
Flow-Based Local Graph Clustering with Better Seed Set Inclusion

Nate Veldt ∗ Christine Klymko † David F. Gleich ‡

Abstract

Flow-based methods for local graph clustering have received

significant recent attention for their theoretical cut improve-

ment and runtime guarantees. In this work we present two

improvements for using flow-based methods in real-world

semi-supervised clustering problems. Our first contribution

is a generalized objective function that allows practitioners

to place strict and soft penalties on excluding specific seed

nodes from the output set. This feature allows us to avoid

the tendency, often exhibited by previous flow-based meth-

ods, to contract a large seed set into a small set of nodes

that does not contain all or even most of the seed nodes.

Our second contribution is a fast algorithm for minimizing

our generalized objective function, based on a variant of the

push-relabel algorithm for computing preflows. We make

our approach very fast in practice by implementing a global

relabeling heuristic and employing a warm-start procedure

to quickly solve related cut problems. In practice our al-

gorithm is faster than previous related flow-based methods,

and is also more robust in detecting ground truth target re-

gions in a graph thanks to its ability to better incorporate

semi-supervised information about target clusters.

1 Introduction

Local graph clustering is the task of finding tightly con-
nected clusters of nodes nearby a set of seed vertices
in a large graph. This task has been applied to solve
problems in information retrieval [9], image segmenta-
tion [11, 16], and community detection [3, 8], among
many other applications. In practice, seed nodes repre-
sent semi-supervised information about a hidden target
cluster, and the goal is to recover or detect this cluster
by combining knowledge of the seed set with observa-
tions about the topological structure of the network.

One popular approach for graph clustering is to ap-
ply flow-based methods, which repeatedly solve region-

∗Mathematics Department, Purdue University. Email:

lveldt@purdue.edu. Supported by NSF award CCF-1149756.
†Center for Applied Scientific Computing, Lawrence Livermore

National Laboratory. Email: klymko1@llnl.gov. Prepared by

LLNL under Contract DE-AC52-07NA27344.
‡Dept. of Computer Science, Purdue University. Email:

dgleich@purdue.edu. Supported by DARPA SIMPLEX and NSF

award CCF-1149756, IIS-1422918, IIS-1546488, CCF093937 and
the Sloan Foundation.

ally biased minimum cut and maximum flow problems
on the input graph. These methods satisfy very good
theoretical cut improvement guarantees with respect
to quotient-style clustering objectives such as conduc-
tance [2, 9, 13, 16]. Additionally, some of these methods
are strongly local, i.e. their runtime depends only on the
size of the seed set and not the entire input graph.

Despite these attractive theoretical properties, ex-
isting flow-based methods exhibit drawbacks when it
comes to solving real-world graph clustering problems.
In some cases these methods exhibit the tendency to dis-
card important semi-supervised information in favor of
optimizing a quotient-style clustering objective. More
specifically, existing methods either shrink a seed set of
nodes into a subset with better cut-to-size ratio [9], or
try to find a good output cluster that overlaps well with
the seed set but may not include all or even a majority
of the seed nodes [2, 13, 16]. While this is beneficial for
obtaining theoretically good graph cuts, it is not always
desirable in label propagation and community detection
applications where the goal is to grow a set of seed nodes
into a larger community. In addition to this, the pre-
viously cited flow-based methods treat all seed nodes
equally, whereas in practice there may be varying levels
of confidence for whether or not a seed node is a true
representative of the undetected target cluster.

Although recently developed strongly-local meth-
ods constitute a major advancement in flow-based clus-
tering, these also exhibit drawbacks in terms of im-
plementation and practical performance. The Lo-
calImprove algorithm of Orecchia and Zhou [13] is
known to have an extremely good theoretical runtime
but relies on a complicated variation of Dinic’s max-
flow algorithm [5] that is difficult to implement in prac-
tice. In more recent work we developed an algorithm
called SimpleLocal, which provides a simplified frame-
work for optimizing the same objective [16]. While this
method is easy to implement and reasonably fast in
practice, it still relies on repeatedly solving numerous
exact maximum flow problems, and takes no advantage
of warm-start solutions between consecutive flow prob-
lems that are closely related.

Our Contributions In this paper we improve the
practical performance of flow-based methods for local
clustering in two major ways. We first develop a

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited378

D
ow

nl
oa

de
d

06
/1

1/
19

 to
 1

28
.1

0.
12

6.
24

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

generalized framework which takes better advantage of
semi-supervised information about target clusters, and
avoids the tendency of other methods to contract a
large seed set into a small subcluster. Our approach
allows users to place strict constraints and soft penalties
on excluding specified seed nodes from the output set,
depending on the user’s level of confidence for whether
or not each node should belong to the output set.

Our second major contribution is a fast algorithm
for minimizing our generalized objective function. We
begin by showing that this objective can be minimized
in strongly-local time using a meta-procedure that re-
peatedly solves localized minimum s-t cuts, and doesn’t
require any explicit computation of maximum s-t flows.
This simultaneously generalizes and simplifies the meta-
procedure we developed in previous work, which solves
a more restricted objective function and requires the
explicit computation of maximum flows as an interme-
diary step to obtaining minimum cuts [16]. We then
implement our meta-procedure using a fast variant of
the push-relabel algorithm [6]. We make our algo-
rithm extremely efficient using two key heuristics: a
known global-relabeling scheme for the push-relabel al-
gorithm [4], and a warm-start procedure which allows us
to quickly solve consecutive minimum cut problems. We
validate our approach in several community detection
experiments in real-world graphs and in several large-
scale 3D image segmentation problems on graphs with
hundreds of millions of edges. In practice our algorithm
is faster that existing implementations of related flow-
based methods, and is more robust in detecting target
clusters.

2 Background and Related Work

Let G = (V,E) represent an undirected and unweighted
graph. For each node v ∈ V let dv be its degree,
i.e. the number of edges that have v as an endpoint.
For any set S ⊂ V let |ES | be the number of interior
edges in S, vol(S) =

∑
v∈S dv be the volume S, and

cut(S) = vol(S) − 2|ES | denote the number of edges
crossing from S to S̄ = V \S. Each set S uniquely
identifies a set of edges crossing from S to S̄, so we
will frequently refer to a set of nodes S as a cut in a
graph. One way to quantify the community structure
of a set S is by measuring its conductance:

φ(S) = cut(S)/[min{vol(S),vol(S̄)}].

Small φ(S) indicates that S is well-connected internally
but only loosely connected to the rest of the graph, and
thus represents a topologically “good” cluster.

2.1 Local Variants of Conductance In local
graph clustering we are given a seed (or reference) set

R ⊂ V that is small with respect to the size of the
graph. If we fix some value of a locality parameter

ε ∈
[
vol(R)
vol(R̄)

,∞
)

, then the following objective function is

a modification of the conductance score biased towards
the set R, which we call the local conductance measure:

(2.1) φR,ε(S) =
cut(S)

vol(R ∩ S)− εvol(R̄ ∩ S)
.

One approach to local community detection is to op-
timize (2.1) over sets S such that the denominator is
positive. This function was first introduced specifically
for ε = vol(R)/vol(R̄) by Andersen and Lang [2]. Orec-
chia and Zhou later considered larger values of ε, effec-
tively restricting the search space to sets S that overlap
significantly with R, leading to a strongly-local algo-
rithm [13]. Both of these methods generalize the Max-
flow Quotient-cut Improvement (MQI) algorithm [9],
which computes the minimum conductance subset of R,
and fits the above paradigm if we allow ε =∞.

2.2 Minimizing Local Conductance Although it
is NP-hard to find the minimum conductance set of a
graph G, one can minimize (2.1) efficiently by repeat-
edly solving a sequence of related minimum s-t cut prob-
lems. First fix a parameter α ∈ (0, 1) and construct a
new graph Gst using the following steps:
• Keep original nodes in G and edges with weight 1
• Introduce source node s and sink node t
• For every r ∈ R, connect r to s with weight αdr
• For every j ∈ R̄, connect j to t with weight αεdj .

The minimum s-t cut problem seeks the minimum
weight of edges in Gst to separate the source s from
the sink t. Every subset S ⊂ V in G induces an s-t cut
in Gst where the two sides of the cut are {s} ∪ S and
{t}∪ S̄. The weight of this s-t cut can be given entirely
in terms of cuts and volumes of sets in G:

STcut(S) = cut(S) + αεvol(R̄ ∩ S) + αvol(R ∩ S̄)

= cut(S) + αεvol(R̄ ∩ S)− αvol(R ∩ S) + αvol(R).

If there exists some S such that STcut(S) < αvol(R),
a few steps of algebra show that this implies φR,ε(S) <
α. Therefore, φR,ε(S) can be minimized by finding
the smallest α such that the minimum s-t cut of Gst
is exactly αvol(R). This can be done by performing
binary search over α or simply starting with α =
φR,ε(R) and iteratively finding minimum s-t cuts in Gst
for increasingly smaller values of α. For sufficiently
large ε, there is no need to explicitly construct Gst.
Instead, localized techniques can be used to repeatedly
solve flow and cut problems on small subgraphs until a
global solution is reached [13, 16].

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited379

D
ow

nl
oa

de
d

06
/1

1/
19

 to
 1

28
.1

0.
12

6.
24

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

2.3 Related Spectral Methods Spectral methods
are another widely popular approach to local graph clus-
tering. Among these methods, the Andersen-Chung-
Lang Push procedure for computing an approximate
personalized PageRank vector is well-known for its
strongly-local runtime and good cut improvement guar-
antees [1]. Random-walk based spectral methods typi-
cally find local cuts in a graph by running a localized
diffusion from a small set of seed nodes. This diffusion
produces an embedding with limited support over the
nodes in the graph, which can then be rounded using
some form of a sweet cut procedure to produce a cut.
In contrast, flow-based methods solve biased minimum-
cut computations and directly produce a cut rather than
an embedding which must be rounded.

Another key distinction between random-walk and
flow-based approaches is the type of seed set these
methods require. Random-walk diffusions are typically
able to grow a single seed node or a small seed set
into a larger cluster with good conductance. Andersen
et al. [1] showed that if one starts from any one of a
large number of individual seed nodes in a target cluster
T , the Push algorithm will return a localized cluster
with conductance at most O(

√
φ(T)). Flow-based

methods are able to provide stronger cut improvement
guarantees, but can only do so if they begin with a large
seed set that has significant overlap with the target
cluster T [2, 13, 16]. In practice, flow-based methods
may perform poorly if the seed set R is too small. One
approach for obtaining a large enough seed set is to first
run a spectral diffusion from a small number of starting
nodes and then refine the output using the flow-based
method. Another approach is to take the starting seed
nodes and grow them by a neighborhood with a small
radius to produce a large input seed set.

3 Generalized Local Clustering Objective

In order to develop a flow-based method that places a
higher emphasis on agreeing with the seed set, we begin
by presenting a generalization of the local conductance
objective (2.1). After introducing the objective, we
prove cut improvement guarantees that can be achieved
if this objective is minimized in practice.

3.1 The Seed-Penalized Conductance Score Let
G = (V,E) be undirected and unweighted, and R be a
small set of nodes that we wish to grow into a larger
cluster S. Unlike other methods, we assume there
exists a designated set of nodes Rs ⊆ R which must
be included in the output set, and a weight pi ≥ 0 for
every other node ri ∈ R which indicates our level of
confidence that ri should be included in S. We start by

introducing a new overlap score between R and S:

OR(S) = vol(R ∩ S)− εvol(S ∩ R̄)−
∑
r∈R prdrχS̄(r)

where p = (pi) is the vector of penalty weights for nodes
in the seed set, χS̄ is the indicator function for nodes in
S̄, and ε is a locality parameter controlling how much
we allow the output set to include nodes outside R. The
first term rewards a high intersection between S and R,
the second penalizes the inclusion of nodes outside R,
and the third term introduces a penalty for nodes in R
that are not in S. Our goal is to minimize the following
seed-penalized conductance score:

(3.2) πR(S) =

{
cut(S)
OR(S) if OR(S) > 0, Rs ⊆ S
∞ otherwise.

To keep notation simple, we only include the set R in
the subscript of OR(S) and πR(S), though we note that
these also depend on Rs, ε, and p, which are fixed
parameters chosen at the outset of a problem.

3.2 Cut Improvement Guarantee Despite the dif-
ferences between (3.2) and standard conductance, we
can prove that minimizing the former will give strong
cut improvement guarantees in terms of the latter. This
result and its proof closely follow the cut improvement
guarantees for local conductance variants shown in pre-
vious work [2, 16]. We update and alter these ap-
proaches to focus on the case where R is completely
contained in some ground truth target cluster T , since
in our work we are especially concerned with growing a
seed set into a larger cluster.

Theorem 3.1. Let G = (V,E) be connected and R be
a seed set. Let T be any set of nodes containing R with
vol(T) ≤ vol(T̄), and assume that vol(R) = γvol(T)

for some γ ∈ (0, 1). For any ε ∈
[

2vol(R)
vol(G)−2vol(R) ,

γ
1−γ

)
,

if S∗ is the set of nodes minimizing objective (3.2), then
φ(S∗) ≤ Cφ(T) where C = 1

γ+εγ−ε .

Proof. For notational simplicity let vS = vol(S) and
cS = cut(S) for any set S. Noting that 0 < OR(S∗) <
v(R∩S∗) − εv(R̄∩S∗) =⇒ 0 < (1 + ε)v(R∩S∗) − εvS∗

allows us to bound the volume of S∗: vS∗ < (1+1/ε)vR.
Combining this bound with the lower bound on ε given
in the theorem statement, we see that the volume of S∗

is less than vol(G)/2. Since vS∗ > OR(S∗), we have

φ(S∗) = cS∗/vS∗ < cS∗/OR(S∗) = πR(S∗).

Because we assumed R is contained in T , we have∑
r∈R prdrχT̄ (r) = 0 and v(T∩R) = vR. Therefore,

OR(T) = vR − εv(T∩R̄) = (1 + ε)vR − εvT
= vT ((1 + ε)γ − ε).

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited380

D
ow

nl
oa

de
d

06
/1

1/
19

 to
 1

28
.1

0.
12

6.
24

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Finally, since S∗ minimizes (3.2),

φ(S∗) < πR(S∗) ≤ πR(T) =
cT
OR(T)

=
1

(1 + ε)γ − ε
cT
vT

= Cφ(T). �

If we select ε to be at its lower bound de-
fined above, the approximation ratio will be C =

vol(G)−2vol(R)
γvol(G)+γvol(R)−2vol(R) . If vol(R) is very small com-

pared to the overall size of the graph, then the approx-
imation factor goes to 1/γ as the size of the graph in-
creases for a fixed R.

3.3 Minimizing Seed-Penalized Conductance
As is the case for local conductance, objective (3.2) can
be minimized in polynomial time by solving a sequence
of minimum s-t cut problems. Fix α ∈ (0, 1) and as-
sume we wish to find whether there exists some S such
that πR(S) < α. We construct a new version of the cut
graph Gst which includes all nodes in G and an addi-
tional source s and sink t. For any node r ∈ Rs, we
will assign a penalty variable pr = vol(G)/α. We add
an edge from s to each r ∈ R with weight α(1 + pr)dr.
The chosen weight for nodes in Rs is large enough to
guarantee that a minimum cut will never separate any
of these nodes from s. Then, for each node w ∈ R̄, we
add an edge from w to t with weight αεdw.

For any set of non-terminal nodes S ⊆ V , the s-t
cut associated with that set can be expressed in terms
of cuts and volumes in the original graph G:

cut(S) + αεvol(R̄ ∩ S) + α
∑
r∈R dr(1 + pr)χS̄(r).

Observing that αvol(R ∩ S̄) = αvol(R)− αvol(R ∩ S),
we rearrange this into the following objective function:

(3.3) fαR,ε(S) = cut(S)− αOR(S) + αvol(R),

so fR,ε(S) < αvol(R) if and only if cut(S)/OR(S) < α.
Thus, solving the minimum s-t cut objective on Gst will
tell us whether there exists some S with seed-penalized
conductance less than α. Given any procedure for min-
imizing objective (3.3) (e.g. a generic minimum s-t cut
solver), we can minimize seed-penalized local conduc-
tance using Algorithm 1. We end this section by
showing a bound on the number of iterations for Algo-
rithm 1, by slightly adapting the techniques Andersen
and Lang [2] used to prove a similar bound for a more
restrictive objective function.

Theorem 3.2. Algorithm 1 will need to solve min-cut
objective (3.3) at most cut(R) times.

Proof. Since R and ε and p are fixed at the outset of the
algorithm we will write fα instead of fαR,ε and O rather

Algorithm 1 Minimizing seed-penalized conductance

Input: G, R, ε, p
Set α := 2, αnew = πR(R) = φ(R), and S = R
while αnew < α do
Sbest ← S
α← αnew
S ← arg min fαε,R(S)
αnew ← πR(S)

end while
Return: Sbest

than OR. Consider two consecutive iterations in which
Algorithm 1 successfully finds sets with improved seed-
penalized conductance and therefore doesn’t terminate.
Let Si be the set returned after the (i − 1)st iteration,
so Si = arg min fαi−1(S) for some αi−1, and set αi =
πR(Si) = cut(Si)/O(Si) < αi−1. Similarly, Si+1 =
arg min fαi(S) and αi+1 = πR(Si+1) < αi. Note that

fαi−1(Si) = αi−1vol(R) + cut(Si)− αi−1O(Si)

= αi−1vol(R) +O(Si)(πR(Si)− αi−1)

= αi−1vol(R) +O(Si)(αi − αi−1)

and fαi−1(Si+1) = αi−1vol(R) +O(Si+1)(αi+1−αi−1).

Because Si minimizes fαi−1 we know that fαi−1(Si) ≤
fαi−1(Si+1), which implies that

O(Si)(αi − αi−1) ≤ O(Si+1)(αi+1 − αi−1)

and since (αi+1 − αi−1) < (αi − αi−1) < 0 we see
that O(Si+1) < O(Si). Thus both πR(S) and its
denominator are strictly decreasing during the course of
the algorithm, so cut(R) must strictly decrease at each
step as well. Since we assume the graph is unweighted,
there are at most cut(R) iterations in total. �

4 The Strongly-Local Meta-Procedure

The results of the previous section imply that Algo-
rithm 1 can be run in polynomial time using any black-
box min s-t cut solver. In this section we will prove
a much stronger result by showing that objective (3.3)
can be minimized in strongly-local time using a very
simple two-step meta-procedure. A significant feature
of this meta-procedure is that the algorithm does not re-
quire any explicit computation of maximum flows, but
relies on a very simple repeated two-step procedure for
localized minimum s-t cuts.

Local Graph Operations. In order mini-
mize (3.3) without touching all of G = (V,E), we will
repeatedly solve a variant of objective (3.3) on a grow-
ing subgraph L = (V,EL) called the local graph, which
contains a restricted edge set EL ⊂ E. In theory L is

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited381

D
ow

nl
oa

de
d

06
/1

1/
19

 to
 1

28
.1

0.
12

6.
24

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

assumed to have the same node set V but many of these
nodes will have degree zero in L, so we will not need to
explicitly perform computations with them in practice.

We consider the following localized variant of (3.3),
which corresponds to a minimum s-t cut problem on a
subgraph Lst of the cut graph Gst:

(4.4) fαL (S) = cutL(S)− αOR(S) + αvol(R).

The only difference from (3.3) is that cutL(S) is defined
to the be number of edges in EL between S and S̄, rather
than the number of edges in E. Thus fαL (S) ≤ fG(S) =
fαR,ε(S) for all S ⊂ V and for any such subgraph L of

G. We will use the notation dLi to denote the degree of
node i in L, which is always less than or equal to di. We
then distinguish between an edge-complete set of nodes
LC = {i ∈ V : di = dLi } and an edge-incomplete nodes
LI = {i ∈ V : di > dLi } in L.

Let SL be the minimizer of (4.4) for a fixed sub-
graph L. The following lemma shows that if SL is made
up entirely of edge-complete nodes, then this set also
minimizes the global objective function fG = fαR,ε (3.3).

Lemma 4.1. Let SL = arg min fL(S). If SL ⊆ LC then
SL = arg min fG(S).

Proof. Because EL ⊆ E, cutL(S) ≤ cut(S) for all
S ⊂ V , and therefore fL(S) ≤ fG(S) for all S ⊂ V ,
which implies that minS fL(S) ≤ minS fG(S). For
the specified set SL, since SL ⊆ LC , all nodes in SL
have the same degree in L as well as G, implying that
cutL(SL) = cut(SL). Therefore:

fL(SL) = fG(SL) ≥ min
S
fG(S) ≥ min

S
fL(S) = fL(SL).

so equality holds throughout and SL optimizes fG. �

Our meta-procedure for minimizing (3.3) in strongly lo-
cal time operates by repeatedly solving objective (4.4)
over a sequence of growing local subgraphs. This pro-
ceeds until an iteration in which the current subgraph L
is large enough so that the set minimizing (4.4) is made
up of edge-complete nodes, at which point we know by
Lemma 4.1 that we have globally solved objective (3.3).
The full procedure is given in Algorithm 2. The fol-
lowing result proves that the size of the largest sub-
graph formed by Algorithm 2 will be bounded in terms
of vol(R), and ε. This mirrors a result for our pre-
viously developed meta-procedure [16], which required
explicit computation of flows in order to solve an objec-
tive related to (3.3). The proof technique is very similar,
though in order to avoid explicit computation of flows,
more analysis is needed to prove the theoretical bound.
We include a proof in the full version of the paper [17].

Algorithm 2 Local Min-Cut Meta-Procedure

Input: graph G, seed set R, parameters α, ε, p
Initialize L: LC = R, LI = R̄
EL: all edges in E with at least 1 endpoint in R.
repeat

1. Solve Local Objective on L
SL = arg minS f

α
L (S)

N = SL ∩ LI (new nodes to explore around)
2. Expand L around N
for all v ∈ N do
Ev = edges incident to node v in G
EL ← EL ∪ Ev
LC ← LC ∪ {v} and LI ← LI − v.

end for
L← (V,EL)

until N = ∅

Theorem 4.1. Let α be chosen so that πR(S0) = α for
some S0 ⊂ V . The volume of the largest subgraph L
formed by Algorithm 2 is bounded above by vol(L) ≤
vol(R) (1 + 1/ε) + cut(R).

The volume bound given here is the same as the
bound shown for our previous method SimpleLo-
cal [16]. Thus, using Algorithm 2 as a subroutine in
Algorithm 1 produces an algorithm with the same theo-
retical runtime as SimpleLocal, despite solving a more
general objective function and completely avoiding ex-
plicit maximum flow computations. Each flow problem
takes at most O(vol(R)3/ε) operations if fast flow sub-
routines are used [14], and Theorem 3.2 guarantees it
will be run at most cut(R) times. This runtime bound
is very conservative and the empirical performance will
typically be significantly better.

5 The Push-Relabel Implementation

We implement Algorithm 2 using a new method for
computing minimum s-t cuts based on a variant of
the push-relabel algorithm of Goldberg and Tarjan [6].
The full push-relabel algorithm can be separated into
two phases: the first phase computes a maximum
preflow which can be used to solve the minimum s-t
cut problem, and the second phase performs additional
computations to turn the preflow into a maximum s-t
flow. Because we only require minimum s-t cuts, our
method simply applies Phase 1.

5.1 Push-Relabel Overview We give a basic
overview of the maximum s-t flow problem in the full
version of the paper [17]. The push-relabel algorithm
is specifically a preflow algorithm for maximum flows,
meaning that during the course of the algorithm, all arcs

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited382

D
ow

nl
oa

de
d

06
/1

1/
19

 to
 1

28
.1

0.
12

6.
24

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

satisfy capacity constraints, but each node i is allowed
to have more incoming flow than outgoing flow, i.e. a
preflow satisfies a relaxation of the the flow constraints:∑

(j,i)∈A fji ≤
∑

(i,k)∈A fik for i ∈ V

where F = (fij) is a flow assignment for a directed
graph G with node set V and arc set A. Push-relabel
maintains a labeling function ` : V → {0, 1, 2, . . . , n}
where n = |V | is the number of nodes in a graph Gst
with distinguished source and sink. The algorithm can
be initialized using any preflow and a labeling that gives
a lower bound on the distance from each node to the
sink in the residual graph. The standard initialization
is to set `(s) = n and the label of all other nodes
to zero. The preflow is initialized to be zero on all
edges, and afterwards all edges from s to its neighbors
are saturated. This creates a positive excess at these
neighbors, i.e. more flow goes into the nodes than
out. After initialization, the algorithm repeatedly visits
active nodes, which are nodes that have a label less
than n and a positive excess. For a selected active node
u, the algorithm locally pushes flow across admissible
edges, which are defined to be edges (u, v) for which
`(u) = `(v)+1. If no admissible edges exist, the label of
the node is increased to be the minimum label such that
an admissible arc is created. During the course of the
algorithm, it can be shown that `(u) < `(v) for any arc
(u, v) with nonzero residual capacity, and furthermore
`(v) is a lower bound on the distance from node v to the
sink t, if there still exists a path of unsaturated edges
from v to t. Phase 1 of the algorithm is complete when
there are no more active nodes to process. At this point
the preflow is at a maximum, and the set of nodes with
label n forms the minimum cut set.

5.2 Label Selection Variants and Relabeling
Heuristics The generic push-relabel algorithm simply
requires one to push flow across admissible edges when-
ever there still exist active nodes. This procedure is
guaranteed to converge to the solution to the minimum
cut problem, but better runtimes can be obtained by
more carefully selecting the order in which to process ac-
tive nodes. One approach is the first-in-first-out (FIFO)
method, which begins by pushing all initial active nodes
into a queue, and adding new nodes to the queue as they
become active. Another approach is to continually se-
lect the highest-labeled node at each step.

The push-relabel method can be made very fast in
practice using efficient relabeling heuristics [4]. One
simple but very effective heuristic is to periodically run a
breadth first search from the sink node t and update the
labels of each node to equal the distance from that node
to t. Another heuristic is the gap relabeling heuristic,

which checks whether there exist certain types of gaps
in the labels that can be used to prove when certain
nodes are no longer connected to the sink node t.

5.3 Implementation Details and Warm-Start
Heuristic In practice we implement the FIFO push-
relabel algorithm in the Julia programming language
and make use of the global relabeling heuristic. Al-
though implementations of push-relabel in other lan-
guages have made efficient use of the highest-label vari-
ant and the gap relabeling heuristic [4], these require
slightly more sophisticated data structures that are
more challenging to maintain in Julia. Our implementa-
tion choices make it possible to maintain a very simple
but efficient method to implement Algorithm 2. Run-
ning this procedure for various α using Algorithm 1 pro-
vides a fast local graph clustering algorithm. Because
our method is flow-based and puts a higher emphasis
on including seed nodes, we refer to it as FlowSeed.

An important part of our implementation is a warm-
start heuristic for computing consecutive minimum s-t
cuts on the growing subgraph. Each local subgraph L
corresponds to a local cut graph Lst with added source
and sink nodes. For the first local cut graph, we use
the standard initialization for push-relabel, i.e. start
with a preflow of zero and saturate all edges from s
to its neighbors. Applying push-relabel will return a
maximum preflow F on Lst, and thus a minimum s-t cut
which we use to update L as outlined in Section 4. After
L and Lst are updated, the goal is to find an updated
minimum cut. Note that F is no longer a maximum
preflow on the updated Lst, but it will still be a valid
preflow. Our warm-start procedure therefore initializes
the next run of the push-relabel method with the preflow
F , and sets the label of each node to be its distance to
the sink in the corresponding residual graph. Initializing
each consecutive maximum preflow computation in this
way will be much more efficient than re-constructing Lst
from L at each step and starting with a preflow of zero.

6 Experiments

We demonstrate the performance of FlowSeed in
several community detection experiments and large
scale 3D image segmentation problems. Code for our
method and experiments is available online at https:

//github.com/nveldt/FlowSeed.

6.1 Community Detection Our first experiment
demonstrates the robustness of FlowSeed in local
community detection. We consider four graphs from the
SNAP repository [10]: DBLP, Amazon, LiveJournal,
and Orkut. Each network come with sets of nodes rep-
resenting so-called “functional communities” [20], e.g.

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited383

D
ow

nl
oa

de
d

06
/1

1/
19

 to
 1

28
.1

0.
12

6.
24

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

user groups in a social network or product categories on
Amazon. For each graph we select the ten largest com-
munities, ranging in size from a few hundred to a few
thousand nodes. We randomly select 5% of the nodes in
each target community and grow these nodes by their
immediate neighborhood to create a seed set R.

We compare several standard local graph clustering
algorithms that come with strong locality guarantees:
Push [1], HK-relax [7], CRD [18], SimpleLocal [16],
and FlowSeed. For FlowSeed and SimpleLocal
we use a locality parameter of ε = 0.1. We force
FlowSeed to return sets containing the known 5%
of the target community, but we don’t include soft
penalties on excluding other nodes. For HK-relax and
Push we test a range of common parameter settings and
return the set with best conductance, as is standard in
practice [7]. For CRD we use the standard parameter
settings recommended by the authors [18]. For HK-
relax, Push, and CRD we also tried using just
the known 5% of the target nodes as a seed set,
but this was not effective in practice for any of the
methods. Similarly, trying known target nodes one at
a time as individual seed nodes and returning the best
conductance output was also ineffective.

In Table 1, we report conductance, F1 scores, and
runtimes for each method using the full seed set R,
averaged over the 10 communities for each network.
FlowSeed returns the best result among all methods
on three of four datasets. The relative performance of
the other four methods varies significantly depending on
the dataset. Thus FlowSeed is able to provide more
consistent and robust results thanks to its ability to bet-
ter agree with semi-supervised information about the
target communities. In the full version of the paper [17],
we provide more information about the datasets, algo-
rithm implementations used, and parameter settings.
We also report more detailed results including average
set size, precision, and recall for each method.

SimpleLocal and FlowSeed trade off in runtime
for the above experiments, given that they are solving
slightly different objectives. In order to provide a clearer
runtime comparison between each method’s underlying
flow subroutine, we re-run both methods with a small lo-
cality parameter ε = 5vol(R)/vol(R̄). For FlowSeed,
we do not penalize the exclusion of seed nodes, which
ensures that the two methods optimize the same exact
objective. The average runtimes for the two methods
are then given as follows:

dblp amazon livejour. orkut

FlowSeed 5.4 1.3 107.8 229.3
SimpleLocal 17.6 3.5 134.9 632.2

Thus, while HK-relax and Push are still faster local

Table 1: Average conductance φ, F1 score, and runtime
(in seconds) for five methods on four networks.

Graph fl.seed s.local hk push crd

dblp φ 0.25 0.05 0.10 0.13 0.26
F1 0.35 0.01 0.04 0.02 0.26
run 9.5 24.5 0.1 0.2 3.6

amazon φ 0.02 0.01 0.01 0.01 0.21
F1 0.92 0.81 0.84 0.90 0.52
run 0.33 0.10 0.02 0.22 1.63

livejour. φ 0.07 0.04 0.14 0.36 0.10
F1 0.48 0.44 0.41 0.49 0.52
run 22.8 17.9 0.21 0.17 69.6

orkut φ 0.38 0.34 0.65 0.75 0.36
F1 0.49 0.44 0.08 0.27 0.43
run 439 327 3.8 0.77 451

clustering algorithms, our push-relabel and warm start
heuristics lead to improved running times specifically
for flow-based methods, which often are able to provide
the best community detection results.

6.2 3D Image Segmentation on a Brain Scan
Next we turn to detecting target regions in a large graph
constructed from a brain MRI. The data is made up
of a labeled 256 × 287 × 256 MRI obtained from the
MICCAI-2012 challenge [12]. In previous work [16] we
demonstrated how to convert the image into a nearest
neighbors graph on the 3D voxels, using an approach
similar to Shi and Malik [15]. The resulting graph has
18 million nodes, nearly 234 million undirected edges,
and contains 95 ground truth labeled regions of the
brain (e.g. ventricles, amygdalas, brain stem, etc.),
ranging from 3104 to over 250,000 nodes in size, and
with (weighted) conductance scores between 0.04 and
0.25.

Benefit of Seed Exclusion Penalties. We split
up the 95 regions into a set of 17 example regions
spanning a broad range of cluster sizes. We test a
range of parameters on these example regions to observe
how different locality parameters and seed exclusion
penalties behave for different sized regions and seed sets.
We test locality parameters ε ∈ {0.5, 0.25, 0.1, 0.05} and
construct seed sets by taking very small subsets of the
target cluster and growing them by their neighborhood.
We find that with almost no exceptions, including strict
and soft seed exclusion penalties leads to significant
benefits in ground truth recovery across all region sizes.
In Figure 1, for the 17 example regions we plot the
recall and F1 scores for region recovery for a locality
parameter of ε = 0.1 in the case where the seed set

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited384

D
ow

nl
oa

de
d

06
/1

1/
19

 to
 1

28
.1

0.
12

6.
24

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

32
25

35
01

39
65

51
05

51
09

58
32

77
07

85
47

94
93

11
15

0
13

88
4

15
05

8
19

93
9

21
31

7
28

77
1

67
35

3
25

85
69

0.00

0.25

0.50

0.75

1.00

Number of Nodes in Region

F
1

S
co

re

No Penalties
Some Strict
Strict+Soft

(a) F1 score
32

25
35

01
39

65
51

05
51

09
58

32
77

07
85

47
94

93
11

15
0

13
88

4
15

05
8

19
93

9
21

31
7

28
77

1
67

35
3

25
85

69

0.00

0.25

0.50

0.75

1.00

Number of Nodes in Region

R
ec

al
l

(b) Recall

Figure 1: When detecting target regions of a large brain
graph, enforcing no penalties on excluding seed nodes
(blue) allows the method to discard too many seeds,
often leading to very poor recall. If we enforce strict
penalties on excluding known target nodes (red), this
significantly improves recall and hence overall detection
of the target cluster in terms of F1 score. We see even
greater improvement by including a soft penalty for
excluding any other node in the seed set (green).

is made up of a random sample of 2% of the target
region plus neighbors. We run our method with (1) no
penalties on excluding seed nodes, (2) strict penalties on
excluding the initial 2% of nodes, and (3) strict penalties
on the 2% and a soft penalty of pr = 1 for excluding
any other seed node. As expected, when we include
no penalties, the flow-based approach often shrinks the
seed set into a small cluster with good conductance
and precision, but almost no recall. As we increase
the strength of seed exclusion penalties, the precision
decreases slightly but the recall improves considerably,
leading to a much better overall ground truth recovery.

Comparison with Random-Walk Methods
We additionally run Push with PageRank (pr) telepor-
tation parameters αpr from 0.5 to 0.9, and approxima-
tion tolerance parameters εpr from 10−11 to 10−7. This
εpr controls how wide a region is explored in the graph,
much like FlowSeed’s locality parameter ε.

For both Push and FlowSeed, we use observa-
tions from the experiments on the 17 example regions
to inform our choice of parameter settings for different
sized regions and seed set sizes. We then use these pa-
rameters to test the performance of each method on the
remaining 78 regions, which we refer to as the evaluation
set. We run experiments for the case where we know ex-
actly 100 of the target nodes, and where 1%, 2%, and 3%
of the target region is given. We run Push with a tele-
portation parameter of αpr = 0.6, and run FlowSeed
with both strict and soft penalties. In each experiment
we identify which of the 17 example regions is closest
in size to the target region from the evaluation set, and
then set ε and εpr to be the values which led to the best
F1-score recovery for this comparable example region.

(a) Push εpr = 10−8 (b) Push εpr = 10−10 (c) FlowSeed

Figure 2: The yellow region indicates the target atrial
cavity in a full-body MRI scan and purple regions
represent algorithm output. Starting from a seed
set of 100 target nodes plus neighbors, Push forms
disconnected circular regions, which grow as tolerance
parameter εpr decreases. We refine the εpr = 10−10

region with FlowSeed to produce a connected region
which does a much better job identifying the region
boundary and has significantly better F1 score (c).

Our experiments highlight a tradeoff in the perfor-
mance of the two algorithms. For small seed sets, Push
typically outperforms FlowSeed in ground truth re-
covery, as it is able to grow a very small seed set into
a sizable cluster. However, given sufficient information
regarding the target cluster, we see a distinct benefit
in applying our flow-based approach. When 2% (resp.
3%) of the target is known, FlowSeed obtains a higher
F1 score for 64 (resp. 68) of the 78 target regions, and
the scores are on average 6.2% (resp. 6.1%) higher than
those returned by Push. In terms of runtime, the highly
optimized Push implementation is faster: most exper-
iments run in under 1 second, with the largest taking
several seconds. Our method takes up to 15 minutes for
the largest region, but typically runs in 10-60 seconds
for small and medium sized regions.

6.3 Detecting an Atrial Cavity In our last ex-
periment we demonstrate that random-walk and flow-
based methods can be viewed as complementary ap-
proaches rather than competing algorithms. We com-
bine the strengths of Push and FlowSeed to provide
good quality 3D segmentations of a manually labeled
left atrial cavity in a whole-body MRI scan, provided as
a part of the 2018 Atrial Segmentation Challenge [19].
We convert one such MRI into a graph with 29.2 mil-
lion nodes and 390 million edges. The cavity in the MRI
corresponds to a target cluster with 252,364 nodes and
a conductance of 0.0414 in the graph.

We begin from a small set of 100 randomly selected
nodes from the atrial cavity, constituting less than
0.04% of the target region. We grow these nodes by
their neighborhood and use this as input to the Push
algorithm. We again set αpr = 0.6 and test a range

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited385

D
ow

nl
oa

de
d

06
/1

1/
19

 to
 1

28
.1

0.
12

6.
24

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

of tolerance parameters εpr from 10−14 to 10−8. The
best F1 score achieved is 0.714 (precision is 0.666, recall
is 0.768) when εpr = 10−12. In Figure 2 we show
the output of the Push algorithm for εpr = 10−8 and
εpr = 10−10, which indicate that the method is simply
returning ball-shaped regions around the initial seeds,
with an increasing radius as εpr decreases. Many of the
output sets are not connected. We then take the output
of Push and refine it using FlowSeed with locality
parameter ε = 0.1. We set a strict penalty on excluding
the original 100 nodes from the cavity, a soft penalty of
1 on excluding their neighbors, and a penalty of 0.5 on
excluding any node in the set returned by Push. We see
a significant improvement in quality of segmentation, in
the best case leading to a precision of 0.8498, recall of
0.7571, and F1 score of 0.8008 when refining the region
output by Push when εpr = 10−10. In Figure 2c we
see that FlowSeed smooths out the circular regions
returned by Push to return a connected region that
better identifies the boundary of the target cavity.
Regarding runtime, Push quickly grows circular regions
within a few seconds, and the FlowSeed refinement
procedure takes just under an hour. Together these
methods produce a significantly better output than
either method could have accomplished alone.

7 Conclusions and Future Work

In our work we have exploited efficient warm-start and
push-relabel heuristics to provide practitioners with a
very simple yet extremely fast flow-based method for
local graph clustering. Our method is additionally able
to obtain more robust results in community detection
and large scale image segmentation experiments by
giving users the option to specify penalties and strict
constraints for excluding specific seed nodes from the
output set. Given the success of seed exclusion penalties
for flow-based methods, in future work we will continue
to explore how similar penalties may be incorporated
in other well-known clustering approaches including
spectral and random-walk based techniques.

References

[1] Reid Andersen, Fan Chung, and Kevin Lang. Local
graph partitioning using PageRank vectors. In FOCS
2006, 2006.

[2] Reid Andersen and Kevin Lang. An algorithm for
improving graph partitions. In SODA 2008, pages 651–
660, January 2008.

[3] Reid Andersen and Kevin J. Lang. Communities from
seed sets. In WWW 2006, pages 223–232, 2006.

[4] B. V. Cherkassky and A. V. Goldberg. On implement-
ing the push—relabel method for the maximum flow
problem. Algorithmica, 19(4):390–410, Dec 1997.

[5] Yefim Dinitz. Algorithm for solution of a problem of
maximum flow in a network with power estimation.
Doklady Akademii nauk SSSR, 11:1277–1280, 1970.

[6] Andrew V Goldberg and Robert E Tarjan. A new
approach to the maximum-flow problem. Journal of
the ACM (JACM), 35(4):921–940, 1988.

[7] Kyle Kloster and David F. Gleich. Heat kernel based
community detection. In KDD 2014, pages 1386–1395,
2014.

[8] Isabel M. Kloumann and Jon M. Kleinberg. Commu-
nity membership identification from small seed sets. In
KDD 2014, pages 1366–1375, 2014.

[9] Kevin Lang and Satish Rao. A flow-based method for
improving the expansion or conductance of graph cuts.
In IPCO 2004, pages 325–337, 2004.

[10] Jure Leskovec and Andrej Krevl. SNAP Datasets:
Stanford large network dataset collection. http://

snap.stanford.edu/data, June 2014.
[11] Michael W. Mahoney, Lorenzo Orecchia, and

Nisheeth K. Vishnoi. A local spectral method
for graphs: With applications to improving graph
partitions and exploring data graphs locally. J. Mach.
Learn. Res., 13(1):2339–2365, August 2012.

[12] Daniel S. Marcus, Tracy H. Wang, Jamie Parker,
John G. Csernansky, John C. Morris, and Randy L.
Buckner. Open access series of imaging studies (oa-
sis): Cross-sectional mri data in young, middle aged,
nondemented, and demented older adults. J. Cognitive
Neuroscience, 19(9):1498–1507, 2007.

[13] Lorenzo Orecchia and Zeyuan Allen Zhu. Flow-based
algorithms for local graph clustering. In SODA 2014,
pages 1267–1286, 2014.

[14] James B. Orlin. Max flows in o(nm) time, or better.
In STOC 2013, pages 765–774, 2013.

[15] Jianbo Shi and J. Malik. Normalized cuts and image
segmentation. TPAMI 2000, pages 888–905, August
2000.

[16] Nate Veldt, David Gleich, and Michael Mahoney. A
simple and strongly-local flow-based method for cut
improvement. In ICML 2016, volume 48, pages 1938–
1947, New York, New York, USA, June 2016.

[17] Nate Veldt, Christine Klymko, and David F. Gleich.
Flow-based local graph clustering with better seed set
inclusion. arXiv preprint arXiv:1811.12280, 2019.

[18] Di Wang, Kimon Fountoulakis, Monika Henzinger,
Michael W. Mahoney, and Satish Rao. Capacity
releasing diffusion for speed and locality. In ICML
2017, pages 3598–3607. PMLR, 06–11 Aug 2017.

[19] Zhaohan Xiong, Vadim V Fedorov, Xiaohang Fu, Eliz-
abeth Cheng, Rob Macleod, and Jichao Zhao. Fully
automatic left atrium segmentation from late gadolin-
ium enhanced magnetic resonance imaging using a dual
fully convolutional neural network. IEEE Transactions
on Medical Imaging, 2018.

[20] Jaewon Yang and Jure Leskovec. Defining and eval-
uating network communities based on ground-truth.
Knowledge and Information Systems, 42(1):181–213,
Jan 2015.

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited386

D
ow

nl
oa

de
d

06
/1

1/
19

 to
 1

28
.1

0.
12

6.
24

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

