px. Values of Px very close to 1 map to F1 scores
near 1, and as Px increases we see a downward sloping trend in
F1 scores. In the conductance plot we do not see the same trend.

Figures 5c and 5d show results for metadata sets associated with
the 2006-2009 graduation years. For this attribute there appears to
be a relationship between both conductance and the min # scores.
Furthermore, in both plots we see a separation of the points roughly
into two clusters. A deeper exploration of these trends reveals that

0.8 0.8
S
[. %
2 06 °e
= . 6
§
— 04 < 04
— -
B Gender = ® Gender
0.2 Residence 0.2 ® Residence
SIF SIF .
0 0 EEREE $1 TS e oV TN |
1.8 2 0.2 0.3 0.4 0.5 0.6 0.7
d(X)

(a) Px: Gender, S/F, Residence (b) #(X): Gender, S/F, Residence

1 1
08P

X °
°g & o
06 ,omfee .
..'%M
< 04

0.2 . ® 2006-2008 ® 2006-2008
® 2009 ® 2009
. .
0 - 0 -
1 1.2 1.4 1.6 1.8 0 0.2 0.4 0.6 0.8
Px(a) #(X)

(c) Px: Grad Year (d) #(X): Grad Year

learning o

F1

Figure 5: Minimizing Px gives insight into the connectivity
structure of different metadata sets in Facebook 100 datasets.
Plotting F1 detection scores against the minimum of Px
shows especially clear trends for the gender, residence, and
year attributes. Plots (c) and (d) highlight an anomaly in the
connectivity patterns of the 2009 graduating year classes.

me5

o

volume(X)
S

N}

[o KK \ \

\ o | oY | \ (
N AN L WA
2006 2007 2008 2009 2006 2007 2008 2009
Graduation year Graduation year

(b) Volume (c) Cut

2006 2007 2008 2009
Graduation year

(a) Conductance

Figure 6: Small conductance and cut scores in Facebook 100
datasets indicate that freshman in 2005 were largely con-
necting on Facebook with people in their same class.

the 2009 graduation class accounts for the majority of one of these
two clusters, and there appears to be an especially clear trend
between F1 detection scores and both ¢(X) and Px for this class.

New Insights. Figure 6 shows violin plots for ¢(X), cut(X), and
vol(X) for metadata sets associated with graduation years from
2006 to 2009. Overall, conductance decreases as graduation year
increases. We notice that class sizes for the 2009 graduation year
are much smaller on average. When these datasets were generated,
Facebook users needed a .edu email address to register an account.
Thus, in September 2005, the graduation class of 2009 was made
up primarily of new freshman who just started college, many of
whom had not registered a Facebook account yet. Interestingly, we
see a slight decrease in the median cut score from 2007 to 2008, and
a significant decrease from 2008 to 2009 (Figure 6¢). This suggests

1918

that although there were fewer freshman on Facebook at the time,
on average they had a greater tendency to establish connections
on Facebook among peers in their same graduation year.

Figure 6 suggests that in the early years of Facebook, with each
new year, students in the same graduating class tended to form
tighter Facebook circles with members in their own class. To further
explore this hypothesis, for each of the 100 Facebook datasets we
consider each node from a graduating class between 2006 and 2009.
In each network we compute the average in-class connection ratio,
i.e., the number of Facebook friends each person has inside the
same graduating class, divided by the total number of Facebook
connections that the person has across the entire university. In 97
out of 100 datasets (all networks except Caltech36, Hamilton46, and
Santa74), this ratio strictly increases as graduation year increases.
For Hamilton46 and Santa74, the ratio is still significantly higher
for the 2009 graduation class than any other class. If we average
this ratio across all networks, as the graduation year increases from
2006 to 2009, the ratios strictly increase: 0.39 for 2006, 0.45 for
2007, 0.57 for 2008, and 0.75 for the class of 2009. Previous work
on has already highlighted the influence of the graduation year
attribute on the connectivity structure of Facebook 100 datasets
on the whole [34]. Our exploration of these datasets has further
allowed us to uncover interesting new connectivity patterns that
exist between different individual graduation years.

6 DISCUSSION AND FUTURE WORK

We have introduced a new framework and theory for learning reso-
lution parameters based on minimizing a fitness function associated
with a single example clustering of interest. There are several open
questions for improving our specific approach. Our bisection-like
algorithm is designed to be general enough to minimize a large
class of functions to within arbitrary precision. However, by mak-
ing additional assumptions on either specific clustering objectives
or the fixed example clustering, one may be able to develop im-
proved algorithms for minimizing the parameter fitness function
in practice. Another open question is to study which other graph
clustering objectives can fit into out framework, beyond just the
LaMBDACC global objective and the local flow clustering objective,
and whether, for example, the approach can be applied to clustering
in directed graphs.

Our work can be viewed as one approach to the more general
goal of learning objective functions for graph clustering applica-
tions. This general goal could involve more techniques than simply
learning resolution parameters. For example, in future work we
wish to explore how to learn small motif subgraph patterns [6] in
an example clustering that may be indicative of a desirable type of
clustering structure in an application of interest.

ACKNOWLEDGMENTS

The authors thank several funding agencies: Nate Veldt is supported
by NSF award IIS-154648, David Gleich is supported by the DARPA
SIMPLEX program, the Sloan Foundation, and NSF awards CCF-
1149756, CCF-0939370, and IIS-154648. Anthony Wirth is funded
by the Melbourne School of Engineering.

REFERENCES

(1]

[2

—

[3

[9

=

[10]

[11

[12]

[13]

[14]

[15]

[16]

(17

[18

[19]

[20]

Ilan Adler and Renato D.C. Monteiro. 1992. A geometric view of parametric
linear programming. Algorithmica 8 (1992), 161-176.

Nir Ailon, Moses Charikar, and Alantha Newman. 2008. Aggregating inconsistent
information: ranking and clustering. Journal of the ACM (JACM) 55, 5 (2008), 23.

Reid Andersen, Fan Chung, and Kevin Lang. 2006. Local Graph Partitioning using
PageRank Vectors. In Proceedings of the 47th Annual IEEE Symposium on Founda-
tions of Computer Science. http://www.math.ucsd.edu/~fan/wp/localpartition.pdf
Reid Andersen and Kevin Lang. 2008. An Algorithm for Improving Graph Par-
titions. In Proceedings of the 19th annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2008). 651-660.

Nikhil Bansal, Avrim Blum, and Shuchi Chawla. 2004. Correlation Clustering.
Machine Learning 56 (2004), 89-113.

Austin R. Benson, David F. Gleich, and Jure Leskovec. 2016.
Higher-order organization of complex networks. Science 353,
6295 (2016), 163-166. https://doi.org/10.1126/science.aad9029
arXiv:http://science.sciencemag.org/content/353/6295/163 full.pdf

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-
vre. 2008. Fast unfolding of communities in large networks. Journal of
Statistical Mechanics: Theory and Experiment 2008, 10 (2008), P10008. http:
//stacks.iop.org/1742-5468/2008/i=10/a=P10008

Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. 2005. Clustering
with qualitative information. J. Comput. System Sci. 71, 3 (2005), 360 — 383.
Learning Theory 2003.

Shuchi Chawla, Konstantin Makarychev, Tselil Schramm, and Grigory Yaroslavt-
sev. 2015. Near optimal LP rounding algorithm for correlation clustering on
complete and complete k-partite graphs. In Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing. ACM, 219-228.

J.-C. Delvenne, Sophia N Yaliraki, and Mauricio Barahona. 2010. Stability of
graph communities across time scales. Proceedings of the National Academy of
Sciences 107, 29 (2010), 12755-12760.

Santo Fortunato. 2010. Community detection in graphs. Physics Reports 486, 3
(2010), 75 - 174. https://doi.org/10.1016/j.physrep.2009.11.002

Santo Fortunato and Marc Barthélemy. 2007. Resolution limit in
community detection. Proceedings of the National Academy of Sci-
ences 104, 1 (2007), 36-41. https://doi.org/10.1073/pnas.0605965104
arXiv:https://www.pnas.org/content/104/1/36.full. pdf

Santo Fortunato and Darko Hric. 2016. Community detection in networks: A
user guide. Physics Reports 659 (2016), 1 — 44. https://doi.org/10.1016/j.physrep.
2016.09.002 Community detection in networks: A user guide.

K. Fountoulakis, D. F. Gleich, and M. W. Mahoney. 2017. An Optimization
Approach to Locally-Biased Graph Algorithms. Proc. IEEE 105, 2 (Feb 2017),
256-272. https://doi.org/10.1109/JPROC.2016.2637349

David F. Gleich, Nate Veldt, and Anthony Wirth. 2018. Correlation Clustering Gen-
eralized. In 29th International Symposium on Algorithms and Computation (ISAAC
2018), Vol. 123. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany, 44:1-44:13. https://doi.org/10.4230/LIPIcs.ISAAC.2018.44

Lucas G. S. Jeub, Marya Bazzi, Inderjit S. Jutla, and Peter J. Mucha. 2011-2017. A
generalized Louvain method for community detection implemented in MATLAB.
http://netwiki.amath.unc.edu/GenLouvain

Lucas G. S. Jeub, Olaf Sporns, and Santo Fortunato. 2018. Multiresolution Con-
sensus Clustering in Networks. Scientific Reports 8, 1 (2018), 3259. https:
//doi.org/10.1038/s41598-018-21352-7

Kyle Kloster and David F. Gleich. 2014. Heat Kernel Based Community Detection.
In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD 2014). 1386-1395. https://doi.org/10.1145/
2623330.2623706

Andrea Lancichinetti and Santo Fortunato. 2009. Benchmarks for testing com-
munity detection algorithms on directed and weighted graphs with overlapping
communities. Phys. Rev. E 80 (Jul 2009), 016118. Issue 1. https://doi.org/10.1103/
PhysRevE.80.016118

Kevin Lang and Satish Rao. 2004. A Flow-Based Method for Improving the Expan-
sion or Conductance of Graph Cuts. In Integer Programming and Combinatorial
Optimization. Lecture Notes in Computer Science, Vol. 3064. Springer Berlin
Heidelberg, 325-337. https://doi.org/10.1007/978-3-540-25960-2_25

[21] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2007. Graph Evolution:

Densification and Shrinking Diameters. ACM Trans. Knowl. Discov. Data 1, 1,

1919

[22

[23

[24

[25]

[26

[27

[28

[29

[30

[31

[32

@
&

(34

[35

[36

®
=

[38

[39

[40

Article 2 (March 2007). https://doi.org/10.1145/1217299.1217301

Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data.

Mark EJ Newman. 2006. Finding community structure in networks using the
eigenvectors of matrices. Physical review E 74, 3 (2006), 036104.

Mark EJ Newman and Michelle Girvan. 2004. Finding and evaluating community
structure in networks. Physical review E 69, 026113 (2004).

M. E. J. Newman. 2016. Equivalence between modularity optimization and
maximum likelihood methods for community detection. Phys. Rev. E 94 (Nov

2016), 052315. Issue 5. https://doi.org/10.1103/PhysRevE.94.052315
Lorenzo Orecchia and Zeyuan Allen Zhu. 2014. Flow-Based Algorithms for Local

Graph Clustering. In Proceedings of the 25th ACM-SIAM Symposium on Discrete
Algorithms (SODA 2014). 1267-1286. http://arxiv.org/abs/1307.2855

Leto Peel, Daniel B. Larremore, and Aaron Clauset. 2017. The ground
truth about metadata and community detection in networks. Sci-
ence Advances 3, 5 (2017). https://doi.org/10.1126/sciadv.1602548
arXiv:http://advances.sciencemag.org/content/3/5/e1602548 full pdf

Mason A Porter, Jukka-Pekka Onnela, and Peter] Mucha. 2009. Communities in
networks. Notices of the AMS 56, 9 (2009), 1082-1097.

Jorg Reichardt and Stefan Bornholdt. 2006. Statistical mechanics of community
detection. Physical Review E 74, 016110 (2006).

Cameron Ruggles, Nate Veldt, and David Gleich. 2019. A Parallel Projection
Method for Metric Constrained Optimization. arXiv preprint arXiv:1901.10084
(2019).

Satu Elisa Schaeffer. 2007. Graph clustering. Computer Science Review 1, 1 (2007),
27 - 64. https://doi.org/10.1016/j.cosrev.2007.05.001

Michael T. Schaub, Renaud Lambiotte, and Mauricio Barahona. 2012. Encoding
dynamics for multiscale community detection: Markov time sweeping for the
map equation. Phys. Rev. E 86 (Aug 2012), 026112. Issue 2. https://doi.org/10.
1103/PhysRevE.86.026112

Daniel A. Spielman and Shang-Hua Teng. 2013. A Local Clustering Algorithm for
Massive Graphs and Its Application to Nearly Linear Time Graph Partitioning.
SIAM J. Comput. 42, 1 (2013), 1-26. https://doi.org/10.1137/080744888

Amanda L. Traud, Peter J. Mucha, and Mason A. Porter. 2012. Social structure of
Facebook networks. Physica A: Statistical Mechanics and its Applications 391, 16
(2012), 4165-4180. https://doi.org/10.1016/j.physa.2012.03.0

Nate Veldt, David Gleich, and Michael Mahoney. 2016. A Simple and Strongly-
Local Flow-Based Method for Cut Improvement. In Proceedings of The 33rd Inter-
national Conference on Machine Learning (ICML 2016), Vol. 48. PMLR, New York,
New York, USA, 1938-1947. http://proceedings.mlr.press/v48/veldt16.html
Nate Veldt, David Gleich, Anthony Wirth, and James Saunderson. 2018. A Projec-
tion Method for Metric-Constrained Optimization. arXiv preprint arXiv:1806.01678
(2018).

Nate Veldt, David F. Gleich, and Anthony Wirth. 2018. A Correlation Clustering
Framework for Community Detection. In Proceedings of the 2018 World Wide Web
Conference (WWW 2018). International World Wide Web Conferences Steering
Committee, Republic and Canton of Geneva, Switzerland, 439-448. https://doi.
org/10.1145/3178876.3186110

Nate Veldt, Christine Klymko, and David F. Gleich. 2019. Flow-Based Local
Graph Clustering with Better Seed Set Inclusion. In Proceedings of the 2019 SIAM
International Conference on Data Mining.

Di Wang, Kimon Fountoulakis, Monika Henzinger, Michael W. Mahoney, and
Satish Rao. 2017. Capacity Releasing Diffusion for Speed and Locality. In Pro-
ceedings of the 34th International Conference on Machine Learning (ICML 2017),
Vol. 70. PMLR, International Convention Centre, Sydney, Australia, 3598-3607.
http://proceedings.mlr.press/v70/wang17b.html

Jaewon Yang and Jure Leskovec. 2015. Defining and evaluating network commu-
nities based on ground-truth. Knowledge and Information Systems 42, 1 (01 Jan
2015), 181-213. https://doi.org/10.1007/s10115-013-0693-z

Hao Yin, Austin R. Benson, Jure Leskovec, and David F. Gleich. 2017. Local Higher-
Order Graph Clustering. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD 2017). ACM, New
York, NY, USA, 555-564. https://doi.org/10.1145/3097983.3098069

Linbin Yu and Chris Ding. 2010. Network Community Discovery: Solving Modu-
larity Clustering via Normalized Cut. In Proceedings of the Eighth Workshop on
Mining and Learning with Graphs (MLG 2010). ACM, New York, NY, USA, 34-36.
https://doi.org/10.1145/1830252.1830257

http://www.math.ucsd.edu/~fan/wp/localpartition.pdf
https://doi.org/10.1126/science.aad9029
http://arxiv.org/abs/http://science.sciencemag.org/content/353/6295/163.full.pdf
http://stacks.iop.org/1742-5468/2008/i=10/a=P10008
http://stacks.iop.org/1742-5468/2008/i=10/a=P10008
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1073/pnas.0605965104
http://arxiv.org/abs/https://www.pnas.org/content/104/1/36.full.pdf
https://doi.org/10.1016/j.physrep.2016.09.002
https://doi.org/10.1016/j.physrep.2016.09.002
https://doi.org/10.1109/JPROC.2016.2637349
https://doi.org/10.4230/LIPIcs.ISAAC.2018.44
http://netwiki.amath.unc.edu/GenLouvain
https://doi.org/10.1038/s41598-018-21352-7
https://doi.org/10.1038/s41598-018-21352-7
https://doi.org/10.1145/2623330.2623706
https://doi.org/10.1145/2623330.2623706
https://doi.org/10.1103/PhysRevE.80.016118
https://doi.org/10.1103/PhysRevE.80.016118
https://doi.org/10.1007/978-3-540-25960-2_25
https://doi.org/10.1145/1217299.1217301
http://snap.stanford.edu/data
https://doi.org/10.1103/PhysRevE.94.052315
http://arxiv.org/abs/1307.2855
https://doi.org/10.1126/sciadv.1602548
http://arxiv.org/abs/http://advances.sciencemag.org/content/3/5/e1602548.full.pdf
https://doi.org/10.1016/j.cosrev.2007.05.001
https://doi.org/10.1103/PhysRevE.86.026112
https://doi.org/10.1103/PhysRevE.86.026112
https://doi.org/10.1137/080744888
https://doi.org/10.1016/j.physa.2012.03.0
http://proceedings.mlr.press/v48/veldt16.html
https://doi.org/10.1145/3178876.3186110
https://doi.org/10.1145/3178876.3186110
http://proceedings.mlr.press/v70/wang17b.html
https://doi.org/10.1007/s10115-013-0693-z
https://doi.org/10.1145/3097983.3098069
https://doi.org/10.1145/1830252.1830257

	Abstract
	1 Introduction
	2 Graph Clustering Background
	2.1 Global Clustering with LambdaCC
	2.2 Local Clustering Objectives
	2.3 Parametric Linear Programs
	2.4 Related Work

	3 Theoretical Results
	3.1 Problem Formulation
	3.2 Parameter Fitness Function
	3.3 Minimizing P

	4 Application to Specific Objectives
	4.1 Local Clustering
	4.2 Global Clustering Approach

	5 Experiments
	5.1 Learning Parameters for Synthetic Datasets
	5.2 Local Community Detection
	5.3 Meta-Data and Global Clustering
	5.4 Local Clustering in Social Networks

	6 Discussion and Future Work
	References

