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ABSTRACT

Graph clustering, or community detection, is the task of identifying
groups of closely related objects in a large network. In this paper
we introduce a new community-detection framework called Lamb-
daCC that is based on a specially weighted version of correlation
clustering. A key component in our methodology is a clustering res-
olution parameter, λ, which implicitly controls the size and structure
of clusters formed by our framework. We show that, by increasing
this parameter, our objective effectively interpolates between two
different strategies in graph clustering: finding a sparse cut and
forming dense subgraphs. Our methodology unifies and generalizes
a number of other important clustering quality functions including
modularity, sparsest cut, and cluster deletion, and places them all
within the context of an optimization problem that has been well
studied from the perspective of approximation algorithms. Our
approach is particularly relevant in the regime of finding dense
clusters, as it leads to a 2-approximation for the cluster deletion
problem. We use our approach to cluster several graphs, including
large collaboration networks and social networks.
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1 INTRODUCTION

Identifying groups of related entities in a network is a ubiquitous
task across scientific disciplines. This task is often called graph
clustering, or community detection, and can be used to find similar
proteins in a protein-interaction network, group related organisms
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in a food web, identify communities in a social network, and classify
web documents, among numerous other applications.

Defining the right notion of a “good” community in a graph is an
important precursor to developing successful algorithms for graph
clustering. In general, a good clustering is one in which nodes inside
clusters are more densely connected to each other than to the rest
of the graph. However, no consensus exists as to the best way to
determine the quality of network clusterings, and recent results
show there cannot be such a consensus for the multiple possible
reasons people may cluster data [32]. Common objective functions
studied by theoretical computer scientists include normalized cut,
sparsest cut, conductance, and edge expansion, all of whichmeasure
some version of the cut-to-size ratio for a single cluster in a graph.
Other standards of clustering quality put a greater emphasis on the
internal density of clusters, such as the cluster deletion objective,
which seeks to partition a graph into completely connected sets of
nodes (cliques) by removing the fewest edges possible.

Arguably the most widely used multi-cluster objective for com-
munity detection is modularity, introduced by Newman and Gir-
van [31]. Modularity measures the difference between the true
number of edges inside the clusters of a given partitioning (“inner
edges”) minus the expected number of inner edges, where expecta-
tion is calculated with respect to a specific random graph model.

There are a limited number of results which have begun to unify
distinct clustering measures by introducing objective functions
that are closely related to modularity and depend on a tunable
clustering resolution parameter [15, 33]. Reichardt and Bornholdt
developed an approach based on finding the minimum-energy state
of an infinite-range Potts spin glass. The resulting Hamiltonian
function they study is viewed as a clustering objective with a reso-
lution parameter, γ , which can be used as a heuristic for detecting
overlapping and hierarchical community structure in a network.
When γ = 1, the authors prove an equivalence between minimizing
the Hamiltonian and finding the maximum modularity partitioning
of a network [33]. Later, Delvenne et al. introduced a measure called
the stability of a clustering, which generalizes modularity and also
is related to the normalized cut objective and Fiedler’s spectral
clustering method for certain values of an input parameter [15].

The inherent difficulty in obtaining clusterings that are provably
close to the optimal solution puts these objective functions at a dis-
advantage. Although both the stability and the Hamiltonian-Potts
objectives provide useful interpretations for community detection,
there are no approximation guarantees for either: all current algo-
rithms are heuristics. Furthermore, it is known that maximizing
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modularity itself is not only NP-hard, but is also NP-hard to ap-
proximate to within any constant factor [19].

Our Contributions. In this paper, we introduce a new clustering
framework based on a specially weighted version of correlation
clustering [4]. Our partitioning objective for signed networks lies
“between” the family of ±1 complete instances and the most general
correlation clustering instances. Our framework comes with several
novel theoretical properties and leads to many connections between
clustering objectives that were previously not seen to be related. In
summary, we provide:
• A novel framework LambdaCC for community detection
that is related to modularity and the Hamiltonian, but is
more amenable to approximation results.
• A proof that our framework interpolates between the spars-
est cut objective and the cluster deletion problem, as we
increase a single resolution parameter, λ.
• Several successful algorithms for optimizing our new ob-
jective function in both theory and practice, including a
2-approximation for cluster deletion, which improves upon
the previous best approximation factor of 3.
• A demonstration of our methods in a number of clustering
applications, including social network analysis and mining
cliques in collaboration networks.

2 BACKGROUND AND RELATEDWORK

LetG be an undirected and unweighted graph on n nodesV , withm
edges E. For all v ∈ V , let dv be node v’s degree. Given S ⊆ V ,
let S̄ = V \S be the complement of S and vol(S ) =

∑
v ∈S dv be its

volume. For every two disjoint sets of vertices S,T ⊆ V , cut(S,T )
indicates the number of edges between S and T . If T = S̄ , we
write cut(S ) = cut(S, S̄ ). Let ES denote the interior edge set of S .
The edge density of a cluster is density(S ) = |ES |/

(
|S |
2
)
, the ratio

between the number of edges to the number of pairs of nodes in S .
By convention, the density of a single node is 1. We now present
background and related work that is foundational to our results,
including definitions for several common clustering objectives.

2.1 Correlation Clustering

An instance of correlation clustering is given by a signed graph
where every pair of nodes i and j possesses two non-negative
weights, w+i j and w−i j , to indicate how similar and how dissimi-
lar i and j are, respectively. Typically only one of these weights
is nonzero for each pair i, j. The objective can be expressed as an
integer linear program (ILP):

minimize
∑
i<j w

+
i jxi j +w

−
i j (1 − xi j )

subject to xi j ≤ xik + x jk for all i, j,k
xi j ∈ {0, 1} for all i, j.

(1)

In the above formulation, xi j represents “distance”: xi j = 0 indicates
that nodes i and j are clustered together, while xi j = 1 indicates
they are separated. Including triangle inequality constraints en-
sures the output of the above ILP defines a valid clustering of the
nodes. This objective counts the total weight of disagreements be-
tween the signed weights in the graph and a given clustering of its
nodes. The disagreement (or “mistake”) weight of a pair i, j isw−i j if

the nodes are clustered together, butw+i j if they are separated. We
can equivalently define the agreement weight to be w+i j if i, j are
clustered together, butw−i j if they are separated. The optimal clus-
terings for maximizing agreements and minimizing disagreements
are identical, but it is harder to approximate the latter.

Correlation clustering was introduced by Bansal et al., who
proved the problem is NP-complete [4]. They gave a polynomial-
time approximation scheme for the maximization version and a
constant-factor approximation for minimizing disagreements in ±1-
weighted graphs. Subsequently, Charikar et al. gave a factor 4-
approximation for minimizing disagreements and proved APX-
hardness of this variant. They also described an O (logn) approxi-
mation for minimization in general weighted graphs [12], proved
independently by two different groups, who showed that minimiz-
ing disagreements is equivalent to minimum multicut [16, 20].

The problem has also been studied for the case where edges
carry both positive and negative weights, satisfying probability
constraints: for all pairs i, j,w+i j +w

−
i j = 1. Ailon et al. gave a 2.5-

approximation for this version of the problem based on an LP-
relaxation, and additionally developed a very fast algorithm, called
Pivot, that in expectation gives a 3-approximation [1]. Currently
the best-known approximation factor for correlation clustering
on ±1 instances is slightly smaller than 2.06, obtained by a careful
rounding of the canonical LP relaxation [13].

2.2 Modularity and the Hamiltonian

One very popular measure of clustering quality is modularity, in-
troduced in its most basic form by Newman and Girvan [31]. We
more closely follow the presentation of modularity given by New-
man [30]. The modularity Q of an underlying clustering is:

Q (x ) = 1
2m

∑
i,j

(
Ai j − Pi j

)
(1 − xi j ) , (2)

where Ai j = 1 if nodes i and j are adjacent, and zero otherwise,
and xi j is again the binary variable indicating “distance” between i
and j in the corresponding clustering. The value Pi j represents the
probability of an edge existing between i and j in a specific random
graph model. The intent of this measure is to reward clusterings in
which the actual number of edges inside a cluster is greater than
the expected number of edges in the cluster, as determined by the
choice for Pi j . Although there are many options, it is standard in
the literature to set Pi j = didj/(2m), since this preserves both the
degree distribution and the expected number of edges between the
original graph and null model.

By slightly editing the modularity function, we obtain the Hamil-
tonian objective of Reichardt and Bornholdt [33]:

H (x ) = −
∑
i,j

(
Ai j − γPi j

)
(1 − xi j ) . (3)

The primary difference between this and modularity is the inclusion
of a clustering resolution parameter γ . If we fix γ = 1, minimiz-
ing (3) is equivalent to maximizing modularity. When varied, this
parameter controls how much a clustering is penalized for putting
two non-adjacent nodes together or separating adjacent nodes.

The Hamiltonian objective is in turn closely related to the sta-
bility of a clustering as defined by Delvenne et al., another gener-
alization of modularity [15]. Roughly speaking, the stability of a
partition measures the likelihood that a random walker, beginning
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at a node and following outgoing edges uniformly at random, will
end up in the cluster it started in after a random walk of length t .
This t serves as a resolution parameter, since the walker will tend
to “wander" farther when t is increased, leading to the formation
of larger clusters when the stability is maximized. Delvenne et al.
showed that objective (3) is equivalent to a linearized version of
the stability measure for a specific range of time steps t [15].

2.3 Sparsest Cut and Normalized Cut

One measure of cluster quality in an unsigned network G is the
sparsest cut score, defined for a set S ⊆ V to be ϕ (S ) = cut(S )/|S | +
cut(S )/|S̄ | = n · cut(S )/( |S | |S̄ |). Smaller values for ϕ (S ) are desir-
able, since they indicate that S , in spite of its size, is only loosely
connected to the rest of the graph. This measure differs by at
most a factor of two from the related edge expansion measure:
cut(S )/(min{|S |, |S̄ |}). If we replace |S | with vol(S ) in these two
objectives, we obtain the normalized cut and the conductance mea-
sure respectively. In our work we focus on a multiplicative scaling
of the sparsest cut objective that we call the scaled sparsest cut:
ψ (S ) = ϕ (S )/n = cut(S )/( |S | |S̄ |), which is identical to sparsest cut
in terms of multiplicative approximations. The best known approx-
imation for finding the minimum sparsest cut of a graph is an
O (

√
logn)-approximation algorithm due to Arora et al. [2].

2.4 Cluster Deletion

Cluster deletion is the problem of finding a minimum number of
edges in G to be deleted in order to convert G into a disjoint set of
cliques. This problem was first studied by Ben-Dor et al. [6], later
formalized in the work of Natanzon et al. [29], who proved it is
NP-hard, and Shamir et al. [36], who showed it is APX-hard. The
latter studied the problem in conjunction with other related edge-
modification problems, including cluster completion and cluster
editing. Numerous fixed parameter tractability results are known for
cluster deletion [8, 14, 23, 24], as well many results regarding special
graphs for which the problem can be solved in polynomial time [10,
11, 17, 21]. Dessmark et al. proved that recursively findingmaximum
cliques will return a clustering with a cluster deletion score within
a factor 2 of optimal [17], though in general this procedure is NP-
hard.

3 THEORETICAL RESULTS

Our novel clustering framework takes an unsigned graph G =
(V ,E) and converts it into a signed graph G ′ = (V ,E+,E−) on the
same set of nodes, V , for a fixed clustering resolution parameter
λ ∈ (0, 1). PartitioningG ′ with respect to the correlation clustering
objective will then induce a clustering onG . To construct the signed
graph, we first introduce a node weight wv for each v ∈ V . If
(i, j ) ∈ E, we place a positive edge between nodes i and j inG ′, with
weight (1−λwiw j ). For (i, j ) < E, we place a negative edge between i
and j in G ′, with weight λwiw j . We consider two different choices
for node weightswv : settingwv = 1 for allv (standard) or choosing
wv = dv (degree-weighted). In Figure 1 we illustrate the process
of converting G into the LambdaCC signed graph, G ′. The goal of
LambdaCC is to find the clustering that minimizes disagreements
in G ′, or equivalently minimizes the following objective function
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Figure 1:We convert a toy graph (left) into a signed graph for

standard (middle) and degree-weighted (right) LambdaCC.

Dashed red lines indicate negative edges.

expressed in terms of edges and non-edges in G:

λCC (x ) =
∑

(i, j )∈E

(1 − λwiw j )xi j +
∑

(i, j )<E

λwiw j (1 − xi j ) (4)

where x = (xi j ) represents the binary distances for the clustering.

3.1 Connection to Modularity

Despite a significant difference in approach and interpretation, the
clustering that minimizes disagreements is the same clustering that
minimizes the Hamiltonian objective (3), for a certain choice of
parameters. To see this, we introduce node adjacency values Ai j in
objective (4) and perform a few steps of algebra:

λCC (x ) =
∑

(i, j )∈E

(Ai j − λwiw j )xi j −
∑

(i, j )<E

(Ai j − λwiw j ) (1 − xi j )

=
∑

(i, j )∈E

(1 − λwiw j ) −
∑
i<j

(Ai j − λwiw j ) (1 − xi j ) .

Choosing Pi j = wiw j/(2m) and γ = 2mλ, we see that:

λCC (x ) =
∑

(i, j )∈E (1 − λwiw j ) +H (x )/2 , (5)

where the first term is just a constant. This theorem follows:

Theorem 3.1. Minimizing disagreements for the LambdaCC ob-
jective is equivalent to minimizingH (x ).

The choice Pi j = wiw j/(2m) is reminiscent of the graph null
model most commonly used for modularity and the Hamiltonian.
This best highlights the similarity between these objectives and
degree-weighted LambdaCC.

3.2 Standard LambdaCC

While degree-weighted LambdaCC is more closely related to mod-
ularity and the Hamiltonian, standard LambdaCC (settingwv = 1
for every v ∈ V ) leads to strong connections between the sparsest
cut objective and cluster deletion. This version corresponds to solv-
ing a correlation clustering problem where all positive edges have
equal weight, (1− λ), while all negative edges have equal weight, λ.
The objective function for minimizing disagreements is

min
∑

(i, j )∈E+
(1 − λ)xi j +

∑
(i, j )∈E−

λ(1 − xi j ) , (6)

where we include the same constraints as in ILP (1). This is a strict
generalization of the unit-weight correlation clustering problem [4]
(λ = 1/2) indicating the problem in general is NP-hard (though it
admits several approximation algorithms). If λ is 0 or 1, the problem
is trivial to solve: put all nodes in one cluster or put each node
in a singleton cluster, respectively. By selecting values for λ other
than 0, 1/2, or 1, we uncover subtler connections between identify-
ing sparse cuts and finding dense subgraphs in the network.
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3.3 Connection to Sparsest Cut

GivenG and λ, the weight of positive-edge mistakes in the standard
LambdaCC objective made by a two-clustering C = {S, S̄ } equals
the weight of edges crossing the cut: (1− λ) cut(S ). To compute the
weight of negative-edge mistakes, we take the weight of all nega-
tive edges in the entire network, λ

((n
2
)
− |E |

)
, and then subtract

the weight of negative edges between S and S̄ : λ
(
|S | |S̄ | − cut(S )

)
.

Adding together all terms, we find that the LambdaCC objective
for this clustering is

cut(S, S̄ ) − λ |S | |S̄ | + λ
(n

2
)
− λ |E | . (7)

Note that if we minimize (7) over all 2-clusterings, we solve the
decision version of the minimum scaled sparsest cut problem: a
few steps of algebra confirm that there is some set S ⊆ V with
ψ (S ) = cut(S )/( |S | |S̄ |) < λ if and only if (7) is less than λ

(n
2
)
− λ |E |.

In a similar way we can show that objective (6) is equivalent to

min
1
2

k∑
i=1

cut(Si ) −
λ

2

k∑
i=1
|Si | |S̄i | + λ

(
n

2

)
− λ |E | , (8)

where we minimize over all clusterings of G (note that the num-
ber of clusters k is determined automatically by optimizing the
objective). In this case, optimally solving objective (8) will tell us
whether we can find a clustering C = {S1, S2, . . . , Sk } such that∑k
i=1 cut(Si , S̄i )/

(∑k
j=1 |Sj | |S̄j |

)
< λ. Hence LambdaCC can be

viewed as a multi-cluster generalization of the decision version
of minimum sparsest cut. We now prove an even deeper connec-
tion between sparsest cut and LambdaCC. Using degree-weighted
LambdaCC yields an analogous result for normalized cut.

Theorem 3.2. Let λ∗ be the minimum scaled sparsest cut value
for graph G.

(a) For all λ > λ∗, optimal solution (8) partitions G into two
or more clusters, each of which has scaled sparsest cut ≤ λ.
There exists some λ′ > λ∗ such that the optimal clustering for
LambdaCC is the minimum sparsest cut partition.

(b) For λ ≤ λ∗, it is optimal to place all nodes into a single cluster.

Proof. Statement (a) Let S∗ be some subset ofV that induces a
sparsest cut, i.e.,ψ (S∗) = cut(S∗)/( |S∗ | |S̄∗ |) = λ∗. The LambdaCC
objective corresponding to C = {S∗, S̄∗} is

cut(S∗) − λ |S∗ | |S̄∗ | + λ
(
n

2

)
− λ |E | . (9)

When minimizing objective (8), we can always obtain a score of
λ
(n

2
)
− λ |E | by placing all nodes into a single cluster. Note however

that the the score of clustering {S∗, S̄∗} in expression (9) is strictly
less than λ

(n
2
)
− λ |E | for all λ > λ∗. Even if {S∗, S̄∗} is not optimal,

this means that when λ > λ∗, we can do strictly better than placing
all nodes into one cluster. In this case let C∗ be the optimal Lamb-
daCC clustering and consider two of its clusters: Si and Sj . The
weight of disagreements between Si and Sj is equal to the number
of positive edges between them times the weight of a positive edge:
(1 − λ) cut(Si , Sj ). Should we form a new clustering by merging Si
and Sj , these positive disagreements will disappear; in turn, we
would introduce λ |Si | |Sj | − λ cut(Si , Sj ) new mistakes, being nega-
tive edges between the clusters. Because we assumed C∗ is optimal,

we know that we cannot decrease the objective by merging two of
the clusters, implying that

(1 − λ) cut(Si , Sj ) −
(
λ |Si | |Sj | − λ cut(Si , Sj )

)
= cut(Si , Sj ) − λ |Si | |Sj | ≤ 0 .

Given this, we fix an arbitrary cluster Si and perform a sum over
all other clusters to see that∑

j,i cut(Si , Sj ) −
∑
j,iλ |Si | |Sj | ≤ 0

=⇒ cut(Si , S̄i ) − λ |Si | |S̄i | ≤ 0 =⇒ cut(Si , S̄i )/
(
|Si | |S̄i |

)
≤ λ ,

proving the desired upper bound on scaled sparsest cut.
Since G is a finite graph, there are a finite number of scaled

sparsest cut scores that can be induced by a subset of V . Let λ̃ be
the second-smallest scaled sparsest cut score achieved, so λ̃ > λ∗.
If we set λ′ = (λ∗ + λ̃)/2, then the optimal LambdaCC clustering
produces at least two clusters, since λ′ > λ∗, and each cluster has
scaled sparsest cut at most λ′ < λ̃. By our selection of λ̃, all clusters
returned must have scaled sparsest cut exactly equal to λ∗, which
is only possible if the clustering returned has two clusters. Hence
this clustering is a minimum sparsest cut partition of the network.

Statement (b) If λ < λ∗, forming a single cluster must be opti-
mal, otherwise we could invoke Statement (a) to assert the existence
of some nontrivial cluster with scaled sparsest cut less than or equal
to λ < λ∗, contradicting the minimality of λ∗. If λ = λ∗, forming a
single cluster or using the clustering C = {S∗, S̄∗} yield the same
objective score, which is again optimal for the same reason. □

3.4 Connection to Cluster Deletion

For large λ, our problem becomes more similar to cluster deletion.
We can reduce any cluster deletion problem to correlation cluster-
ing by taking the input graph G and introducing a negative edge
of weight “∞” between every pair of non-adjacent nodes. This
guarantees that optimally solving correlation clustering will yield
clusters that all correspond to cliques inG . Furthermore, the weight
of disagreements will be the number of edges in G that are cut, i.e.,
the cluster deletion score. We can obtain a generalization of cluster
deletion by instead choosing the weight of each negative edge to
be α < ∞. The corresponding objective is∑

(i, j )∈E+
xi j +

∑
(i, j )∈E−

α (1 − xi j ) . (10)

If we substitute α = λ/(1 − λ) we see this differs from objective (6)
only by a multiplicative constant, and is therefore equivalent in
terms of approximation. When α > 1, putting dissimilar nodes
together will be more expensive than cutting positive edges, so we
would expect that the clustering which optimizes the LambdaCC
objective will separateG into dense clusters that are “nearly” cliques.
We formalize this with a simple theorem and corollary.

Theorem 3.3. If C minimizes the LambdaCC objective for the
unsigned network G = (V ,E), then the edge density of every cluster
in C is at least λ.

Proof. Take a cluster S ∈ C and consider what would happen if
we broke apart S so that each of its nodes were instead placed into
its own singleton cluster. This means we are now making mistakes
at every positive edge previously in S , which increases the weight
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Figure 2: LambdaCC is equivalent to several other objectives

for specific values of λ ∈ (0, 1). Values λ∗ and ρ∗ are not

known a priori, but can be obtained by solving LambdaCC

for increasingly smaller values of λ.

Table 1: The best approximation factors known for stan-

dard LambdaCC, for λ ∈ (0, 1), both for minimizing dis-

agreements andmaximizing agreements.We contribute two

constant-factor approximations for minimizing disagree-

ments when λ > 1/2.

λ ∈ (0, 1/2) λ = 1/2 λ ∈ (1/2, 1)

Max-Ag. 0.7666 [37] PTAS [4] 0.7666 [37]

Min-Dis. O (logn) [12, 16, 20] 2.06 [13] 3
(
2 : λ > m

m+1
)

of disagreements by (1 − λ) |ES |. On the other hand, there are no
longer negative mistakes between nodes in S , so the LambdaCC
objective would simultaneously decrease by λ

((
|S |
2
)
− |ES |

)
. The

total change in the objective made by pulverizing S is

(1 − λ) |ES | − λ
((
|S |
2
)
− |ES |

)
= |ES | − λ

(
|S |
2
)
,

which must be nonnegative, since C is optimal, so |ES | −λ
(
|S |
2
)
≥ 0,

which implies density(S ) = |ES |/
(
|S |
2
)
≥ λ. □

Corollary 3.4. Let G havem edges. For every λ > m/(m + 1),
optimizing LambdaCC is equivalent to optimizing cluster deletion.

Proof. All output clusters must have density at leastm/(m + 1),
which is only possible if the density is actually 1, sincem is the total
number of edges in the graph. Therefore all clusters are cliques
and the LambdaCC and cluster deletion objectives differ only by a
multiplicative constant (1 − λ). □

3.5 Equivalences and Approximations

We summarize the equivalence relationships between LambdaCC
and other objectives in Figure 2. Accompanying this, Table 1 out-
lines the best-known approximation results both for maximizing
agreements and minimizing disagreements for the standard Lamb-
daCC signed graph. For degree-weighted LambdaCC, the best-
known approximation factors for all λ are O (logn) [12, 16, 20]
for minimizing disagreements, and 0.7666 for maximizing agree-
ments [37]. Thus, LambdaCC is more amenable to approximation
than modularity (and relatives) because of additive constants.

Algorithm 1 threeLP

Input: Signed graph G ′ = (V ,E+,E−), λ ∈ (0, 1)
Output: Clustering C of G ′
Solve the LP relaxation of ILP (6), obtaining distances (xi j )
Let G̃ = (V , F+, F−), where F+ = {(i, j ) : xi j < 1/3} and

5: F− = {(i, j ) : xi j ≥ 1/3}
Apply Pivot on G̃.

4 ALGORITHMS

We present several new algorithms, tailored specifically to our
LambdaCC framework; some come with approximation guarantees,
some are designed for efficiency.1 Our first two methods rely on
a key theorem of van Zuylen and Williamson, which can be used
to prove approximation results for different cases of correlation
clustering using pivoting algorithms, which operate by selecting
a pivot node k , clustering it with all its positive neighbors, and
recursing on the rest of the graph. If pivots are chosen uniformly at
random this corresponds to the Pivot algorithm of Ailon et al. [1].
We state the theorem here for completeness, with minor changes
to match our notation and presentation:

Theorem 4.1. (Theorem 3.1 in [38]) Let G = (V ,W +,W −) be a
signed, weighted graph where each pair of nodes (i, j ) has positive and
negative weights w+i j ∈W

+ and w−i j ∈W
−. Given a set of LP costs

{ci j : i ∈ V , j ∈ V , i , j}, and an unweighted graph G̃ = (V , F+, F−)
satisfying the following assumptions:

(i) w−i j ≤ αci j for all (i, j ) ∈ F
+ and

w+i j ≤ αci j for all (i, j ) ∈ F
−,

(ii) w+i j +w
+
jk +w

−
ik ≤ α

(
ci j + c jk + cik

)
for every bad triangle in G̃: (i, j ), (j,k ) ∈ F+, (i,k ) ∈ F−,

then applying Pivot on G̃ will return a solution that costs α
∑
i<j ci j

in expectation.

A full proof is given by van Zuylen and Williamson [38], who
also include a strategy for deterministically choosing pivots to
achieve the same approximation.

4.1 3-Approximation for LambdaCC

In order to apply Theorem 4.1 wemust compute the LP relaxation (6)
for LambdaCC (where ci j is the cost for edge (i, j )) to obtain dis-
tances xi j , which we then round into an unweighted graph G̃. If
we can construct G̃ to satisfy the assumptions of the theorem, all
that remains is to apply Pivot to yield the desired approximation
results. Pseudocode for our first method is displayed in Algorithm 1,
which we call threeLP since it satisfies the following approxima-
tion guarantee:

Theorem 4.2. Algorithm threeLP satisfies Theorem 4.1 with α =
3 for standard LambdaCC when λ > 1/2.

1For the initial submission of our work we presented a 5-approximation for LambdaCC
when λ > 1/2 and a 4-approximation for cluster deletion by altering the approach
of Charikar et al. [12]. Here we show improved approximations that we developed
based on a helpful suggestion from an anonymous reviewer. We include the original
approximation results in the full version of our paper [39].
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Proof. We begin by stating the correspondence between the
notation of Theorem 4.1 and the edge weights and LP costs for
LambdaCC. The graph G ′ = (V ,E+,E−) is made up of positive
edges of weight (1 − λ) and negative edges with weight λ, so

ci j = (1 − λ)xi j and (w+i j ,w
−
i j ) = (1 − λ, 0) if (i, j ) ∈ E+

ci j = λ(1 − xi j ) and (w+i j ,w
−
i j ) = (0, λ) if (i, j ) ∈ E−.

By construction, if (i, j ) ∈ F− then xi j < 1/3, otherwise (i, j ) ∈ F+
and we know xi j ≥ 1/3. The first two inequalities we need to check
for Theorem 4.1 are

w−i j ≤ αci j for all (i, j ) ∈ F
+ (11)

w+i j ≤ αci j for all (i, j ) ∈ F
− (12)

where α = 3. If (i, j ) ∈ F+ ∩ E+, then w−i j = 0 and inequality (11)
is trivial since the left hand side is zero. Similarly, inequality (12)
is trivial if (i, j ) ∈ F− ∩ E−. Assume then that (i, j ) ∈ F+ ∩ E−.
Then w−i j = λ and ci j = λ(1 − xi j ), and we know xi j < 1/3 =⇒
(1 − xi j ) > 2/3. Therefore:

w−i j = λ < 3λ (2/3) < 3λ(1 − xi j ) = αci j .

On the other hand, if (i, j ) ∈ F− ∩ E+, then w+i j = (1 − λ), ci j =
(1 − λ)xi j , and xi j ≥ 1/3, so we see:

w+i j = (1 − λ) = 3(1 − λ) (1/3) ≤ 3(1 − λ)xi j = αci j .

This concludes the proof for inequalities (11) and (12). Next we
consider a triplet of nodes {i, j,k } where (i, j ) ∈ F+, (j,k ) ∈ F+ but
(i,k ) ∈ F−. This is called a bad triangle since we will have to violate
at least one of these edges when clustering G̃. We must prove that:

w+i j +w
+
jk +w

−
ik ≤ 3

(
ci j + c jk + cik

)
, (13)

which is somewhat tedious to show. The variables in (13) are highly
dependent on the types of edges shared among nodes {i, j,k } in the
original signed graph G ′; there are two possibilities for each edge
for a total of eight cases. We give a proof here for the first case.

Case 1: Assume (i, j ) ∈ E+, (j,k ) ∈ E+, and (i,k ) ∈ E−. For this
case, we note that (ci j , c jk , cik ) = ((1−λ)xi j , (1−λ)x jk , λ(1−xik ))
and (w+i j ,w

+
jk ,w

−
ik ) = (1 − λ, 1 − λ, λ). By our construction of F+

and F− we know that xi j < 1/3, x jk < 1/3, and by the triangle
inequality we have xik ≤ xi j + x jk < 2/3. Combining these facts:

3(ci j + c jk + cik ) = 3
(
(1 − λ) (xi j + x jk ) + λ(1 − xik )

)
≥ 3 ((1 − λ)xik + λ(1 − xik )) = 3 ((1 − 2λ)xik + λ)

> 3 ((1 − 2λ)2/3 + λ) = 2 − λ = w+i j +w
+
jk +w

−
ik .

We rely above on the fact that (1−2λ) < 0, which restricts our proof
to cases where λ > 1/2. Due to space constraints we defer the proof
of the other seven cases to the full version of the paper [39]. □

4.2 2-Approximation for Cluster Deletion

In order to obtain an approximation algorithm for cluster deletion
we alter threeLP in two ways:

• Begin by solving the LP relaxation of cluster deletion:

minimize
∑

(i, j )∈E+ xi j
subject to xi j ≤ xik + x jk for all i, j,k

xi j ∈ [0, 1] for all (i, j ) ∈ E+
xi j = 1 for all (i, j ) ∈ E−

(14)

• Define F+ = {(i, j ) : xi j < 1/2}, F− = {(i, j ) : xi j ≥ 1/2}.
As before, we then run Pivot on G̃ = (V , F+, F−). We name the
resulting procedure twoCD, and prove the following result:

Theorem 4.3. Algorithm twoCD returns a 2-approximation for
cluster deletion.

Proof. First observe that no negative edge mistakes are made
by performing Pivot on G̃: if k is the pivot and i, j are two positive
neighbors of k in G̃, then xik < 1/2, x jk < 1/2, and xi j ≤ xik +
x jk < 1. Since all distances are less than one, all nodes must share
positive edges inG ′, because xi j = 1 for any (i, j ) ∈ E−. The rest of
the proof follows from showing that the newly constructed graph G̃
satisfies the assumptions of Theorem 4.1 when α = 2. For the sake
of space we defer details to the full version of the paper [39]. □

This result is particularly interesting given that no constant-
factor approximation for cluster deletion has been explicitly pre-
sented in previous literature.2 Until now, the best approximations
for correlation clustering were stronger than any result known
for cluster deletion; our result indicates that the latter problem is
perhaps the easier of the two to approximate.

4.3 Scalable Heuristic Algorithms

As a counterpart to the previous approximation-driven approaches,
we provide fast algorithms for LambdaCC based on greedy local
heuristics. The first of these is GrowCluster, which iteratively
selects an unclustered node uniformly at random and forms a cluster
around it by greedily aggregating adjacent nodes, until there is no
more improvement to the LambdaCC objective.

A variant of this, called GrowCliqe, is specifically designed
for cluster deletion. It monotonically improves the LambdaCC
objective, but differs in that at each iteration it uniformly at random
selects k unclustered nodes, and greedily grows cliques around each
of these seeds. The resulting cliques may overlap: at each iteration
we select only the largest of such cliques.

Finally, since the LambdaCC and Hamiltonian objectives are
equivalent, we can use previously developed algorithms and soft-
ware for modularity-like objectives with a resolution parameter. In
particular we employ adaptations of the Louvain method, an algo-
rithm developed by Blondel et al. [7]. It iteratively visits each node
in the graph and moves it to an adjacent cluster, if such a move
gives a locally maximum increase in the modularity score. This
continues until no move increases modularity, at which point the
clusters are aggregated into super-nodes and the entire process is
repeated on the aggregated network. By adapting the original Lou-
vain method to make greedy local moves based on the LambdaCC
objective, rather than modularity, we obtain a scalable algorithm

2The results of van Zuylen and Williamson for constrained correlation clustering can
be used to obtain a 3-approximation for cluster deletion (Theorem 4.2 in [38]), though
cluster deletion is not mentioned explicitly in their work.
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that is known to provide good approximations for a related objec-
tive, and additionally adapts well to changes in our parameter λ.
We refer to this as Lambda-Louvain. Both standard and degree-
weighted versions of the algorithm can be achieved by employing
existing generalized Louvain algorithms (e.g., the GenLouvain al-
gorithm of Jeub et al. http://netwiki.amath.unc.edu/GenLouvain/).
Our heuristic algorithms satisfy the following guarantee:

Theorem 4.4. For every λ, both the algorithms GrowCluster and
Lambda-Louvain either place all nodes in one cluster or they produce
clusters that have scaled sparsest cut bounded above by λ.

An analogous result for normalized cut holds when the algo-
rithms greedily optimize degree-weighted LambdaCC. We provide
a detailed proof in the full version of the paper [39].

5 EXPERIMENTS

We begin by comparing our new methods against existing correla-
tion clustering algorithms on several small networks. This shows
our algorithms for LambdaCC are superior to common alternatives.
We then study how well-known graph partitioning algorithms
implicitly optimize the LambdaCC objective for various λ. In sub-
sequent experiments, we apply our methods to clique detection in
collaboration and gene networks, and to social network analysis.

5.1 LambdaCC on Small Networks

In our first experiment, we show that Lambda-Louvain is the
best general-purpose correlation clustering method for minimizing
the LambdaCC objective. We test this on four small networks:
Karate [40], Les Mis [26], Polbooks [27], and Football [22]. Figure 3
shows the performance of our algorithms, Pivot, and ICM, for a
range of λ values. Pivot is the fast algorithm of Ailon et al. [1],
which selects a uniform random node and clusters its neighbors
with it. ICM is the energy-minimization heuristic algorithm of
Bagon and Galun [3].

We find that threeLP gives much better than a 3-approximation
in practice. Pivot is much faster, but performs poorly for λ close
to 0 or 1. ICM is also much quicker than solving the LP relaxation,
but is still limited in scalability, as it is intended for correlation
clustering problems where most edge weights are 0 (not the case
for LambdaCC). On the other hand, GrowCluster and Lambda-
Louvain are scalable and give good approximations for all input
networks and values of λ.

5.2 Standard Clustering Algorithms

Many existing clustering algorithms implicitly optimize different
parameter regimes of the LambdaCC objective. We show this by
running several clustering algorithms on a 1000-node synthetic
graph generated from the BTER model [35]. We do the same on the
largest component (4158 nodes) of the ca-GrQc collaboration net-
work from the arXiv e-print website. We then compute LambdaCC
objective scores for each algorithm for a range of λ values. We
first cluster each graph using Graclus [18] (forming two clusters),
Infomap [9], and Louvain [7]. To form dense clusters, we also parti-
tion the networks by recursively extracting the maximum clique
(called RMC), and by recursively extracting the maximum quasi-
clique (RMQC), i.e., the largest set of nodes with inner edge density
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Figure 3: We optimize the standard LambdaCC objective

with five correlation clustering algorithms on four small

networks. The y-axis reports the ratio between each algo-

rithm’s score and the lower bound on the optimal objective

determined by solving the LP relaxation. Lambda-Louvain

(black) and GrowCluster (purple) performwell for all λ, in
addition to being the most scalable algorithms. In each plot,

a dashed vertical line indicates the optimal scaled sparsest

cut value, λ∗, for that network.

bounded below by some ρ < 1 (here we use ρ = 0.6). The last two
procedures must solve an NP-hard objective at each step, but for
reasonably sized graphs there is available clique and quasi-clique
detection software [28, 34].

After each algorithm has produced a single clustering of the
unsigned network, we evaluate how the LambdaCC objective score
of that clustering changes as we vary λ. This allows us to observe
whether an algorithm is effective in approximating the LambdaCC
objective for a certain range of λ values. For comparison we run
Lambda-Louvain for each different value of λ. Figure 4 reports the
ratio between the LambdaCC objective score of each clustering
and the LP-relaxation lower bound. These plots illustrate that our
framework and Lambda-Louvain effectively interpolate between
several well-established strategies in graph partitioning, and can
serve as a good proxy for any clustering task for which any one of
these algorithms is known to be effective.

5.3 Cluster Deletion in Large Collaboration

Networks

The connection between LambdaCC and cluster deletion provides
a new approach for enumerating groups in large networks. Here we
evaluate GrowCliqe for cluster deletion and use it to cluster two
large collaboration networks, one formed from a snapshot of the
author-paper DBLP dataset in 2007, and the other generated using
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Figure 4: We illustrate the performance of well-known clus-

tering algorithms in approximating the LambdaCC objec-

tive on (a) one synthetic and (b) and one real-world graph.

The bowl-shaped curves indicate that each algorithm implic-

itly optimizes the LambdaCC objective in a different param-

eter regime. The y-axis reports the ratio between each clus-

tering’s objective score and the LP-relaxation lower bound.

Lambda-Louvain effectively interpolates between all the

clustering strategies seen here.

Table 2: Cluster deletion scores for GrowCliqe (GC), Pro-

jectCliqe (PC) and RMC on two collaboration networks.

GrowCliqe is unaware of the underlying player-project

network, and does not solve an NP-hard objective at each

iteration, yet returns very good results. Best score for each

dataset is emphasized.

Graph Nodes Edges GC PC RMC

Actors 341,185 10,643,420 8,085,286 8,086,715 8,087,241
DBLP 526,303 1,616,814 945,489 946,295 944,087

actor-movie information from the NotreDame actors dataset [5].
The original data in both cases is a bipartite network indicating
which players (i.e., authors or actors) have parts in different projects
(papers or movies respectively). We transform each bipartite net-
work into a graph in which nodes are players and edges represent
collaboration on a project.

At each iteration GrowCliqe grows 500 (possibly overlapping)
cliques from random seeds and selects the largest to be included in
the final output. We compare against RMC, an expensive method
which provably returns a 2-approximation to the optimal cluster
deletion objective [17]. We also design ProjectCliqe, a method
that looks at the original bipartite network and recursively identifies
the project associated with the largest number of players not yet
assigned to a cluster. These players form a clique in the collaboration
network, so ProjectCliqe clusters them together, then repeats
the procedure on remaining nodes.

Table 2 shows that GrowCliqe outperforms ProjectCliqe
in both cases, and slightly outperforms RMC on the actor network.
Our method is therefore competitive against two algorithms that
in some sense have an unfair advantage over it: ProjectCliqe
employs knowledge not available to GrowCliqe regarding the
original bipartite dataset, and RMC performs very well mainly
because it solves an NP-hard problem at each step.

5.4 Clustering Yeast Genes

The study of cluster deletion and cluster editing (equivalent to ±1-
correlation clustering, or to λ = 1/2) was originally motivated by
applications to clustering genes using expression patterns [6, 36].
Standard LambdaCC is a natural framework for this, since it gener-
alizes both objectives and interpolates between them as λ ranges
from 1/2 to m/(m + 1). We cluster genes of the Saccharomyces
cerevisiae yeast organism using microarray expression data col-
lected by Kemmeren et al. [25]. With the 200 expression values
from the dataset, we compute correlation coefficients between all
pairs of genes. We threshold these at 0.9 to obtain a small graph
of 131 nodes corresponding to unique genes, which we cluster with
twoCD. For this cluster deletion experiment, our algorithm returns
the optimal solution: solving the LP-relaxation returns a solution
that is in fact integral. We validate each clique of size at least three
returned by twoCD against known gene-association data from the
Saccharomyces Genome Database (SGD) and the String Consortium
Database (see Table 3). With one exception, these cliques match
groups of genes that are known to be strongly associated, according
to at least one validation database. The exception is a cluster with
four genes (YHR093W, YIL171W, YDR490C, and YOR225W), three
of which, according to the SGD are not known to be associated with
any Gene Ontology term. We conjecture that this may indicate a
relationship between genes not previously known to be related.

Table 3: We list cliques of size ≥ 3 in the optimal clustering

(found by twoCD) of a network of 131 yeast genes. We vali-

date each cluster using the SGDGO slimmapper tool, which

identifies any GO term (function, process, or component of

the organism) for a given gene. We list one GO term shared

by all genes in the cluster, if one exists. The Term % column

reports the percentage of all genes in the organism associ-

ated with this term. A low percentage indicates a cluster of

genes that share a GO term that is not widely shared among

other genes. The final column shows theminimumString as-

sociation score between every pair of genes in the cluster, a

number between 0 and 1000 (higher is better). Any non-zero

score is a strong indication of gene association, as the ma-

jority of String scores between genes of S. cerevisiae are zero.
All clusters, except the third, either have a high minimum

String score or are all associated with a specific GO term.

Clique # Size Shared GO term Term % String

1 6 nucleus 34.3 0
2 4 nucleus 34.3 202
3 4 N/A - 0
4 4 vitamin metabolic process 0.7 980
5 3 cytoplasm 67.0 990
6 3 cytoplasm 67.0 998
7 3 N/A - 962
8 3 cytoplasm 67.0 996
9 3 N/A - 973
10 3 transposition 1.7 0
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5.5 Social Network Analysis with LambdaCC

Clustering a social network using a range of resolution parameters
can reveal valuable insights about how links are formed in the
network. Here we examine several graphs from the Facebook100
dataset, each of which represents the induced subgraph of the
Facebook network corresponding to a US university at some point
in 2005. The networks come with anonymized meta-data, reporting
attributes such as major and graduation year for each node. While
meta-data attributes are not expected to correspond to ground-truth
communities in the network [32], we do expect them to play a role
in how friendship links and communities are formed. In this exper-
iment we illustrate strong correlations between the link structure
of the networks and the dorm, graduation year, and student/faculty
status meta-data attributes. We also see how these correlations are
revealed, to different degrees, depending on our choice of λ.

Given a Facebook subgraph with n nodes, we cluster it with
degree-weighted Lambda-Louvain for a range of λ values between
0.005/n and 0.25/n. In this clustering, we refer to two nodes in
the same cluster as an interior pair. We measure how well a meta-
data attribute M correlates with the clustering by calculating the
proportion of interior pairs that share the same value forM . This
value, denoted by P (M ), can also be interpreted as the probability
of selecting an interior pair uniformly at random and finding that
they agree on attribute M . To determine whether the probability
is meaningful, we compare it against a null probability P (M̃ ): the
probability that a random interior pair agree at a fake meta-data
attribute M̃ . We assign to each node a value for the fake attribute M̃
by performing a random permutation on the vector storing val-
ues for true attribute M . In this way, we can compare each true
attributeM against a fake attribute M̃ that has the same exact pro-
portion of nodes with each attribute value, but does not impart any
true information regarding each node.

In Figure 5 we plot results for each of the three attributesM ∈
{dorm, year, s/f (student/faculty)} on four Facebook networks, as λ
is varied. In all cases, we see significant differences between P (M )
and P (M̃ ). In general, P (year ) and P (s/f ) reach a peak at small
values of λ when clusters are large, whereas P (dorm) is highest
when λ is large and clusters are small. This indicates that the first
two attributes are more highly correlated with large sparse commu-
nities in the network, whereas sharing a dorm is more correlated
with smaller, denser communities. Caltech, a small residential uni-
versity, is an exception to these trends and exhibits a much stronger
correlation with the dorm attribute, even for very small λ.

6 DISCUSSION

We have introduced a new clustering framework that unifies several
other commonly-used objectives and offers many attractive theo-
retical properties. We prove that our objective function interpolates
between the sparsest cut objective and the cluster deletion problem,
as we vary a single input parameter, λ. We give a 3-approximation
algorithm for our objective when λ ≥ 1/2, and a related method
which improves the best approximation factor for cluster deletion
from 3 to 2. We also give scalable procedures for greedily improving
our objective, which are successful in a wide variety of clustering ap-
plications. These methods are easily modified to add must-cluster
and cannot-cluster constraints, which makes them amenable to
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Figure 5: On four university Facebook graphs, we illustrate

that the dorm (red), graduation year (green), and student/-

faculty (S/F) status (blue) meta-data attributes all correlate

highly with the clustering found by Lambda-Louvain for

each λ. Above the x-axis we show the number of clusters

formed,which increaseswith λ. They-axis reports the proba-
bility that two nodes sharing a cluster also share an attribute

value. Each attribute curve is compared against a null prob-

ability, shown as a dashed line of the same color. The large

gaps between each attribute curve and its null probability

indicate that the link structure of each network is highly

correlated with these attributes. In general, probabilities for

year and s/f status are highest for small λ, whereas dormhas a

higher correlation with smaller, denser communities in the

network. Caltech is an exception to the general trend; see

the main text for discussion.

many applications. In future work, we will continue exploring ap-
proximations when λ < 1/2.
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