
A Simple and Strongly-Local Flow-Based Method for Cut Improvement

Nate Veldt lveldt@purdue.edu
Mathematics Department, Purdue University, West Lafayette, IN 47906

David F. Gleich dgleich@purdue.edu
Computer Science, Purdue University, West Lafayette, IN 47906

Michael W. Mahoney mmahoney@stat.berkeley.edu
International Computer Science Institute and Dept. of Statistics, University of California at Berkeley, Berkeley, CA 94720

Abstract
Many graph-based learning problems can be cast
as finding a good set of vertices nearby a seed set,
and a powerful methodology for these problems
is based on maximum flows. We introduce and
analyze a new method for locally-biased graph-
based learning called SimpleLocal, which finds
good conductance cuts near a set of seed vertices.
An important feature of our algorithm is that it is
strongly-local, meaning it does not need to ex-
plore the entire graph to find cuts that are locally
optimal. This method solves the same objec-
tive as existing strongly-local flow-based meth-
ods, but it enables a simple implementation. We
also show how it achieves localization through
an implicit `1-norm penalty term. As a flow-
based method, our algorithm exhibits several ad-
vantages in terms of cut optimality and accurate
identification of target regions in a graph. We
demonstrate the power of SimpleLocal by solv-
ing problems on a 467 million edge graph based
on an MRI scan.

1. Introduction and Related Work
Finding good conductance cuts near a set of seed vertices
in a graph is a well-studied and widely-applied problem in
graph-based learning. Such an algorithm is strongly-local
if its runtime depends only on the size of the seed set or on
the size of the output set rather than on the size of the entire
graph. Seeded PageRank and other spectral and random-
walk methods give these guarantees. While these methods

Proceedings of the 33rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

provide nice approximation guarantees, they fail to give op-
timal solutions and often exhibit “sloppy” boundaries when
it comes to solving label propagation and community de-
tection problems.

Flow-based methods exhibit numerous advantages includ-
ing the ability to provide exact optimal solutions in some
cases. The first strongly local flow-based method was in-
troduced by Orecchia & Zhu (2014), which exhibits a fast
runtime but relies on a complicated variation of Dinic’s al-
gorithm for maximum flows, making it difficult to use in
practice. In this paper we provide a new strongly-local al-
gorithm that provides the same optimality guarantees while
offering the flexibility of employing any max-flow algo-
rithm as a subroutine. While our algorithm’s theoretical
runtime is weaker than Orecchia & Zhu (2014), we provide
implementation details for it and demonstrate its ability to
find low-conductance cuts in a large real-world dataset.

Graph-based learning. Graph-based learning is a re-
curring problem in machine learning where we are given
a graph and some information about the nodes of this
graph and the task is to infer the information on the unla-
beled nodes. This is an instance of semi-supervised learn-
ing (Blum & Chawla, 2001; Zhu et al., 2003) or transduc-
tive learning (Joachims, 2003). Algorithms for these prob-
lems on graphs are often called label propagation meth-
ods due to their interpretation as spreading labels around a
graph (Zhu et al., 2003; Fujiwara & Irie, 2014). Related
problems include guided image segmentation (Mahoney
et al., 2012) and seeded community detection (Andersen
& Lang, 2006; Kloumann & Kleinberg, 2014), where we
are given a set of sample pixels or nodes and the goal is to
find the rest.

Algorithms for graph-based learning largely split into three
types: flow-based methods, spectral methods, and graph-
based heuristics. Some of the seminal papers in semi-

A Simple and Strongly-Local Flow-Based Method for Cut Improvement

supervised learning on graphs and community detection
discussed using minimum cuts in the network for this appli-
cation (Blum & Chawla, 2001; Flake et al., 2000). Subse-
quent papers found that spectral methods had a number of
advantages in terms of speed, unique solutions, and addi-
tional information about the strength of the prediction (Zhu
et al., 2003; Joachims, 2003; Zhou et al., 2003). Principled
heuristic methods also abound (e.g. Fujiwara & Irie 2014)
due to the simplicity of the setup.

Semi-supervised learning algorithms differ from typical
graph algorithms in that they exhibit special locality prop-
erties. Typical graph algorithms, for example Kruskal’s
minimum spanning tree method, often depend on optimiz-
ing an objective function over the entire graph structure and
return a result proportional to the size of the entire graph.
In contrast, semi-supervised learning algorithms take as in-
put an exogenously specified seed set of nodes, and return
results that are biased towards a small part of the graph
nearby the seed or reference set. If the running time is still
dependent on the entire size of the graph, this is called weak
locality. For instance, solving the linear system involved in
Zhou et al. (2003) returns a modestly sized set of nodes
where the labels are expected to be located, but the linear
system involves the entire graph.

For spectral methods, Spielman & Teng (2013) and Ander-
sen et al. (2006) have shown much stronger results. These
algorithms are strongly-local, in that the algorithm doesn’t
even access most of the nodes of the graph and thus the run-
ning time is dependent on the size of the seed set or output
set, rather than the entire graph. Importantly, not only are
these strongly-local spectral algorithms very fast (in both
theory and practice, see Leskovec et al. 2009 and Jeub et al.
2015) but, when interpreted as graph partitioning methods,
they come with locally-biased Cheeger-like quality of ap-
proximation guarantees with respect to the conductance ob-
jective. (Good conductance means small conductance; we
define conductance later.)

In comparison, flow-based methods can be shown to op-
timally solve the discrete partitioning objective, such as
minimum conductance cut, if they are given an input that
is not too large and that contains the desired set (Lang &
Rao, 2004) through a parameteric flow construction (Gallo
et al., 1989). A subsequent flow-based algorithm called
Improve had related exactness guarantees on the discrete
objective but considerably relaxed the requirements on the
input set (Andersen & Lang, 2008). In the context of semi-
supervised learning, the Improve algorithm is a weakly-
local method that would essentially find the optimal con-
ductance set of nodes in the graph that is nearby the set
of the seed labels. (We make a precise statement in Sec-
tion 3.1.) In fact, Improve is essentially a flow-based analog
of the spectral method used by Zhou et al. (2003) as shown

by Gleich & Mahoney (2015) using ideas from Mahoney
et al. (2012). Recently, Orecchia & Zhu (2014) proposed a
method called LocalImprove that combined a slight mod-
ification to the discrete objective function in the Improve
algorithm with a variation on Dinic’s algorithm for max-
flow (Dinitz, 1970) in order to assemble the first flow-based
method that is strongly-local.

Strengths and weaknesses with spectral methods for
graph-based learning and some fixes. In recent work,
spectral methods have been found to have substantially
better theoretical guarantees, more akin to the guarantees
of flow-based methods, if the resulting set of labels is
very well-connected internally (Zhu et al., 2013). How-
ever, when that doesn’t hold, spectral methods tend to pro-
duce sloppy boundaries unless the boundaries between la-
bels is extremely clear. Figure 1 illustrates this effect on
a simple synthetic construction. Given initial identical-
labeled nodes, the spectral method (Zhou et al., 2003) dif-
fuses over the boundary between groups too quickly and re-
sults in a potential misclassification. In contrast, the flow-
based method (SimpleLocal) is able to correctly identify
the boundary given the same seeds.

This example reflects a simplified scenario without the va-
riety of fixes that are commonly used in spectral-based
semi-supervised learning (Joachims, 2003; Zhou & Srebro,
2011; Lu & Peng, 2012; Brindle & Zhu, 2013). How-
ever, these spectral and strongly-local spectral methods
have complicated theory with many parameters and op-
tions. This can make it difficult for non-experts to use, and
it can be difficult to know what those fixes and strongly-
local approximations are optimizing exactly.

Cut improvement. Cut improvement is a problem
framework where we are given an initial partitioning of
a graph into two pieces and the goal is to identify a bet-
ter split according to some quotient of cut and size. Both
conductance and its relative, quotient cut, fit into this gen-
eral framework. Algorithms here date back to initial work
on parametric maximum flow (Gallo et al., 1989). There
are a variety of methods that use the submodular property
of the objective and various decompositions of submodu-
lar functions to solve them (Patkar & Narayanan, 2003;
Narasimhan & Bilmes, 2007). The original flow-based
methods MQI and Improve had attractive theoretical guar-
antees and empirical performance for this task (Lang &
Rao, 2004; Andersen & Lang, 2008). The tendency of
spectral methods to make errors around the boundary was
also recognized in this literature (Lang, 2005) and these
flow-based methods were already a well-known fix. Along
these lines, Chung (2007) provided a spectral analogue of
MQI and Mahoney et al. (2012) provided MOV, a weakly-
local version of spectral graph partitioning, which may be

A Simple and Strongly-Local Flow-Based Method for Cut Improvement

11 2

3
4

(a) Graph-based learning
with a spectral method

1 2

3
4

(b) Graph-based learning
with a local flow method

Figure 1. There are four synthetic labels in displayed region of the
graph, one for each group. The vertices are connected based on
nearest neighbors and sparsified longer range connections. Us-
ing the two seed nodes marked in orange, the spectral prediction,
the blue nodes in (a), move to the adjacent group whereas the
flow predictions, the blue nodes in (b), accurately capture the true
boundary.

interpreted as a spectral analogue of Improve. In fact, Gle-
ich & Mahoney (2015) showed that the MOV method is op-
timizing the same solution as the semi-supervised method
of Zhou et al. (2003).

Summary of Contributions. In this paper, we first show
that the modification to the Improve objective used in the
strongly-local LocalImprove can be precisely stated as an
`1-penalized Improve objective (Theorem 1). This makes
precise the sense in which LocalImprove implicitly opti-
mizes a sparsity-induced regularized version of Improve.
The authors of LocalImprove made use of a sophisticated
white-box modification of Dinic’s algorithm to provide the
best possible runtime. Our main contribution is then a new
strongly-local flow algorithm that uses existing max-flow
algorithms as a black box (Algorithm 1, Theorem 2). Our
algorithm solves the same optimization problem as Lo-
calImprove and our aim is to provide an algorithm that
is both flexible and easy to implement while still being
strongly-local. Thus we call our algorithm SimpleLocal.

In combination, these two results deconvolve the origin
of the local solution, which occurs because of the the `1-
regularization applied to the problem, from the algorithm
that identifies this local solution. The second result enables
us to create an extremely simple and scalable implemen-
tation of SimpleLocal where any max-flow algorithm can
be used to solve this sequence of problems including effi-
cient GPU methods (He & Hong, 2010) or the latest exact
theoretical algorithms (Orlin, 2013). We use this imple-
mentation to show a few examples of how this new method
is able to solve problems on graphs originating from MRI
data with 467 million edges in a few minutes.

2. Preliminaries and Notation
Let G = (V, E) be an undirected, unweighted graph with
n = |V | nodes and m = |E| edges. For a given vertex v ∈ V ,
the degree dv is equal to the sum of edges incident to v, and
the volume of a subset of nodes S ⊂ V is defined to be
vol(S) =

∑
s∈S ds. Given two subsets of vertices A and B,

we indicate the set of edges between them by

cut(A, B) = cut(B, A) = {(i, j) ∈ E : i ∈ A, j ∈ B}.

We associate every vertex set S ⊂ V with the set of edges
between S and the rest of the graph, cut(S) = cut(S , S̄),
where S̄ = V\S . We use ∂S = | cut(S , S̄)| to indicate
the number of edges in this set. Let Neigh(S) indicate the
nodes that are not included in S but share an edge with S ,

Neigh(S) = {v ∈ S̄ : (v, s) ∈ E for some s ∈ S }.

We measure how well-connected the set S is by its conduc-
tance φ(S), defined by

φ(S) = ∂S
min{vol(S),vol(S̄)} .

3. Implicit Sparsity Regularization
In this section we present a new result which relates the
objectives of Improve and LocalImprove. We begin by re-
viewing the construction of the augmented graph of Ander-
sen & Lang (2008) used in Improve, and the modification of
this graph introduced by Orecchia & Zhu (2014). We relate
both of these graphs back to our original problem by show-
ing how low-capacity cuts in the augmented and modi-
fied augmented graphs correspond to low-conductance cuts
in the original input graph. Our main result in this sec-
tion is to show that the min-cut objective solved by Lo-
calImprove is implicitly equivalent to a sparsity-inducing
`1-regularization of the min-cut objective solved by Im-
prove. This result guides our understanding of strongly-
localized flow-based cut improvement methods, and sheds
light on the success and robustness of algorithms such as
LocalImprove and SimpleLocal. This is also an example of
algorithmic anti-differentiation (Gleich & Mahoney, 2014)
where we characterize the optimization problem that Lo-
calImprove was implicitly solving as a result of their algo-
rithmic setup.

3.1. Improve and the Augmented Graph

We begin with a graph G = (V, E), an initial seed set R ⊂ V
satisfying vol(R) ≤ vol(R̄), and a parameter α ∈ (0, 1). The
augmented graph GR(α) is constructed through the follow-
ing steps:

1. Retain original nodes, edges, and edge weights of G
2. Add a source node s and a sink node t

A Simple and Strongly-Local Flow-Based Method for Cut Improvement

Figure 2. An illustration of the augmented graph GR(α) used by
Improve, where β = α f (R). If we change the sink-side weight so
that β = α(f (R) + δ), this corresponds to the modified augmented
graph G′R(α, δ) used by LocalImprove and our SimpleLocal.

3. For every r ∈ R, add an edge (s, r) with capacity αdr

4. For every v ∈ R̄, add edge (v, t) with capacity α f (R)dv.

Here f (R) =
vol(R)
vol(R̄) is chosen so that the total capacity into

the sink equals the total capacity out of the source. See
Figure 2 for a visualization of a small augmented graph.

An s-t cut of the augmented graph is any set of edges
which, when cut, partitions the nodes into disjoint sets
where the source and sink are in separate sets. Any s-t
cut can be associated with the set of nodes S ⊂ V from the
original graph that are on the same side of the cut as s. The
capacity of any s-t cut of GR(α) is equal to

α vol(R) + ∂S − α vol(R ∩ S) + α f (R) vol(R̄ ∩ S), (1)

where S is the set of edges on the source side.

The Improve algorithm solves a sequence of minimum s-
t cut problems on GR(α) for decreasing values of α. This
is exactly equivalent to solving a sequence of optimization
problems where we minimize the objective (1) over sets
S ⊂ V. The goal is to find the smallest α such that the
minimum s-t cut (i.e. the optimal S) is less than α vol(R).
Note that regardless of α we can always achieve a cut with
capacity α vol(R) by selecting all edges from the source to
the rest of the graph. This type of problem is an instance of
a parametric max-flow (Gallo et al., 1989); although those
techniques are unnecessary for Improve.

3.2. LocalImprove and the Modified Augmented Graph

The modified augmented graph G′R(α, δ) is obtained by in-
creasing the weight of the edges from R̄ to t to αεdw for all
nodes w ∈ R̄, where ε = f (R) + δ for δ ≥ 0. Finding the
minimum s-t cut of G′R(α, δ) is equivalent to minimizing a
slightly modified objective:

α vol(R) + ∂S − α vol(R ∩ S) + α f (R) vol(R̄ ∩ S)
+ αδ vol(R̄ ∩ S).

(2)

By including the extra term αδ vol(R̄ ∩ S), this in effect
increases the penalty of including nodes outside of R. Note
that GR(α) = G′R(α, 0).

Cuts in both GR(α) and G′R(α, δ) are easily associated with
sets of vertices in the original graph G. Given a max s-t
flow on either graph, the set of nodes reachable from s via
unsaturated edges (excluding s itself) forms a subset S ⊂ V
in the original graph G.

LocalImprove finds a set S with low conductance by solv-
ing a sequence of approximate max flow computations on
G′R(α, δ) for different values of α. The method relies on
modifying Dinic’s max-flow algorithm and a procedure for
finding blocking flows on a subgraph of G′R(α, δ) called the
local graph. The local graph is updated and expanded as
needed at each step to allow more flow to be routed from
s to t. For more details we direct the reader to Orecchia &
Zhu (2014).

3.3. Relating Cuts in Modified Augmented Graph to
Low-Conductance Sets in the Original Graph

The following lemma is a generalization of a core result
of Andersen & Lang (2008) and is proven as a part of
Lemma 3.1 in Orecchia & Zhu (2014).

Lemma 1 If the minimum s-t cut of G′R(α, δ) for δ ≥ 0 is
less than α vol(R), then φ(S) < α, where S is the node set
corresponding to the cut.

(For a proof see the supplementary material.)

The task of Improve is to find the smallest α such that
the maximum s-t flow of the augmented graph is less than
α vol(R). This is equivalent to minimizing the function

φR(S) = ∂S/(vol(R ∩ S) − f (R) vol(R̄ ∩ S)) (3)

which Andersen & Lang (2008) refer to as the quotient
score of S relative to the seed set R. Both LocalImprove
and our new algorithm SimpleLocal minimize a similar
quotient function, given later as equation (7).

3.4. Relating s-t Cuts of the Augmented Graph and
Modified Augmented Graph

Our first new result is to show that finding a minimum s-t
cut of the modified augmented graph is equivalent to solv-
ing an `1 sparsity-regularized version of the min-cut objec-
tive for a related, standard augmented graph. This result
gives insight into why LocalImprove succeeds in finding a
cut with similar conductance guarantees to those provided
by Improve, despite only exploring a portion of the graph.
This result is analogous to a similar relationship discov-
ered in Gleich & Mahoney (2014) between the Andersen,
Chung, Lang procedure and an `1-regularized `2-version of

A Simple and Strongly-Local Flow-Based Method for Cut Improvement

the min-cut objective on the Improve augmented graph (An-
dersen et al., 2006).

Theorem 1 Finding the minimum cut of the modified aug-
mented graph G′R(α, δ) is equivalent to solving an `1-
regularized version of the minimum s-t cut objective of a
related augmented graph GR(β). More specifically, the set
S which minimizes the s-t cut objective of G′R(α, δ):

α vol(R)+∂S −α vol(R∩S)+ (α f (R) + αδ) vol(R̄∩S) (4)

also minimizes the `1-regularized objective of GR(β):

β vol(R)+∂S−β vol(R∩S)+β f (R) vol(R̄∩S)+κ vol(S), (5)

where κ = αδ
1+ f (R) > 0 and β = α + κ.

Proof If we note that vol(R̄∩S) + vol(R∩S) = vol(S) and
substitute αδ = κ + κ f (R) and α = β − κ, we get

− α vol(R ∩ S) + (α f (R) + αδ) vol(R̄ ∩ S)
= −(β − κ) vol(R ∩ S) + (β f (R) + κ) vol(R̄ ∩ S)
= −β vol(R ∩ S) + β f (R) vol(R̄ ∩ S) + κ vol(S).

The constant term in each objective does not affect the op-
timal set S , so we see that (4) and (5) are equivalent. �

Remark. The additional term in the regularized objective
(5) is κ vol(S). When this objective is converted into a lin-
ear program for min-cut, it is:

minx
∑

(i, j)∈ER(β) ci, j(β)|xi − x j| + κ
∑

i |dixi|

s.t. 0 ≤ xi ≤ 1, xs = 1, xt = 0, (6)

where ci, j(β) is the capacity of each edge in the augmented
graph with β from the theorem and where di is the degree of
node i in the original graph. The extra term is then exactly
an `1 penalty.

4. SimpleLocal Algorithm
Our primary contribution is the algorithm SimpleLocal, a
simplified framework for computing the objective of Lo-
calImprove. Just as LocalImprove, we rely on constructing
and updating a local subgraph of G′R(α, δ). However, rather
than using Dinic’s algorithm to compute approximate max-
imum flows, we develop a new three-stage method for exact
maximum flow computations on G′R(α, δ).

4.1. Three-Stage Local Max Flow Procedure

We begin with a detailed explanation of 3StageFlow,
the newly designed algorithm we employ to compute a
maximum s-t flow of a given modified augmented graph
G′R(α, δ). After constructing an initial local graph, our algo-
rithm enters a three-stage process that is repeated until con-
vergence to a maximum flow. In each iteration we expand

the local graph, compute a small-scale maximum s-t flow,
and then update the local graph based on this flow. By it-
eratively growing the local graph and increasing our small-
scale flow computations on it in this way, we will converge
to an s-t flow that is a maximum on all of G′R(α, δ).

Initialization. Let G′ denote the modified augmented
graph G′R(α, δ). We begin by forming the local graph
L = (VL, EL), a subgraph of G′ which includes:

• Nodes {s, t} ∪ R ∪ Neigh(R)
• Edges from s to R
• Edges between distinct nodes in R
• Edges from R to Neigh(R)
• Edges from t to Neigh(R).

Let F denote our flow vector, and flow(F) indicate the total
amount of flow routed from s to t. Initially F is set to the
zero vector.

Stage 1. Expansion. At the beginning of each new iter-
ation we expand the local graph to allow more flow to be
routed from s to t. We use X to denote the set of nodes to
expand on at the beginning of an iteration. For any node
x ∈ X, we add all neighbors of x ∈ G′ that are not yet a
part of L, and also include all edges from x to all its neigh-
bors. For each new node added to L, we include the edge it
shares with the sink t. In the first step we have no need to
expand the local graph yet, so we set X = ∅.

Stage 2. Max-Flow Computation. Once L is correctly
expanded, we compute the maximum flow f on the local
graph L using any available max-flow subroutine. We then
update our flow vector F ← F + f .

Let L f denote the residual graph of the flow. This graph is
formed by replacing the capacity ci j of an edge in EL by
ci j − fi j, where fi j is the flow on edge (i, j), and where the
capacity of edge (j, i) is replaced with the value fi j.

Stage 3. Updates. After computing a maximum flow, we
resolve the effects of the flow and determine whether the
local graph should be further expanded. We begin by up-
dating the local graph to be the residual graph of f , and find
the set of nodes still connected to s by a chain of unsatu-
rated edges. We refer to this as the source set S . When we
converge to a max flow, this is the set that is returned.

We determine the set of nodes around which to expand L in
the same way LocalImprove does after computing a local-
ized blocking flow (Orecchia & Zhu, 2014). The nodes to
expand on are exactly those whose edge to t was saturated
by the flow f . An edge (v, t) is saturated when the flow fvt
is equal to the available capacity from node v to t, so we
determine the new expansion set X as follows:

X ← {v ∈ VL : fvt = cvt for f }.

If X is non-empty, there exists at least one node x ∈ X

A Simple and Strongly-Local Flow-Based Method for Cut Improvement

Algorithm 1 3StageFlow
Input: graph G, parameters α, δ, seed set R
Initialize:
VL := {R,Neigh(R), s, t}
EL := {(s,R), (R,Neigh(R)), (Neigh(R), t)}
F := 0; X := ∅
while X , ∅ or F = 0 do

1. Expand W
for x ∈ X do

VL ← VL ∪ Neigh(x)
EL ← EL ∪ {(x, v) : v ∈ VL} ∪ {(y, t) : y ∈ Neigh(x)}

end for
2. Max Flow:
f ← MaxSTflow(L); F ← F + f
3. Update L
L← L f ; S ← source set
X ← nodes whose edge to t was saturated

end while

in the source set that has edges and neighboring nodes not
yet included in L. This implies more flow could be routed
from s to t through x. If X is empty, we will show in the
next section that the current flow F is optimal and we no
longer need to expand the local graph.

An outline for 3StageFlow is given in Algorithm 1.

4.2. Convergence of 3StageFlow

The following lemma is analogous to a result shown for the
LocalImprove algorithm (Orecchia & Zhu, 2014). We use
it to prove that 3StageFlow converges to a maximum s-t
flow of G′.

Lemma 2 If S is the set of nodes returned by 3StageFlow,
then

S ⊆ R ∪ Px,

where Px is the set of nodes we have previously expanded
on.

Proof The algorithm terminates when X = ∅ and F > 0. If
we assume S is not a subset of R ∪ Px, then there exists a
node x ∈ S such that x < R and x < Px. Because x ∈ R̄, this
node must share an edge in the local graph with t. Since
x ∈ S , there is a path of unsaturated edges connecting s
and x, so in order for f to be maximal the edge (x, t) must
be saturated. This is a contradiction, because X = ∅ implies
that edge (x, t) was not saturated on the most recent itera-
tion, and x < Px implies we did not previously expand on x,
meaning (x, t) was not saturated in any previous iteration.�

We can now prove the optimality of the set returned by
3StageFlow.

Theorem 2 When X = ∅ and F > 0, F is a maximum flow
of G′ and cut(S ∪ {s}) is the minimum s-t cut set of G′.

Proof We include the requirement F > 0 to indicate we
have not stopped before the first iteration. In the local
graph, the set of saturated edges between S and VL\S de-
fines an s-t cut with capacity equal to the total amount of
flow routed from s to t. The capacity of any s-t cut is an
upper bound for the amount of flow that can be routed from
source to sink, so we see that F and cut(S ∪{s}) are optimal
in L. By the above lemma, S ⊆ R ∪ Px. This implies that
all neighbors and edges of S in G′ are already included in
the local graph L. Therefore, the max-flow and min-cut of
the local graph is also an optimal flow and cut pair for the
entire graph G′. �

4.3. Strong-locality and Runtime Guarantee

The explored portion of G′ directly corresponds to a sub-
graph of G in the following way: if we consider the local
graph L and remove s and t and all edges incident to them,
we end up with a subgraph of G which we call the explored
subgraph and denote Gexp. This explored region is exactly
the subgraph of G that our method would need to extract
to create the small max-flow problems. Our algorithm not
only obtains a maximum s-t flow on the entire graph, but
we can show that it does so without exploring the entire
graph. This result substantially sharpens a related result
from Orecchia & Zhu (2014, Theorem 1a).

Theorem 3 Given a graph G, seed set R, and locality pa-
rameter δ > 0, the 3StageFlow procedure explores a sub-
graph of G satisfying the following bound:

vol(Gexp) ≤ vol(R)
(
1 +

2
ε

)
+ ∂R,

where ε = f (R) + δ.

Proof We first bound the expanded set Px. For any α, the
maximum flow of G′ is bounded above by α vol(R), the ca-
pacity of the edges leading out of s. If we expand on a node
v ∈ L, it means in the previous iteration the edge (v, t) ∈ EL

was saturated, implying that αεdv flow was routed to t. The
total amount of flow through these expanded nodes there-
fore must satisfy ∑

p∈Px
αεdp ≤ α vol(R),

which gives the bound

vol(Px) =
∑

p∈Px
dp ≤

vol(R)
ε
.

By the construction and update procedure of L, the vertex
set of Gexp is R ∪ Px ∪ Q, where Q = Neigh(R ∪ Px). This
subgraph includes all edges incident to nodes in R∪Px, but
contains no edges between nodes in Q, the nodes around
which L has not been expanded. Because of this, the vol-
ume of Q can be upper bounded by the volume of Px and
the cut of R as follows:

vol(Q) = | cut(Q, Px)| + | cut(Q,R)| ≤ vol(Px) + ∂R.

A Simple and Strongly-Local Flow-Based Method for Cut Improvement

This can be used to show the final result:
vol(Gexp) = vol(R) + vol(Px) + vol(Q)

≤ vol(R) + 2 vol(Px) + ∂R ≤ vol(R)(1 + 2
ε
) + ∂R.

�

This result implies the following—extremely crude—
strongly-local runtime guarantee. In the worst case, each
flow-problem takes O(vol(R)2/ε2) to solve using the algo-
rithm from Orlin (2013). We have at most one flow prob-
lem for each edge in the final local graph (if we grew
the local graph by one vertex at a time, we must get at
least one edge), giving an overall strongly-local bound of
O(vol(R)3/ε3). This is highly conservative and worse than
the bound on LocalImprove from Orecchia & Zhu (2014);
we expect real-world runtimes to be substantially faster.

4.4. Full Outline of SimpleLocal

Given a graph G with reference set R, SimpleLocal finds
a good conductance cut by repeatedly calling 3StageFlow
to find the smallest α such that the maximum s-t flow of
G′R(α, δ) is less than α vol(R).

Algorithm 2 SimpleLocal
Input: G, R, locality parameter δ ≥ 0
α := φ(R)
[F, S] := 3StageFlow(G′R(α, δ))
while f low(F) < α vol(R) do
α← φ(S); S ∗ ← S
[F, S] := 3StageFlow(G′R(α, δ))

end while
Return: S ∗

This procedure finds the set S ∗ that minimizes

φ̄R(S) = ∂S/(vol(R ∩ S) − ε vol(R̄ ∩ S)), (7)

which is related to the relative quotient score (3).

4.5. Cut Quality Guarantee

The following result is an extension of the theorem
from Andersen & Lang (2008), updated to include the ef-
fects of our parameter δ.

Theorem 4 Given an initial reference set R ⊂ V with
vol(R) ≤ vol(R̄), SimpleLocal returns a cut set S ∗ where

1. if C ⊆ R, then φ(S ∗) ≤ φ(C).

2. For all sets of nodes C such that for some γ > δ
vol(R∩C)

vol(C) ≥
vol(R)
vol(V) + γ vol(R̄)

vol(V) ,

we have φ(S ∗) ≤ 1
(γ−δ)φ(C).

(We include a full proof in the supplementary material.)

(a) δ = 1, φ = .47
volume explored 94
(bound gave 211)

(b) δ = .6, φ = .23
volume explored 116
(bound gave 284)

(c) δ = .3, φ = .09
volume explored 160
(bound gave 455)

(d) δ = 0, φ = .03
volume explored 522
(bound gave∞)

Figure 3. SimpleLocal results on a small graph for different δ val-
ues where δ controls the sparsity regularization and size of the
output. The reference set is given by the nodes circled in blue,
and the returned set S ∗ is shown in red.

5. Experiments
In this section we present experimental results for Simple-
Local on two graphs. We begin with an example on a small
collaboration network to illustrate the effect of the locality
parameter δ. We then turn our attention to graphs from MRI
scans to demonstrate SimpleLocal’s ability to solve prob-
lems on extremely large graphs. Our implementation of
SimpleLocal and 3StageFlow are in Matlab, using Gurobi
to solve the max-flow problems.

5.1. Netscience Example

Newman’s netscience graph is a collaboration network with
379 nodes and a total volume of 1828. The reference set we
use is a node and its immediate neighbors. We run Simple-
Local for decreasing values of δ from 1 to 0 (and implicitly,
decreasing amounts of regularization) to obtain cuts near R
of increasing size. These sets have increasingly better con-
ductance. Note that for δ = 0 we are computing the Improve
objective. We illustrate our results in Figure 3.

5.2. MRI Scans

To demonstrate the scalability of our algorithm, we con-
sider identifying a region in a 3d MRI scan. We obtained a
labeled MRI scan from the MICCAI-2012 challenge with
256×287×256 (≈ 18 million) voxels (Marcus et al., 2007).
We formed a weighted graph based on adjacent voxel sim-
ilarity (see supplement for details). The final graph con-
tained around 467 million edges and 18 million voxels.

A Simple and Strongly-Local Flow-Based Method for Cut Improvement

(a) The target ventricle (b) SimpleLocal result

(c) Refined SimpleLocal (d) A spectral result

Figure 4. Results from segmenting the left lateral ventricle in an
18 million voxel MRI scan on a graph with 467 million edges. The
true set is always show in blue. Our new flow algorithms track
the boundary closely but cannot find the bridge in the ventricle,
whereas a spectral method returns a substantially larger region.

Table 1. Statistics on the true left lateral ventricle and the sets re-
turned by the three methods SimpleLocal, a refinement step, and
spectral. The refined set gave the best conductance and highest
accuracy overall.

method size φ volume
explored

precision recall time
(sec.)

True 3965 0.129 – – – –

Sim.Loc. 2425 0.089 2463247 0.96 0.59 278.4
+Refined 2737 0.067 1845966 0.97 0.67 +97.5

Spectral 27918 0.094 5280988 0.14 0.99 9.6

The left lateral ventricle is a cavity in the interior of the
brain shown in Figure 4a. We use our SimpleLocalmethod,
a one-step 3StageFlow refinement procedure (typical of
what might be done in practice), and a spectral method to
identify this region from 75 randomly chosen seed vox-
els (Figures 4b-d). (See the supplement for the details
of the computations and parameter choices.) We present
the statistics of the four sets in Table 1. Overall, the flow
method accurately tracks the true boundary of the region,
although it is unable to complete an internal bridge within
the region. The refinement step fills in the region slightly
more. In comparison, the spectral method returns a much
larger set that contains the entire ventricle, but completely
misses the boundary. This mirrors the intuition from the in-
troduction and results on this same spectral method in com-
munity detection, where it often finds larger, but imprecise
communities (Kloster & Gleich, 2014).

Note that the bridge of the ventricle is unlikely to be found
by our method in this case. This happens because either
flow-based set identified has a conductance value that is
smaller (0.089 and 0.067) than the conductance of the en-
tire region (0.129). Attempting to improve the conductance

value will only shrink the identified region further (see the
supplement for a few of these smaller, better conductance
sets). Another curious aspect of SimpleLocal’s result set is
that it is disconnected. The larger of the two regions actu-
ally has a smaller conductance value itself, but the method
finds a disconnected set because of the disconnected seeds.
In terms of the runtime, the spectral method is faster than
our sequence of max-flow problems. We discuss engineer-
ing details that could improve runtime in the supplement.

6. Conclusions and Discussion
We have given a new, simple, strongly-local algorithm
for a commonly occurring problem that arises in semi-
supervised learning, community detection on graphs, and
image segmentation. This algorithm begins with a refer-
ence set that reflects a region of the graph known to be
important and seeks a better conductance set nearby. Our
method is heavily influenced by both the Improve and Lo-
calImprove methods. In comparison with Improve, our
method is strongly-local and practically scalable (given a
max-flow solver for the local graphs). In comparision with
LocalImprove, we have a significantly worse theoretical
runtime because we solve a sequence of maximum flow
problems compared with their use of blocking flows. How-
ever, our algorithm is simple to implement and can take
advantage of many well-engineered maximum flow codes,
such as Boykov and Kolmogorov’s method that enables ef-
ficient modified flows (Boykov & Kolmogorov, 2004). We
also identified the implicit source of locality in the Lo-
calImprove method (Theorem 1), which may enable even
faster methods in the future.

The new SimpleLocal implementation enabled us to run ex-
periments on a massive MRI scan with 467 million edges
that would not have been possible or desirable in a weakly-
local sense using traditional graph algorithms, because the
output should be a set of roughly 4000 vertices out of 18
million. Our work thus opens new possibilities in the use of
maximum flows for machine learning. In particular, using
a combination of spectral and flow methods will likely lead
to improved results on many problems due to their com-
plementary properties. Spectral methods can help quickly
identify expanded, crude regions that the flow-based meth-
ods could contract to sharpen the boundaries.

In future work, we plan to extend our contribution to ap-
proximate maximum-flow solutions. This would enable
us to take advantage of recent innovations that produce
approximate maximum-flows in nearly-linear time (Chris-
tiano et al., 2011; Lee et al., 2013; Sherman, 2013)—which
would likely lead to a better theoretical runtime as well.
Also, we wish to better understand the tradeoffs between
spectral and flow methods using this new strongly-local
computational primitive.

A Simple and Strongly-Local Flow-Based Method for Cut Improvement

Acknowledgments
We’d like to acknowledge and thank several funding agen-
cies for supporting our work. Gleich was supported by
NSF awards IIS-1546488, Center for Science of Infor-
mation STC, CCF-093937, CAREER CCF-1149756, and
DARPA SIMPLEX. Veldt was supported by NSF award
IIS-1546488. Mahoney would like to acknowledge the
Army Research Office, the Defense Advanced Research
Projects Agency, and the Department of Energy for pro-
viding partial support for this work.

References
Andersen, Reid and Lang, Kevin. An algorithm for im-

proving graph partitions. In Proceedings of the 19th
annual ACM-SIAM Symposium on Discrete Algorithms
(SODA2008), pp. 651–660, January 2008.

Andersen, Reid and Lang, Kevin J. Communities from seed
sets. In Proceedings of the 15th international conference
on the World Wide Web, pp. 223–232, 2006. doi: 10.
1145/1135777.1135814.

Andersen, Reid, Chung, Fan, and Lang, Kevin. Local graph
partitioning using PageRank vectors. In Proceedings
of the 47th Annual IEEE Symposium on Foundations of
Computer Science, 2006.

Blum, Avrim and Chawla, Shuchi. Learning from labeled
and unlabeled data using graph mincuts. In Proceedings
of the Eighteenth International Conference on Machine
Learning, ICML ’01, pp. 19–26, 2001.

Boykov, Yuri and Kolmogorov, Vladimir. An experimen-
tal comparison of min-cut/max-flow algorithms for en-
ergy minimization in vision. IEEE Trans. Pattern Anal.
Mach. Intell., 26(9):1124–1137, September 2004. doi:
10.1109/TPAMI.2004.60.

Brindle, Nick and Zhu, Xiaojin. p-voltages: Lapla-
cian regularization for semi-supervised learning on high-
dimensional data. Workshop on Mining and Learning
with Graphs (MLG2013), 2013.

Christiano, Paul, Kelner, Jonathan A., Madry, Aleksander,
Spielman, Daniel A., and Teng, Shang-Hua. Electri-
cal flows, laplacian systems, and faster approximation
of maximum flow in undirected graphs. In Proceed-
ings of the Forty-third Annual ACM Symposium on The-
ory of Computing, STOC ’11, pp. 273–282, 2011. doi:
10.1145/1993636.1993674.

Chung, Fan. Random walks and local cuts in graphs. Lin-
ear Algebra and its Applications, 423(1):22 – 32, 2007.
doi: 10.1016/j.laa.2006.07.018.

Dinitz, Yefim. Algorithm for solution of a problem of max-
imum flow in a network with power estimation. Doklady
Akademii nauk SSSR, 11:1277–1280, 1970.

Flake, Gary William, Lawrence, Steve, and Giles, C. Lee.
Efficient identification of web communities. In Proceed-
ings of the Sixth ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, KDD
’00, pp. 150–160, 2000. doi: 10.1145/347090.347121.

Fujiwara, Yasuhiro and Irie, Go. Efficient label propa-
gation. In Jebara, Tony and Xing, Eric P. (eds.), Pro-
ceedings of the 31st International Conference on Ma-
chine Learning (ICML-14), pp. 784–792. JMLR Work-
shop and Conference Proceedings, 2014.

Gallo, G., Grigoriadis, M., and Tarjan, R. A fast parametric
maximum flow algorithm and applications. SIAM Jour-
nal on Computing, 18(1):30–55, 1989. doi: 10.1137/

0218003.

Gleich, David F. and Mahoney, Michael M. Algorithmic
anti-differentiation: A case study with min-cuts, spec-
tral, and flow. In Proceedings of the International Con-
ference on Machine Learning (ICML), pp. 1018–1025,
2014.

Gleich, David F. and Mahoney, Michael W. Using local
spectral methods to robustify graph-based learning algo-
rithms. In Proceedings of the 21th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data
Mining, KDD ’15, pp. 359–368, 2015. doi: 10.1145/

2783258.2783376.

He, Zhengyu and Hong, Bo. Dynamically tuned push-
relabel algorithm for the maximum flow problem on cpu-
gpu-hybrid platforms. In Parallel Distributed Processing
(IPDPS), 2010 IEEE International Symposium on, pp.
1–10, April 2010. doi: 10.1109/IPDPS.2010.5470401.

Jeub, Lucas G. S., Balachandran, Prakash, Porter, Ma-
son A., Mucha, Peter J., and Mahoney, Michael W.
Think locally, act locally: Detection of small, medium-
sized, and large communities in large networks. Phys.
Rev. E, 91:012821, January 2015. doi: 10.1103/

PhysRevE.91.012821.

Joachims, Thorsten. Transductive learning via spectral
graph partitioning. In ICML, pp. 290–297, 2003.

Kloster, Kyle and Gleich, David F. Heat kernel based
community detection. In Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD ’14, pp. 1386–1395,
2014. doi: 10.1145/2623330.2623706.

A Simple and Strongly-Local Flow-Based Method for Cut Improvement

Kloumann, Isabel M. and Kleinberg, Jon M. Commu-
nity membership identification from small seed sets. In
Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
KDD ’14, pp. 1366–1375, 2014. doi: 10.1145/2623330.
2623621.

Lang, Kevin. Fixing two weaknesses of the spectral
method. In Weiss, Y., Schölkopf, B., and Platt, J. (eds.),
Advances in Neural Information Processing Systems 18
(NIPS2005), pp. 715–722, 2005.

Lang, Kevin and Rao, Satish. A flow-based method for
improving the expansion or conductance of graph cuts.
In Integer Programming and Combinatorial Optimiza-
tion, volume 3064 of Lecture Notes in Computer Sci-
ence, pp. 325–337. Springer Berlin Heidelberg, 2004.
doi: 10.1007/978-3-540-25960-2 25.

Lee, Yin Tat, Rao, Satish, and Srivastava, Nikhil. A new
approach to computing maximum flows using electrical
flows. In Proceedings of the Forty-fifth Annual ACM
Symposium on Theory of Computing, STOC ’13, pp.
755–764, 2013. doi: 10.1145/2488608.2488704.

Leskovec, Jure, Lang, Kevin J., Dasgupta, Anirban, and
Mahoney, Michael W. Community structure in large net-
works: Natural cluster sizes and the absence of large
well-defined clusters. Internet Mathematics, 6(1):29–
123, September 2009. doi: 10.1080/15427951.2009.
10129177.

Lu, Zhiwu and Peng, Yuxin. Image annotation by seman-
tic sparse recoding of visual content. In Proceedings of
the 20th ACM International Conference on Multimedia,
MM ’12, pp. 499–508, 2012. doi: 10.1145/2393347.
2393418.

Mahoney, Michael W., Orecchia, Lorenzo, and Vishnoi,
Nisheeth K. A local spectral method for graphs: With
applications to improving graph partitions and exploring
data graphs locally. Journal of Machine Learning Re-
search, 13:2339–2365, 2012.

Marcus, Daniel S., Wang, Tracy H., Parker, Jamie, Cser-
nansky, John G., Morris, John C., and Buckner, Randy L.
Open access series of imaging studies (oasis): Cross-
sectional mri data in young, middle aged, nondemented,
and demented older adults. J. Cognitive Neuroscience,
19(9):1498–1507, 2007. doi: 10.1162/jocn.2007.19.9.
1498. The MRI scans originated with the OASIS project
and labeled data was provided by Neuromorphometrics,
Inc. neuromorphometrics.com under an academic subscrip-
tion.

Narasimhan, M. and Bilmes, J. Local search for balanced
submodular clusterings. In Proceedings of the 20th In-

ternational Joint Conference on Artifical Intelligence, IJ-
CAI’07, pp. 981–986, San Francisco, CA, USA, 2007.
Morgan Kaufmann Publishers Inc.

Orecchia, Lorenzo and Zhu, Zeyuan Allen. Flow-based
algorithms for local graph clustering. In Proceedings of
the 25th ACM-SIAM Symposium on Discrete Algorithms,
SODA2014, pp. 1267–1286, 2014.

Orlin, James B. Max flows in o(nm) time, or better. In
Proceedings of the Forty-fifth Annual ACM Symposium
on Theory of Computing, STOC ’13, pp. 765–774, 2013.
doi: 10.1145/2488608.2488705.

Patkar, Sachin B. and Narayanan, H. Improving graph par-
titions using submodular functions. Discrete Applied
Mathematics, 131(2):535 – 553, 2003. doi: 10.1016/

S0166-218X(02)00472-9.

Sherman, Jonah. Nearly maximum flows in nearly linear
time. In Proceedings of the 2013 IEEE 54th Annual Sym-
posium on Foundations of Computer Science, FOCS ’13,
pp. 263–269, Washington, DC, USA, 2013. IEEE Com-
puter Society. doi: 10.1109/FOCS.2013.36.

Spielman, Daniel A. and Teng, Shang-Hua. A local clus-
tering algorithm for massive graphs and its application to
nearly linear time graph partitioning. SIAM Journal on
Computing, 42(1):1–26, 2013. doi: 10.1137/080744888.

Zhou, Dengyong, Bousquet, Olivier, Lal, Thomas Navin,
Weston, Jason, and Schölkopf, Bernhard. Learning with
local and global consistency. In NIPS, 2003.

Zhou, Xueyuan and Srebro, Nathan. Error analysis of lapla-
cian eigenmaps for semi-supervised learning. In Pro-
ceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics, volume 15, pp. 901–
908, 2011. JMLR W&CP.

Zhu, Xiaojin, Ghahramani, Zoubin, and Lafferty, John.
Semi-supervised learning using gaussian fields and har-
monic functions. In ICML, pp. 912–919, 2003.

Zhu, Zeyuan Allen, Lattanzi, Silvio, and Mirrokni, Vahab.
A local algorithm for finding well-connected clusters.
In Proceedings of the 30th International Conference on
Machine Learning, ICML2013, pp. 396–404, 2013.

