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Abstract
We study a simple embedding technique based on a matrix of personalized PageRank
vectors seeded on a random set of nodes. We show that the embedding produced by
the leading singular vectors of an element-wise logarithm of this matrix is related to
the spectral embedding of Laplacian eigenvectors for degree regular graphs. More-
over, this log-PageRank embedding procedure produces useful results for global graph
visualization even when the spectral embedding does not. Most importantly, the gen-
eral nature of this embedding strategy opens up many emerging applications, where
eigenvector and spectral techniques may not be well established, to the PageRank-
based relatives. For instance, similar techniques can be used on PageRank vectors
from hypergraphs to get “spectral-like” embeddings.

Keywords Graphs · Networks · Spectral embedding · Laplacian eigenvectors ·
Personalized PageRank · Low dimensional embeddings
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1 Introduction

The eigenvectors of the graph Laplacian are among the most widely used algorithmic
measures of a graph. They are used to find cuts and clusters in a variety of settings (Shi
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and Malik 2000; Chung 1992; Pothen et al. 1990). They give a signal basis for a
graph (Hammond et al. 2011; Donnat et al. 2018). And one of their original uses was
to draw informative pictures of graphs in a low dimensional space (Hall 1970; Koren
2003). These are all related to the idea of embedding the graph into a low dimensional
space and recent uses have closely studied this embedding framework.

Likewise, PageRank is itself a widely used algorithmic measure on a graph (Brin
and Page 1998). The uses are extremely diverse (Gleich 2015). Relationships between
PageRank and spectral clustering are also known (Andersen et al. 2006; Mahoney
et al. 2012; Gleich and Mahoney 2014). These exist because both techniques can be
related to random walks, and seeded PageRank is a localized type of random walk, or
random walk with restart (Tong et al. 2006).

In this manuscript, we study a particular type of relationship between a matrix
of seeded PageRank vectors and the eigenvectors of the Laplacian matrix. Our log-
PageRank embedding uses the singular vectors of the elementwise log of a random
collection of seeded PageRank vectors. An example is in Fig. 1, which shows that
log-PageRank embeddings resemble spectral embedding. Our manuscript establishes
that this relationship is expected for degree-regular graphs (Sect. 5), which builds on
a simpler characterization of log-PageRank values for the chain graph (Sect. 4).

Taking the log of PageRank values has long been a standard practice. When Google
published PageRank scores for websites, they were understood to represent an approx-
imation of the log ofGoogle’s internalmetrics (Bar-Yossef andMashiach 2008).When
PageRank was used in spam analysis, log scaling was used by Becchetti et al. (2008,
Section 6.4). So a log-scaled analysis is not surprising. More recently, log-PageRank
emerged as a topic in graph representation learning due to a relation between Skip-
Gram embeddings and log-PageRank values (Zhou et al. 2017) and further efforts
utilize singular value decompositions (Tsitsulin et al. 2021) as we do. We discuss
these relationships in more details in Sect. 8.

Analyzing the singular vectors of personalized PageRank vectors under log-scaling
presents interesting challenges from a technical perspective.We are able to study these
by leveraging recent tools in random matrix theory (Tropp 2012; Drineas and Ipsen
2019). The main result shows that for degree regular graphs, as α gets closer to 1,
the log-PageRank embeddings resemble the spectral embeddings for an appropriate
number of samples, which is much lesser than the number of nodes.

These log-PageRank embeddings offer a different set of computational tradeoffs
compared with eigenvectors. In Fig. 2 we present a network where embedding using
spectral techniques fails to give any significant information in a visualization but the
log-PageRank embeddings give a useful global picture of the graph. In Fig. 3, spectral
embeddings of the US road network show some structure, and the log-PageRank
embeddings show arguably greater structure. This serves as a motivation to deploy
this procedure where spectral embeddings fail and yet an explainable visualization
of the network is required. Our log-PageRank embeddings are furthermore easy to
specialize in new ways. Indeed, a closely related methodology to these log-PageRank
embeddings was previously used in Fountoulakis et al. (2020) to compare spectral
clustering with alternatives. For instance, it is easy to study a variety of localized log-
PageRank embeddings that are only seeded in a specific region of the graph. These
will pull in other nearby regions as suggested by the PageRank vectors instead of more
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Fig. 1 The embedding pictures have all the nodes coloredwith the same values to show relative position. The
log-PageRank embedding uses singular values of the element-wise logarithm of seeded PageRank vectors.
Our paper argues that the similarity between the embeddings shown in (b), (d) and (e) for the graph in (a) is
expected through an approximation analysis The result in (c) is an easier to compute variation. The advantage
the log-PageRank embeddings is that they can be deployed in many emerging data scenarios where spectral
embeddings and eigenvectors are not as well established or may be computationally expensive but where
analogues of random walks or PageRank may be possible, as in hypergraphs (see Fig. 12b)

Fig. 2 The spectral embedding of an artist similarity network in (a) is overly-localized as often happens in
real-world networks (Lang 2005) and results in a useless visualization. In comparison the log-PageRank
embeddings with α not too close to 1, as shown in (b) and (c), show the global structure of the graph
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Fig. 3 The US highway network has a useful spectral embedding in (a), but highly compresses important
regions on the east and west coast. The left filament contain all roads in California, Oregon, andWashington
and the right filament contains the entire northeast (New York, Boston, etc.), see Fountoulakis et al. (2020)
for a labeled picture. In comparison, the log-PageRank embeddings spread these regions out for α between
0.85 and 0.99 as shown in (b) and (c)

brittle Dirichlet eigenvector approximations (Chung et al. 2011). As an example of
this flexibility, we briefly explore using log-PageRank embeddings on hypergraphs to
visualize their structure (Sect. 7).

In summary, the contributions and remainder of this paper discuss:

• the log-PageRank embedding framework (Sect. 3)
• a study of log-PageRank values on a chain graph that shows how log-PageRank
values are related to graph distance (Sect. 4)

• an approximation analysis between log-PageRank embeddings and spectral
embedding on d-regular graphs (Sect. 5)

• a computational study of similarities and differences between spectral and log-
PageRank embeddings (Sect. 6)

• examples of log-PageRank embeddings in hypergraphs using hypergraph PageR-
ank (Liu et al. 2021) (Sect. 7).

2 Preliminaries

In this manuscript we consider a connected, weighted or unweighted, undirected graph
G = (V , E) and its various spectral properties. Many of the matrices we will use are
detailed in Table 1. We use subscripts to index entries of a matrix or a vector: let Ai

denote the i th column of matrix A, Ai j denote the (i, j)th entry of matrix A. All
norms of vectors and matrices without specific annotations are 2-norms.
PageRank The classical PageRank problem is defined as follows

Definition 1 (see for exampleGleich (2015)) Let P be a column-stochastic matrix and
v be a column-stochastic vector, then the PageRank problem is to find the solution x
to the linear system

(I − αP)x = (1 − α)v (1)

where the solution x is called the PageRank vector, α ∈ (0, 1) is the teleportation
parameter and v is the teleportation distribution vector.
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Table 1 Notations Notation Description

G = (V , E) Graph G with vertex set V and edge set E

n number of vertices

A Adjacency matrix

D Diagonal degree matrix

L Laplacian, D − A

W Lazy random walk matrix (1/2)(I + AD−1)

P Column stochastic transition matrix on G

π Solution to Pπ = π such that π is
non-negative and sums to 1

Ai : j Matrix made up of columns Ai , · · · , A j

e1, · · · , en Columns of the identity matrix, n standard
basis vectors of Rn

e All-ones vector

eu Indicator vector for node u

x(u, α) Solution to (I − αP)x = (1 − α)eu
log . Element-wise logarithm operator

By the definition above and the fact that all eigenvalues of a column-stochastic matrix
have magnitude at most 1, I − αP is non-singular and the PageRank vector can be
written as x = (1 − α)(I − αP)−1v. When the teleportation distribution v has sup-
port size 1, the PageRank problem is also called seeded PageRank or personalized
PageRank and the corresponding solution x is a seeded PageRank vector or a per-
sonalized PageRank vector. For convenience, let X(α) denote (1 − α)(I − αP)−1,
x(u, α) denote the personalized PageRank vector seeded on vertex u, in other words
x(u, α) = X(α)eu = (1 − α)(I − αP)−1eu .

3 Log-PageRank embedding

Our study of log-PageRank embeddings uses the procedure detailed in Algorithm 1. It
takes as input the graphG = (V , E) and outputs the k-dimensional node embeddings.
We randomly sample nodes of the graph, compute personalized PageRank vectors,
and then compute an elementwise log of the resulting vectors. Then we compute an
SVD of the entire set of sampled vectors. The non-dominant vectors give us our log-
PageRank embedding. Note that a personalized PageRank vector has mathematically
non-negative entries for a connected graph, so computing the log is always mathemat-
ically well defined. However, numerically, some of the elements may be sufficiently
close to zero to cause an algorithm to return a floating point zero. For this reason, we
often replace any zero entries with a value smaller than the smallest non-zero element
returned before taking the log. This only occurs for small values of α and tends not to
happen once α is close enough to one.

Note that our log-PageRank based technique offers freedom in the algorithm being
used for calculation of PageRank vector. For instance, in Sect. 7 we will use a hyper-
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Algorithm 1 Log-PageRank Embedding
Input: Graph adjacency matrix A, Dimension of embedding k, Number of samples s ≥ k + 1 (we

suggest s = (10 + k) log n), Teleportation parameter α

Output: Graph embedding Z ∈ R
n×k

1: for i = 1 → s do
2: u ← random sample of 1 to n
3: X i ← pagerank on A with seed u, teleportation param α

4: � We use a single sparse LU on I − αP to compute PageRank
5: end for
6: Y ← log .(X) � Apply element-wise log on X
7: U, �, V ← SVD of Y
8: Z ← U2:k+1
9: return Z � Return left singular vectors of Y

graph PageRank vector instead. Instead, it could also use seeded PageRank vectors
only from a region of interest within the graph.
Parameters. The parameters in this technique are the dimension of embedding, k, the
teleportation parameter, α, and the number of samples s. The dimension is entirely at
a user’s discretion. For the number of samples, we suggest scaling the log(n) term in
Theorem 1 with the dimension of embedding, in other words taking at least k log(n)

samples. For the teleportation parameter, we suggest use α ≥ 0.9, such as α = 0.99
or α = 0.999. Because we use many PageRank computations with large values of
α, we find it pragmatic to compute a single sparse LU decomposition of the matrix
I−αP to repeatedly solve systems.Apart from thePageRankcomputation, the runtime
depends on the SVD of the PageRank matrix, for which any type of randomized SVD
computation could be used to make it more efficient.
Intuition and analysis. The origin of this algorithm is from Fountoulakis et al. (2020),
where Gleich and co-authors used the linearity of PageRank and the relationship with
an expectation to study spectral-like embeddings of nonlinear operators using a similar
process.

The idea behind the algorithm is that the matrix of samples should have substantial
information from other eigenspaces beyond the dominant one and the SVDwill return
this information. Our study of this algorithm revealed that the log is essential to getting
qualitatively similar pictures such as those in Fig. 1. We show in Sect. 5 that as α

approaches 1, the log-PageRank embedding approximates the eigenvectors of the lazy
random walk matrix W . We illustrate a simple example that motivates a relationship
between log-PageRank values and a notion of distance.

4 Log-PageRank on the chain graph

The chain graph is an extremely simple graph. Imagine vertices laid out on a line
and connect each vertex to the two left and right vertices. At the ends of the line, the
vertices only have degree one. See Fig. 4a. We developed a closed form expression for
personalized PageRank on the chain graph and observed a linear dependence between
the element-wise log of PageRank and the graph distance.
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Fig. 4 The structure of Chain graph allows us to probe theoretically over the relation induced by the
logarithm operation on PageRank. Notice that in (c), although a small graph, log of PageRank develops
smoother embedding that are more similar to spectral embedding, as in (a), as compared to only PageRank
embeddings (b)

For a chain graph of size n > 2, the linear system defined in Eq. (1) forms a second
degree recurrence relation of the following form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α
2 (xi+1 + xi−1) = xi ,∀i ∈ [n] \ {u}
α
2 (xu+1 + xu−1) = xu − (1 − α)
∑n

i=1 xi = 1

x0 = 0, xn+1 = 0.

Solving the above gives the following closed form expression in terms of u, n, α.

xi =

⎧
⎪⎨

⎪⎩

c f (i), i ∈ {2, . . . , u − 1}
cα
2 ( f (u − 1) + g(u + 1)), i = u

cg(i), i ∈ {u + 1, . . . , n − 1}
(2)

where

f (i) = (+)i−1 + (−)i−1

(+)u−1 + (−)u−1 , g(i) = (+)n−i + (−)n−i

(+)n−u + (−)n−u
,

c =
√
1 − α

1 + α
, (+) = 1 + √

1 − α2

α
, (−) = 1 − √

1 − α2

α
.

Notice that when α is far from 1, (−) ≈ 0 for high powers, and when α is close to 1,
(+) ≈ (−). In both ways we get the same approximation that

xi ≈
{
c(+)−|i−u|, i ∈ [n] \ {u}
c α

(+)
, i = u

.
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Fig. 5 Distance effect created by log of PageRank in a geometric graph. The normalized adjacency matrix
power is (D−1/2AD−1/2)pv where v is the same as the PageRank seed. Note the stronger similarity of (b,
c). Also note the difference is at the boundary. The boundary is where we tend to see the biggest differences
between log-PageRank and spectral embeddings

Then the logarithm of PageRank expression for xi can be written as

log xi ≈ −|u − i | log((+)) + log(

√
1 − α

1 + α
).

The above formulation indicates a linear relation between the log-PageRank and
the distance from the seed node. This hints at log-PageRank being a good measure of
the structure of the network around the seed node.

We quickly verify that log-PageRank resembles the notion of “distance” in a geo-
metric graph. The graph is created by randomly sampling points and connecting every
point to its 6 nearest neighbors. The difference between PageRank and log-PageRank
in this context is illustrated in Fig. 5.

5 Relation between Log-PageRank embedding and spectral
embedding

In this section, we theoretically illustrate the relation between log-PageRank Embed-
ding and Spectral Embedding on a special class of graphs, d-regular graphs.

Recall that the lazy random walk is denoted by W = I+AD−1

2 . Our use of the lazy
walk matrix is due to the simplicity in analyzing powers of the matrix because it is
fundamentally aperiodic. A more intricate analysis would likely be able to remove the
aperiodicity.

Let the transition probability matrix P of PageRank be the matrix W , so that
we analyze the PageRank vectors (1 − α)(I − αW)−1eu . By a variety of existing
analyses (Serra-Capizzano 2005; Gleich 2009), we know that limα→1− x(u, α) =
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limα→1−(1 − α)(I − αW)−1eu = π . This extends to log by continuity. Thus,
limα→1− log .(x(u, α)) = log .(π).

We continue our study on d-regular graphs. Because for d-regular graphs, A shares
the same eigenvectors with W , instead of analyzing the eigenvectors of A as spectral
embedding does, we analyze the eigenvectors of W and connect them with log-
PageRank Embedding.

In the following discussion, we define

• N is the number of randomly sampled log-PageRank vectors,
• R as the matrix formed by log PageRank vectors that are the result of algorithm 1
before the SVD and scaled to have unit 2-norm columns,

• M = 1
N RRT , that is, a scaled Gram matrix of R,

• C = W kW kT and
• Ĉ = n

N W kSSTW kT where S is a column sampling matrix with N columns and
each column of S is a random unit basis vector ei .

Our theoretical proof can be broken down into three steps.

1. First we argue that Ĉ approximates C when the number of sampled columns are
not too small.

2. Second we show that M approximates Ĉ when α is close to 1 and k is reasonably
large.

3. Third we provide an upper bound on the angles between the subspace spanned by
k dominant left singular vectors of R and k dominant eigenvectors of W .

Note that Ĉ = n
N BBT where

B = [W kei1 W kei2 W kei3 . . . W keiN
]

and i1, . . . , iN are the indices of N randomly sampled columns. We first prove the
following result that characterizes the approximation error between C and Ĉ . This
proof is inspired by Constantine and Gleich (2014).

We note that the precise quantification of this bound should be used as guidance to
help understand the nature of the relationships among the quantities involved, rather
than a precise quantification.

Theorem 1 Let ε > 0, L ∈ (0, 1) and k = �(log( L
n3/2

)/ log(λ2)) where λ2 is the
second largest eigenvalue of W . Define the variance

ν2 =
∥
∥
∥
∥
∥

1

n

n∑

i=1

(
n(W kei )(W kei )T − C

)2
∥
∥
∥
∥
∥

,

assume ν2 > 0 and let

δ = max(
ν2

ε
, (1 + L)2),
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then using N samples where

N = �(
δ

ε
log(2n))

implies that ‖C − Ĉ‖ ≤ ε‖C‖ with high probability in the number of samples N.

Before proving this result, we first introduce a few useful lemmas. The first one is
to bound the magnitude of columns of W k . Note that as k → ∞, then W kei → e/n
so ‖W kei‖ → 1√

n
. This lemma more precisely quantifies this convergence.

Lemma 1 For any L ∈ (0, 1), k = �(log( L
n3/2

)/ log(λ2)), and ∀i ∈ [n], we have

‖W kei‖ ≤ (1 + L)
1√
n
,

where λ2 is the second largest eigenvalue of W .

Proof Consider the eigenvalue decomposition Q�QT of W , by Perron–Frobenius
theory (Perron 1907; Frobenius 1912), since G is connected and W models a walk
with self-loop, we have that 1 = λ1 > |λi |∀i > 1, and Q1 = e√

n
. We observe that

W kei = Q�k QT ei = Q1Qi1 +
n∑

j=2

λkj Q j Qi j .

Thus

‖W kei‖ ≤ ‖Q1Qi1‖ +
n∑

j=2

λkj‖Qi j Q j‖ ≤ 1√
n

+
n∑

j=2

λkj

≤ 1√
n

+ nλk2 ≤ (1 + L)
1√
n

where the last inequality follows from our choice of k. 
�
Notice that to bound 2-norm of C − Ĉ, we only need to bound λmax(C − Ĉ) and

λmax(Ĉ − C), we introduce a useful matrix concentration inequality.

Theorem 2 (Matrix Bernstein: bounded case, Theorem 6.1 of Tropp (2012))Consider
a finite sequence {X j } of independent, random, self-adjoint matrices with dimension
n. Assume that

E[X j ] = 0 and λmax(X j ) ≤ R almost surely.

Compute the norm of total variance,

σ 2:=
∥
∥
∥
∥
∥
∥

∑

j

E[X2
j ]
∥
∥
∥
∥
∥
∥
2

.
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Then the following inequality holds for all τ ≥ 0:

P

⎧
⎨

⎩
λmax

(∑

j

X j

)
≥ τ

⎫
⎬

⎭
≤
{
n exp(−3τ 2/(8σ 2)), τ ≤ σ 2/R,

n exp(−3τ/(8R)), τ > σ 2/R.

Using Theorem 2, we can prove the following lemma.

Lemma 2 Let ε > 0, and L ∈ (0, 1), k = �(log( L
n1.5

)/ log(λ2)), ν2 be the variance

defined in Theorem 1 and assume ν2 > 0, then we have

P

{
‖C − Ĉ‖2 ≥ ε‖C‖2

}
≤

⎧
⎪⎨

⎪⎩

2n exp

(

− 3Nλ21ε
2

8ν2

)

, if ε ≤ ν2/(1 + L)2,

2n exp
(
− 3Nλ1ε

8(1+L)2

)
, if ε > ν2/(1 + L)2,

where λ1, λ2 are 2 dominant eigenvalues of W and ‖C‖2 = λ1 = 1.

Proof ∀ j ∈ [N ], let Y j :=n(W kei j )(W
kei j )

T , then we have

Ĉ = n

N
BBT = 1

N

N∑

j=1

Y j ,

and for d-W = WT , therefore

E[Y j ] = n
n∑

l=1

P[i j = l]W keleTl (W k)T

= W k

(
n∑

l=1

eleTl

)

W kT

= W k IW kT

= W kW kT = C

Observe that

P

{
‖C − Ĉ‖ ≥ t

}
= P

{
λmax(C − Ĉ) ≥ t or λmax(Ĉ − C) ≥ t

}

≤ P

{
λmax(C − Ĉ) ≥ t

}
+ P

{
λmax(Ĉ − C) ≥ t

}

= P

{

λmax
(

N∑

i=1

(C − Y j )
) ≥ Nt

}

+ P

{

λmax
(

N∑

i=1

(Y j − C)
) ≥ Nt

}

.

(3)
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Note that both E[C − Y j ] = E[Y j − C] = 0. Since C and Y j are both positive
semi-definite, we have

λmax(C − Y j ) = max
v:‖v‖=1

vT (C − Y j )v ≤ λmax(C) = 1,

and by our choice of L, k and Lemma 1, we have

λmax(Y j − C) = max
v:‖v‖=1

vT (Y j − C)v ≤ max‖v‖=1
n(vTW kei j )

2

≤ max
v:‖v‖=1

n‖v‖2‖W kei j ‖2 ≤ (1 + L)2.

Thus the upper bound R in Theorem 2 is (1 + L)2. The variance parameter σ 2 is

σ 2 =
∥
∥
∥
∥
∥
∥

N∑

j=1

n∑

l=1

P[i j = l]
(
n(W kel)(W kel)T − C

)2

∥
∥
∥
∥
∥
∥

= N

∥
∥
∥
∥
∥

1

n

n∑

i=1

(
n(W kei )(W kei )T − C

)2
∥
∥
∥
∥
∥

= Nν2.

Now assume ε ≤ ν2

λ1(1+L)2
and let t = λ1ε = ε‖C‖2, we have Nt ≤ Nν2

(1+L)2
=

σ 2

R . Applying upper branch of Theorem 2 to Eq.3, we get the desired upper branch.

Similarly, when ε > ν2

λ1(1+L)2
and let t = λ1ε = ε‖C‖2, we have Nt > σ 2

R . By
applying lower branch of Theorem 2 to Eq.3, we get the desired lower branch. 
�

Now we are ready to prove Theorem 1.

Proof of Theorem 1 Assume ε ≤ ν2

(1+L)2
, and let β be a parameter that controls the

high probability result, then

N ≥ 8

3
(1 + β)(

ν2

ε2
log(2n))

implies

P

{
‖C − Ĉ‖ ≥ ε‖C‖

}
≤ 2n exp

(

−3Nε2

8ν2

)

≤ (2n)−β.

Otherwise if ε > ν2

(1+L)2
, then

N ≥ 8

3
(1 + β)(

(1 + L)2

ε
log(2n))
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also implies

P

{
‖C − Ĉ‖ ≥ ε‖C‖

}
≤ 2n exp

(

− 3Nε

8(1 + L)2

)

≤ (2n)−β.


�
Next we extend our error bound on ‖C − Ĉ‖ to an error bound on ‖M − C‖. To

achieve this, we show that M is actually a good approximation of Ĉ when α is close
to 1 and k is reasonably large. Formally, we define R as

[
log .(x(i1,α))

‖ log .(x(i1,α))‖
log .(x(i2,α))

‖ log .(x(i2,α))‖ . . .
log .(x(iN ,α))

‖ log .(x(iN ,α))‖
]
,

and let M be 1
N RRT .

As limα→1− log .(x(u, α)) = log .(π) = log .( en ) for d-regular graphs, we assume
that

‖ log .(x(u, α))

‖ log .(x(u, α))‖ − e√
n
‖ ≤ γα, u ∈ V

where

lim
α→1− γα = 0.

With these quantities defined, we have the following theorem.

Theorem 3 Let τ ∈ (0, 1), L ≤ τ
6 , we choose α close to 1 such that γα ≤ τ

6 and pick
k according to Theorem 1, then we have

‖M − Ĉ‖ ≤ τ.

To prove it, we first prove the following lemma.

Lemma 3 For L, k defined as in Theorem 1, let y j = √
nW kei j and z j =

log .(x(i j ,α))

‖ log .(x(i j ,α))‖ , we have

‖ y j yTj − z j zTj ‖ ≤ 2(L + γα) + L2 + γ 2
α .

Proof Let ε y = y j − e√
n
and ε z = z j − e√

n
, by Lemma 1 and our assumption above,

we have

‖ε y‖ ≤ L, ‖ε z‖ ≤ γα.

By definition of matrix 2-norm, we know that

‖ y j yTj − z j zTj ‖

123



D. Shur et al.

= max
v:‖v‖=1

‖vT
(
y j y

T
j − z j zTj

)
v‖

= max
v:‖v‖=1

‖vT
(

(
e√
n

+ ε y)(
e√
n

+ ε y)
T − (

e√
n

+ ε z)(
e√
n

+ ε z)
T
)

v‖
≤ max

v:‖v‖=1
(‖v‖‖ε y‖)2 + 2‖v‖(‖v‖‖ε y‖) + (‖v‖‖ε z‖)2 + 2‖v‖(‖v‖‖ε z‖)

≤ 2(L + γα) + L2 + γ 2
α .


�

Now we apply it to prove Theorem 3.

Proof of Theorem 3 For ∀ j ∈ [N ], define y j , z j according to Lemma 3, and let Y j =
n yTj y j , Z j = z j zTj , then we have

M − Ĉ = 1

N

⎛

⎝
N∑

j=1

Z j −
N∑

j=1

Y j

⎞

⎠ .

Thus by Lemma 3, we have

‖M − Ĉ‖ ≤ 1

N

N∑

i=1

‖ y j yTj − z j zTj ‖

≤ 2(L + γα) + L2 + γ 2
α

≤ τ.


�

Theorems 1 and 3 empower us to show the following result with regard to the
relation between dominant singular vectors of R and eigenvectors of W .

Theorem 4 Let ε > 0, τ ∈ (0, 1) and choose L, k, N , α according to Theorems 1 and
3, then we have

‖M − C‖ ≤ τ + ε,

and denote byU l ∈ R
n×l the l dominant eigenvectors of C , Û l ∈ R

n×l the l dominant
eigenvectors of M, we have

λl(C)‖ sin�(U l , Û l)‖ ≤ ‖(I − U lUT
l )C‖ + 2(τ + ε).

Before proving Theorem 4, we introduce two useful theorems from Drineas and
Ipsen (2019).
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Theorem 5 (Corollary 2 of Drineas and Ipsen (2019)) Let Uk ∈ R
n×k be k dominant

left singular vectors of A; and let Ûk ∈ R
m×k be k dominant left singular vectors of

A + E. Then

‖(I − UkUT
k )A‖2 ≤ ‖(I − ÛkÛk)A‖2 ≤ ‖(I − UkUT

k )A‖2 + 2‖E‖2.

Theorem 6 (Theorem 6 of Drineas and Ipsen (2019)) Let Pk ≡ Ak A
†
k be the orthog-

onal projector (P2 = P = PT ) onto the dominant k-dimensional subspace of A; and
let P ∈ Rm×m with k ≤ rank(P) < m − k. Then

σk(A)|||sin�(P, Pk)|||p ≤ |||(I − P)A|||p ≤ ‖A‖2|||sin�(P, Pk)|||p + |||A − Ak |||p,

where |||·||| denotes Schatten p-norms.

Now we can prove Theorem 4 using these two theorems.

Proof of Theorem 4 By our choice of L, k, N , α, we have

‖M − C‖ ≤ ‖M − Ĉ‖ + ‖C − Ĉ‖ ≤ τ + ε.

Further by Theorem 5, we know

‖(I − Û l Û
T
l )C‖ ≤ ‖(I − U lUT

l )C‖ + 2‖M − C‖
≤ ‖(I − U lUT

l )C‖ + 2(τ + ε).

Thus using Theorem 6, we get

λl(C)‖ sin�(U l , Û l)‖ ≤ ‖(I − Û l Û
T
l )C‖

≤ ‖(I − U lUT
l )C‖ + 2(τ + ε).


�
Because C is the Gram matrix of W and M is the scaled Gram matrix of R, we
know that the eigenvectors of M correspond to the left singular vectors of R and the
eigenvectors of C correspond to the eigenvectors of W . So the theorem above also
characterizes the angles between the subspaces spanned by the dominant left singular
vectors of R and the dominant eigenvectors of W .

6 Empirical comparison results

We study the log-PageRank embedding on synthetic and real world graphs. We focus
on those where the spectral embedding gives a good picture of the graph, as spectral
embeddingsmay fail to give useful pictures formany real-world networks (Lang 2005)
and Fig. 2. We use the following four classes of graphs.
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Fig. 6 Our geometric graphs

Nearest Neighbor Graphs
For a graph named n-k nearest neighbor, there are n points randomly distributed in

the unit square and connected to k nearest neighbors.
Chain Graphs

These are simply the chain graphs we have from the analysis in Sect. 4.
Graphs with Strong Geometry

These are the graphs from Fig. 6.
Stochastic Block Models

Agraph named sbm(n, k, p, q) has k groups of n vertices with in-block edge proba-
bility, p, and out-block edge probability, q. These show theworst approximation results
for one metric and largest differences. This is due to a nearly multiple dimensional
eigenspace.

6.1 Implementation

We implement Algorithm 1 for log-PageRank embedding in Julia. The built in sparse
LU solver was used to factorize the PageRank matrix I − αP to solve linear systems
for large values of α and the built in dense SVD solver for the embeddings. There
are many alternatives one could use here, but our focus was on understanding the
log-PageRank embeddings rather than optimizing the speed at which those can be
computed. We did not work to optimize computational runtime as it was not limiting
our experiments. Ideas related to streaming SVDcomputation (Constantine andGleich
2011; Tsitsulin et al. 2021) may be used if SVD computation is problematic. Any of
the extensive literature on fast PageRank computation may also be used if PageRank
becomes a bottleneck.

6.2 Qualitative approximation

Given a spectral embedding and a log-PageRank embedding, we first simply look at
the differences in the pictures. Our results say these should look similar, not that they
should be exactly the same as the graphs we study are not in the class where we expect
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sharp approximations. Let the second singular vector of the log-PageRank embedding
be u2, and the second eigenvector of the Laplacian be z2. Likewise for the 3rd vectors.
So the spectral embedding is z2, z3 and the log-PageRank embedding is u2, u3.

The first way we evaluate the embeddings is by looking at the joint plot of u2 vs. z2
and u3 vs. z3. If the embeddings are close, these should look like a straight line, or at
least a very highly correlated relationships.

Figures 7 and 8 show the embeddings asα varies bothwith andwithout the nonlinear
log operation for the graphs in Fig. 6b, c. The result on the “log PR” graph from Fig. 6a
is in the introduction.

On nearest neighbor graphs, such as Fig. 9, these embeddings showa clear rotational
ambiguity that might arise with other evaluations of this strategy. (This occured with
the other graphs too.) Put plainly, the eigenvectors are almost in 2d invariant subspace.
Consequently, when we randomize the method, we can only capture this near 2d
subspace up to rotation. However, this will not show high error with respect to the
approximation error measure as the results are all near eigenvectors.

We show one of the examples of the stochastic block model in Fig. 10. Although
this has bad approximation with respect to the spectral embedding, the result for the
log-PageRank embedding forα = 0.99 is arguably better than the spectral embedding.

6.3 Quantitative error and approximation

We quantitatively measure the error in three ways.

Rayleigh quotient
The first way is by evaluating the relative difference between the Rayleigh quotient
with respect to the first dimension used for embedding, i.e., the second singular vectors
of the log-PageRank matrix u2 and the 2nd smallest eigenvector of the Laplacian z2.
Let

s2 = zT2 Lz2
zT2 z2

, p2 = uT2 Lu2
uT2 u2

then we have the following measure:

R2 =
∣
∣
∣
∣
s2 − p2

s2

∣
∣
∣
∣ . (4)

Multiple Rayleigh quotients
We also evaluate with the information from the 3rd singular vector according to our
error measure. Let

s23 = zT2 Lz2
zT2 z2

+ zT3 Lz3
zT3 z3

, p23 = uT2 Lu2
uT2 u2

+ uT3 Lu3
uT3 u3

.
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Table 2 Error between PageRank embedding and spectral embedding for different graphs at a low telepor-
tation probability, α = 0.99 and at a higher one α = 0.9999 both without log (raw) and with log using only
the second vector as in (4) (lower is better)

Graph α = 0.99 α = 0.9999

Raw (%) Log (%) Raw (%) Log (%)

30-6 nearest neighbour 3.18 2.02 2.45 4.05

3000-6 nearest neighbour 47.6 0.37 5.28 2.57

10000-6 nearest neighbour 169.75 2.13 14.96 1.55

30 chain 16.65 0.51 25.88 4.57

3000 chain 5556.36 2.17 57.75 2.36

Minnesota n = 2640 16.34 1.93 11.35 0.84

Tapir n = 1024 10.17 1.13 15.3 0.73

LogPR n = 5000 19.95 0.15 4.76 0.34

sbm(50,60,0.001,0.005) 53.99 19.87 53.57 68.55

sbm(1000,3,0.001,0.005) 56.07 20.11 55.47 92.03

sbm(50,60,0.25,0.005) 93.02 29.69 92.59 100.48

sbm(1000,3,0.25,0.001) 453.32 5.51 140.23 105.33

then we look at the difference

R23 =
∣
∣
∣
∣
s23 − p23

s23

∣
∣
∣
∣ . (5)

Subspace error
Finally,we evaluate the difference between subspaces.A relatedmeasurewas also used
in Tsitsulin et al. (2021). Let U = [

u2 u3
]
be the subspace from the log-PageRank

embedding and Z = [z2 z3
]
be the subspace the spectral embedding. Then the distance

(or gap) between U and Z is

C = dist(range(U), range(Z)) = ‖UUT − ZZT ‖2. (6)

See Stewart (1973) for this error measure.
Results
The above three errormeasures are evaluated inTables 2 (for R2), 3 (for R23), and 4 (for
C). In virtually all of the experiments, the log-PageRank embedding has a strikingly
lower error measure than the same embedding without the log. When this is not the
case, such as on the SBM graphs with a planted partition, the problems are known to
have nearly duplicate eigenvectors.

6.4 Embedding error variance

We study the dependence of this error on the number of randomly sampled nodes and
location of sampled nodes in the graph. We record this for log-PageRank at α = 0.99
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Table 3 Error between PageRank embedding and spectral embedding for different graphs at a low telepor-
tation probability, α = 0.99 and at a higher one α = 0.9999 both without log (raw) and with log using both
the second and third vector as in (5) (lower is better)

Graph α = 0.99 α = 0.9999

Raw (%) Log (%) Raw (%) Log (%)

30-6 nearest neighbour 15.7 0.07 13.46 11.72

3000-6 nearest neighbour 50.67 1.01 9.8 4.86

10000-6 nearest neighbour 148.48 0.03 10.65 0.41

30 chain 6.31 11.46 12.54 2.74

3000 chain 5648.6 1.22 53.53 7.24

Minnesota n = 2640 7.38 0.26 6.9 0.39

Tapir n = 1024 6.9 1.37 10.41 0.82

LogPR n = 5000 22.07 0.19 4.37 0.12

sbm(50,60,0.001,0.005) 56.69 19.64 56.29 67.78

sbm(1000,3,0.001,0.005) 62.45 19.04 61.85 90

sbm(50,60,0.25,0.005) 93.42 31.81 93.01 99.05

sbm(1000,3,0.25,0.001) 594.21 7.31 189.95 140.44

Table 4 Error between PageRank embedding and spectral embedding for different graphs at a low telepor-
tation probability, α = 0.99 and at a higher one α = 0.9999 both without log (raw) and with log using
column covariance error definition as in (6) (lower is better)

Graph α = 0.99 α = 0.9999

Raw (%) Log (%) Raw (%) Log (%)

30-6 nearest neighbour 49.8 20.7 43.9 23.1

3000-6 nearest neighbour 145.66 17.55 38.68 12.5

10000-6 nearest neighbour 187.16 20.51 43.56 18.11

30 chain 57.71 30.2 43.03 26.9

3000 chain 196.41 26.4 161.4 21.27

Minnesota n = 2640 179.9 75.5 74.81 58.23

Tapir n = 1024 87.2 30.12 74.12 9.41

LogPR n = 5000 105.8 23.3 45.84 9.58

sbm(50,60,0.001,0.005) 199.6 198.8 199.64 199.68

sbm(1000,3,0.001,0.005) 199.5 198.4 199.4826 199.4829

sbm(50,60,0.25,0.005) 198.43 188.33 198.37 199.9

sbm(1000,3,0.25,0.001) 21.6 2.3 14.4 8.25

in Fig. 11. This shows the distribution of errors as a density estimate, along with the
max/min values (small) and the median value (big).
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Fig. 7 Comparison of embeddings for the Minnesota network

Fig. 8 Comparison of embeddings for the Tapir graph

As expected, there are largely minimal effects. This occurs because the sensitivity
of PageRank to the seed vector, v, is a function of α (Langville and Meyer 2006).

dx
dv

= (1 − α)(I − αP)−1

which satisfies ‖ dx
dv

‖1 = 1. Further, for α → 1, dependence of the PageRank values on
v reduces. Our experiments confirm the same as theminimum,maximum and variance
of error over 50 trials show negligible change.

7 Hypergraph embeddings

One driving reason for our study of the log-PageRank embedding is to support similar
embedding strategies for different types of data, such as those studied in Fountoulakis
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Fig. 9 Embedding for 10000 node graph with 6 nearest neighbours. Note that log-PageRank and spectral
embeddings are fairly similar after a rotation. This is expected because the corresponding eigenvalues are
close in magnitude

Fig. 10 Comparison of the embedding techniques on the planted partition model with good conductance
cuts. The model here is (60 blocks of 50 nodes each with in block edge probability of 0.25 and out-block
edge probability of 0.001). This is one case where the technique does not seem to work. This is likely due
to the highly degenerate eigenspace created by the stochastic block models

et al. (2020). In this section, we use the log-PageRank embedding technique on
five hypergraphs: Yelp (https://www.yelp.com/dataset), Walmart Trips (Amburg et al.
2020), a contact tracing network (Benson et al. 2018; Stehlé et al. 2011), posts onMath
Overflow (Veldt et al. 2020a), and a Drug Abuse network (DAWN) (Amburg et al.
2020). The only modification to Algorithm 1 is that we replace seeded PageRank with
the Local Quadratic PageRank, a method proposed in Liu et al. (2021). Specifically we
use the LQHDmethod with a 2-norm penalty with ρ = 0.5 for all experiments. For the
Yelp andWalmart trips network, we set κ = 0.000025 and γ = 1.0 while for theMath
Overflow network, with the same sparsity factor κ = 0.000025, we set γ = 0.001.
For Contact Primary School and DAWN, we set κ = 0.0025 and γ = 0.001. These
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Fig. 11 Error variation with column for log of PageRank with α = 0.99. The percentage indicated in the
column headings are the fraction of the nodes as seeds. Each entry is the variance, the maximum and the
minimum for 50 trials

choices were made arbitrarily, there are small differences that result when changing
them.

Figure 12a shows our 2d embedding on Contact Primary School dataset where each
node represents a student or a teacher, each hyperedge represents a group of people
who are spatially close at a given time. Each node of the graph is colored as a teacher
or as classroom for the student. Note that each classroom forms a cohesive group in
the plot. Moreover, we observe that the students from the same grade, e.g. students
colored red (1B) and dark green (1A), share some spatial proximity, which is due to
the fact that their classrooms are close. One notable observation is that teachers do
form a group in the embedding, who are mostly separated from the students.

Figure 12b shows our embedding on Yelp Review data. Following Veldt et al.
(2020b), we build one hypergraph with each restaurant being a node and each user
being a hyperedge.We show the state associatedwith each location as the color.We can
clearly see that our embedding captures the geographic information of the underlying
hypergraph. For example, the nodes labeled dark blue are those restaurants from state
Indiana, which are close to the orange nodes from state Tennessee. Further, the green
nodes fromstate Florida are quitewell-separated fromnodeswith other colors,which is
due to the fact that none of other 13 states (Pennsylvania, Tennessee,Missouri, Indiana,
Alabama, Nevada, Illinois, Arizona, Louisiana, New Jersey, California, Delaware,
Idaho) we plot is close to Florida.

In addition, we show log-PageRank embeddings of three other hypergraphs in
Fig. 13a–c. We are unable to identify obvious relationships between these embeddings
and the existing groups, which means the embeddings likely show a different type of
structure. Notably, the obvious product category partitions of theWalmart data are not
reflected in the layout structure. The promising results on all the datasets above show
that our simple algorithm is capable of generating good embeddings even on higher
order graphs.
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Fig. 12 Log-PageRank embedding of hypergraphs. The Contact Primary School dataset has 242 nodes and
12704 hyperedges. Nodes are colored by classroom and teachers, which form cohesive groups due to the
contact structure. The Yelp Restaurant dataset has 52260 nodes and 597261 hyperedges. Nodes are colored
by one of 14 states used for analysis, which show clear geographic relationships

Fig. 13 Log-PageRank embeddings of the (a) DAWN dataset (Amburg et al. 2020) with 2109 nodes
(drugs) and 87104 hyperedges where each hyperedge is an individual and the consisting nodes are the
drugs consumed by them; the plot shows 3 out 10 labels (b) the Walmart dataset (Amburg et al. 2020) with
88860 nodes and 69906 hyperedges where each node is a product and each hyperedge consists of products
purchased in one trip to Walmart and (c) the Math Overflow (Veldt et al. 2020a) dataset with 73851 nodes,
5446 hyperedges, where each hyperedge shows the multiple labels associated with a question; Although
there is structure evident in the plots, it does not strongly correlate with the known labels on the data (some
of the plotting makes the structure look more present than it is)
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8 Related research to log PageRank

The idea of using the log of a PageRank vector originated in Google’s initial use of
these for their PageRank scores and their use in spam ranking as discussed in the
introduction. Since then, the elementwise log of PageRank values emerged in other
scenarios as well. The most recent is its use in graph embeddings. A key task in
graph embeddings is to sample a set of related nodes and then fit a lower dimensional
embedding vector for each node where related nodes are close and nodes that were
not sampled as related are far. These ideas build on word embeddings techniques such
as SkipGram models (Grover and Leskovec 2016; Tang et al. 2015a, b; Perozzi et al.
2014). One technique to sample related entries is to use a seeded PageRank random
walk (Zhou et al. 2017). When this is combined with SkipGram objective, an analysis
of the objective shows that it asymptotically approximates the elementwise log of
the seeded PageRank matrix. This fits into a broader research program to understand
asymptotics of these sampling and fitting ideas (Levy and Goldberg 2014; Qiu et al.
2018; Chanpuriya and Musco 2020).

More directly relevant to our work, the research team behind the FREDE method
(Tsitsulin et al. 2021) proposed to quickly compute an approximate embedding by
randomly sampling PageRank vectors and using the SVD of the elementwise log
of these vectors as the embedding. This is related to another method by Yin and
Wei (2019). The FREDE procedure is exactly what we do, except the goal is a large
dimensional embedding thatmight be used for graph learning tasks instead of the small
dimensional embedding that we use here. In the context of Tsitsulin et al. (2021), our
work establishes a new relationship between their methods and spectral clustering in
the large α limit. Followup research seeks to accelerate these methods using sparse
seeded PageRank and hashing (Postavaru et al. 2021).

Beyond the specific use of log PageRank, PageRank or diffusion based techniques
have previously been used for learning graph embedding (or clustering) (Donnat et al.
2018; Klicpera et al. 2019; Yang et al. 2020; Takai et al. 2020; Liu et al. 2021; Carletti
et al. 2020) where the personalized PageRank vector based on a set of nodes, called
the seed set is used to focus regions and avoid unrolling neural networks over the
entire graph.

9 Conclusion and future research

Thekeyfinding of this paper is that the elementwise log of amatrix of seededPageRank
vector approximates the spectral embedding of the Laplacian in degree regular graphs
(Sect. 5). Themethodology easily transfers to new scenarios such as hypergraphs given
a PageRank-like primitive. This greatly simplifies the scenario compared with non-
linear spectral methods on hypergraphs (Tudisco et al. 2021a, b; Tudisco and Higham
2021; Nguyen et al. 2017).

We believe our framework offers a successful technique for structural embedding
and opens up some nontrivial research problems. Our code to compute the embed-
dings for these examples is available: https://github.com/dishashur/log-pagerank. We
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believe this work lays the foundation for a reliable structural representation and the
generalizability of this technique offers ample ground for new results.

The idea of customizing embeddings is highly relevant to the ongoing use of graph
embeddings for ML algorithms. Customized embeddings quickly emerge from our
framework by customizing the PageRank vectors – either by more sparsity or by
customizing their seeding behavior.

Looking towards unsolved problems, the result on PageRank here seems a special
case of a more general result about graph diffusions that scale the eigenvectors of the
Laplacian. The heat kernel (Chung 2007) is another method, as well as a more gen-
eral setting of arbitrary diffusion functions or polynomials (Kloster 2016) or learned
diffusions (Jiang et al. 2017). Consequently, one future research direction includes
studying the requirements on a diffusion function in order to guarantee this asymp-
totic limit. Another direction is to weaken the requirements on degree-regular graphs
in the theory.
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