
Rigid Graph Alignment

Vikram Ravindra(B), Huda Nassar, David F. Gleich, and Ananth Grama

Purdue University, West Lafayette, USA
ravindrv@purdue.edu

Abstract. An increasingly important class of networks is derived from
physical systems that have a spatial basis. Specifically, nodes in the net-
work have spatial coordinates associated with them, and conserved edges
in two networks being aligned have correlated distance measures. An
example of such a network is the human brain connectome – a network
of co-activity of different regions of the brain, as observed in a func-
tional MRI (fMRI). Here, the problem of identifying conserved patterns
corresponds to the alignment of connectomes. In this context, one may
structurally align the brains through co-registration to a common coor-
dinate system. Alternately, one may align the networks, ignoring the
structural basis of co-activity. In this paper, we formulate a novel prob-
lem – rigid graph alignment, which simultaneously aligns the network, as
well as the underlying structure. We formally specify the problem and
present a method based on expectation maximization, which alternately
aligns the network and the structure via rigid body transformations. We
demonstrate that our method significantly improves the quality of net-
work alignment in synthetic graphs. We also apply rigid graph alignment
to functional brain networks derived from 20 subjects drawn from the
Human Connectome Project (HCP), and show over a two-fold increase
in quality of alignment. Our results are broadly applicable to other appli-
cations and abstracted networks that can be embedded in metric spaces
– e.g., through spectral embeddings.
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1 Introduction and Motivation

Graphs are commonly used to represent variety of complex systems such as finan-
cial transactions, social and communication networks, chemical reaction path-
ways, and biomolecular interactions. In an important subclass of such systems,
the relative positions of nodes are fixed. While the network, or parts thereof, can
be transformed from their preferred (relaxed) positions, their “potential energy”
increases in the process, motivating the nodes to return to their relaxed state,
i.e., the layout with the minimum energy. A natural way to think about such
graphs is to visualize the edges as springs of different lengths. We refer to such
graphs as rigid graphs.
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In this paper, we focus on the problem of aligning a pair of given rigid graphs.
Informally stated, the goal is to find node/edge correspondences across a pair of
rigid graphs; e.g., across two given biomolecules or two brain connectomes. Tra-
ditional approaches to related problems use either structural embeddings that
consider edge lengths (i.e., identifying structural transformations – translation,
rotation, dilation, that maximize overlap of graphs) or connectivity (i.e., identi-
fying node label permutations that maximize overlap in adjacency matrices) to
find correspondences between the two graphs, but not both. However, in the case
of rigid graphs, both of these sources of information are rich and complementary.
We demonstrate that integrating these two sources into a single framework leads
to markedly better correspondences. We formulate the problem of rigid graph
alignment, and propose a solution technique for this problem in which the rigid-
ity of nodes as well as their connectivity are used to infer significantly better
alignments that either structural or topological alignment alone.

We motivate rigid graph alignment in two distinct application contexts. The
first one uses a growing and important database of 3D brain images from the
Human Connectome Project. One of the major goals of functional brain studies
is to understand spontaneous firings of neurons in absence of any stimulus – the
“resting-state” activity. Resting functional state Magnetic Resonance Image (rs-
fMRI) is useful in creation of a rough baseline network. A more interesting reason
to study these images is that they record cognitive processes of individuals in
absence of any activity. It is hypothesized that some of these cognitive processes
are unique to individuals [11]. Thus, in principle, it must be possible to uniquely
identify an individual from a population, using just their resting state functional
brain image. This can be done by aligning the images structurally (through reg-
istration), topologically (through network alignment) or, as we demonstrate in
this paper, using both structural and topological information, yielding superior
results. We further motivate rigid graph alignment in the context of aligning large
biomolecules drawn from existing databases of known drug molecules [3]. This
problem is of significance, since it underlies biomolecular interactions, identifica-
tion of drug targets, and design of drug molecules. Specifically, binding pockets
in molecules correspond to local atomic structures (active sites) – two molecules
that share active sites are likely to bind with the same ligand. This process of
matching active sites can be formulated as a rigid graph alignment problem. This
is an active area of research, with commonly used methods relying on traditional
graph or structural alignment, bootstrapped using techniques such as geometric
hashing. These methods do not utilize constraints imposed by the bond lengths
and bond angles into the graph alignment process, or the global structure of
the molecules. Our novel formulation of rigid graph alignment factors the bond
structure through rigid graph alignment, while simultaneously accounting for
bond characteristics, using rigid body transformations.



Rigid Graph Alignment 623

2 Problem Formulation

2.1 Problem Definition

We define the rigid graph alignment problem by first reviewing existing graph
and structure alignment formulations, and use these to motivate our new prob-
lem.

Network Alignment Review. The literature on network alignment is vast – pre-
cluding a comprehensive review. As a representative of a broad class of tech-
niques, we discuss the quadratic programming formulation of a network align-
ment objective [1]. Let A = G(VA, EA) and B = G(VB , EB) be two undirected
graphs that we aim to align. For simplicity, we set |VA| = |VB | = n. Let L ∈ R

n×n

be a matrix that denotes prior knowledge on likelihood of alignment (or known
similarity) between vertices VA and VB. If Lij > 0, prior knowledge implies that
node i in VA potentially aligns with node j in VB , otherwise, node i in VA cannot
align with node j in VB . The aim of the alignment problem is to find a matching
M from VA to VB using only weights of L and adjacency information. We define
X to be a matrix with the same dimensions as L to encode matching M:

Xij =

{
1 if i ∈ VA is matched with j ∈ VB under M
0 otherwise

Under such a mapping, we say that an edge (u, v) ∈ EA overlaps with an edge
(u′, v′) ∈ EB if (u, u′) and (v, v′) are in M.

The goal in this graph alignment formulation is to find a matching M that
maximizes a linear combination of overlap and matching weight. Note that, if X
is constrained by a set of matching constraints,

∀i ∈ [|VA|], ∑
j Xij ≤ 1, ∀j ∈ [|VB |], ∑

i Xij ≤ 1, (1)

then
A • XBXT =

∑
ij Aij(XBXT )ij = overlap of matching M (2)

where we use the adjacency matrices A and B for the graphs and • to represent
a matrix inner product. The corresponding quadratic program is given by:

max
X

αL • X + βA • XBXT

s.t.
∑

i Xij ≤ 1 ∀j = 1 . . . |VB |,∑
j Xij ≤ 1 ∀i = 1 . . . |VA|, Xij ∈ {0, 1}

(3)

Here, α, β are non-negative constants that allow for tradeoff between matching
weights from the prior and the number of overlapping edges.

Review of Structural Alignment. We now summarize the Orthogonal Procrustes
Problem, which aims to compute structural alignments. The problem, origi-
nally solved by Schönemann [19] aims to find an orthogonal transformation that
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reduces the distance between two matrices in the Frobenius norm. It is often
used to find rigid body transformations that describe relationships between two
objects. Formally, for any two matrices Y and Z, the problem minimizes:

min
Ω

||Y − ZΩ||2F
s.t. ΩTΩ =I

(4)

In our setting, the matrices Y and Z correspond to node coordinates CA, CB ∈
R

n×d. Our objective is to measure the orthogonal transformation between the
sets of corresponding nodes of the two graphs. In other words, we aim to find
rotation R̂ ∈ R

d×d and translation t̂ ∈ R
1×d such that

CA = CBR̂ + 1t̂ (5)

where, R̂
T
R̂ = I and 1 is the ones vector of length n. For convenience, we pad

CA and CB by a vector of ones (for convenience in notation, we don’t explicitly
show this detail), and combine the translation vector and the rotation matrix
into Ω as

Ω =
[
R̂ 0
t̂ 1

]
(6)

We rephrase the problem as:

min
Ω

||CA − CBΩ||2F (7)

The algorithm due to Kabsch [13] was among the first solutions aimed at solving
the problem for 2D and 3D coordinates. We use a related SVD-based method,
due to Sabata et al. [18], since it is shown to stable by Eggert et al. [8].

μA =
1
n

n∑
i=1

CAi
CA = CA − 1μA (8)

μB =
1
n

n∑
i=1

CBi
CB = CB − 1μB (9)

Here, CAi
and CBi

refer to the coordinates of the i-th nodes of graphs A and B.
Hence, μA, μB ∈ R

n×1. Define H = C
T

ACB , then the estimated rotation matrix
is R̂ is given by:

R̂ = V UT , (10)

where V and U are orthonormal matrices that are obtained from SVD of H.
The optimal translation t̂ is defined by:

t̂ = μA − R̂ μB (11)

We note that we can estimate scaling between the two graphs using more gen-
eralized formulations of the orthogonal Procrustes problems. Instead, we assume
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that the coordinates are drawn from the same units (say meters). This assump-
tion also circumvents the problem of having potentially different coordinate sys-
tems.

Rigid Graph Alignment. We now define our problem of rigid graph alignment.
Let CA ∈ R

n×d and CB ∈ R
n×d represent coordinates of vertices from VA

and VB, respectively. Combining the network alignment objective function and
rigidity metric, as described in Eqs. 3 and 7, our objective function for rigid
graph alignment can be written as:

F = max
X,Ω

αL • X + βA • XBXT − γ||CA − XCBΩ||2F
s.t.

∑
i Xij ≤ 1 ∀j = 1 . . . |VB |,∑
j Xij ≤ 1 ∀i = 1 . . . |VA|, Xij ∈ {0, 1}

(12)

Here, we write XCB to denote the conformally permuted set of coordinates of
graph B after alignment. The first term in this equation, L • X, corresponds to
the consistency between the prior L and the mapping of vertices across the two
graphs X. The second term, A•XBXT , corresponds to the alignment of the two
networks, and the third term, ||CA−XCBΩ||2F , to the structural (mis)alignment.
In rigid graph alignment, the prior L is driven by spatial constraints. The weights
α, β and γ are parameters for the user to adjust relative importance of the
prior, graph matching, and structural alignment. It can be seen that when α =
1, β = 0, γ = 0, the problem reduces to the maximum matching problem; when
α = 0, β = 1, γ = 0, it is the solution to the problem of maximizing overlap; and
when α = 0, β = 0, γ = 1, the problem reduces to rigid body transformation.

The structural alignment error can be minimized by solving for Ω using
generalized Procrustes method on the ordered set of vertices. To find a good
network alignment solution, we need to find the optimal X. For ease of analysis,
we view X as a permutation matrix. Then, the structural error term can be
expressed as CA − XCBΩ2

F = CA • CA + CBΩ • CBΩ − 2CAΩTCT
B • X

For a given transformation matrix Ω, we can rewrite the objective function
as

F = max
X

αL • X︸ ︷︷ ︸
Update Prior

+β

Network Alignment︷ ︸︸ ︷
A • XBXT +γ CAΩTCT

B • X︸ ︷︷ ︸
Structural Alignment

s.t.
∑

i Xij = 1 ∀j = 1 . . . |VB |,∑
j Xij = 1 ∀i = 1 . . . |VA|, Xij ∈ {0, 1}

(13)

This form of the objective function suggests that the optimal X is one that
maximizes the network alignment and structural alignment, while respecting
the prior. Furthermore, it suggests that the prior L should be proportional to
the similarity between the coordinates, i.e., CAΩTCT

B . However, this definition
poses the potential problem of a dense prior, which can significantly increase the
runtime of network alignment. To circumvent this issue, we constrain the number
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of non-zeros in the prior using a distance measure or number of neighbours. One
such simple constraint is given by:

Li,j =

{
exp(−∥∥CAi

− CBj

∥∥2

2
)

∥∥CAi
− CBj

∥∥2

2
≤ dki

0 otherwise
(14)

The intuition for an rigid graph alignment technique is as follows: let Pii′

denote the likelihood of matching node i of graph A with i′ of graph B. Since
we use structural conformity as prior information to guide the network align-
ment, we say that Pii′ ∝ exp(−∥∥CAi

− CBi′
∥∥2

2
). We can similarly define Pjj′ .

Assuming that the probabilities are independent, the expected edge overlap can
be written as the product:

Eo =
∑

i,j,i′,j′
Pii′Pjj′AijBi′j′ (15)

=
∑

i,j,i′,j′
exp(−∥∥CAi

− CBi′
∥∥2

2
)exp(−

∥∥∥CAj
− CBj′

∥∥∥2

2
)AijBi′j′ (16)

We can see that the expected edge overlap increases as matched nodes move
closer to each other. Hence, increased structural alignment results in increased
edge overlap. In an analogous manner, accurate matches lead to more accu-
rate transformation matrices, which minimizes the residual error after structural
alignment. Premised on the observation that the two objectives depend on, and
reinforce each other, we propose an algorithm that optimizes the two terms,
alternately.

2.2 Rigid Graph Matching Algorithm

Our approach to rigid graph alignment splits the problem into two tasks and
iterates to convergence: (i) align the graphs restricting the prior to pairs of nodes
between graphs that are in spatial proximity (using definitions for L mentioned
earlier) – i.e., maximizing the second term of the objective function, and (ii) align
the coordinates using the current estimate of the alignment; i.e., maximizing the
third term of the objective function. This requires an initial alignment to begin,
which we discuss at the end of the section.

The vast majority of network alignment methods take as input α, β, L,A,B
(or equivalent inputs). Hence, our goal in step (i) is to leverage the coordinates
to estimate a matrix L that constrains the set of alignments considered by the
network alignment component. We devise a routine, get prior that creates the
matrix L based on the distance between vertices (using the current transforma-
tion Ω). Our implementation of this routine assigns every node i in A with k
of its nearest neighbours as possible matches. Each candidate node is assigned
a weight inversely proportional to the distance between that node and node i
(Eq. 14). In terms of the objective function, note that this choice of L ensures
that the term ||CA − XCBΩ||2F stays approximately the same after we use a
network alignment method to optimize the permutation.
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Step (ii) involves the use of a procedure for structural alignment. We used an
SVD-based method to compute orthogonal transformation for structural align-
ment, as described in Sect. 2.1.

To recap, in step (i), we maximize the term αL • X + βA • XBXT with the
term γ||CA − XCBΩ||2F approximately fixed, whereas in step (ii), we maximize
−γ||CA − XCBΩ||2F with the graph alignment term fixed.

The resulting rigid graph alignment procedure is given in Algorithm1.

Algorithm 1. Rigid Graph Alignment
1: Input: Graphs A(VA, EA) and B(VB , EB), Coordinates CA and CB , α, β, γ
2: Output: Aligned graphs A and B
3: repeat
4: L = get prior(CA, CB)
5: X = align(A, B,L)
6: B = XBXT

7: Ω = transform coordinates(CA, CB ,X)
8: CB = XCBΩ
9: until converged

The process is continued until convergence is achieved, in terms of preferred
metrics such as edge/node overlap or in the solution to the Orthogonal Pro-
crustes problem. The algorithm proposed (really a meta-algorithm) works with
any pair of aligners (graph and structural) that use a prior. In our experiments,
we present results where we used netalignmbp [1] as the graph aligner and the
SVD-based structural aligner.

In the first iteration, when we have no prior knowledge of any correspondence
between nodes, we use the following approach to bootstrap Algorithm 1: we com-
pute average pairwise distance for all nodes and populate the prior matrix with
nodes that have similar distance profiles. We draw histograms for the distances
of each node in both graphs. Then, we use correlation to measure the similarity
of distance profiles of pairs of nodes across the two graphs. The prior matrix
L is populated on the basis of this measure. We note that distance profiles are
invariant to rotations and translations. Furthermore, correlation measures such
as Pearson Correlation are invariant to scaling. In practice, we find that this
heuristic works well both in the synthetic datasets, as well as the HCP dataset.

2.3 Analyzing the Human Functional Connectome

We present experimental results in the context of an important application in
the analyses of brain connectomes. We demonstrate that our methods are capa-
ble of significant improvement in alignment quality over state of the art graph
alignment techniques that do not consider structural rigidity of the graph.

Dataset. We construct human brain connectomes from the Young Adult
Database. The Young Adult Database was created as part of the Washington
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University-University of Minnesota project of the Human Connectome Project
(HCP) consortium, described in van Essen et al. [10]. We use resting-state fMRIs
from a subset of 20 subjects. The data for each subject is collected in two ses-
sions, which are separated by a few days. Each session lasted 30 min: 15 min of
left-to-right (LR) encoding, followed by 15 min of right-to-left (RL) encoding.
Each voxel is isotropic, with dimensions 2 mm × 2 mm × 2 mm, and images were
acquired once every 720 ms, as explained in Smith et al. [21].

Preprocessing Steps. The preprocessing steps remove spatial and tempo-
ral artifacts from the images. Head motion of subjects during acquisition is
inevitable, and a potential source of errors. We use the motion correction tool
from FMRI Standard Library (FSL), called Motion Correction FSL’s Linear
Image Registration Tool (MCFLIRT) [12]), and register each (volumetric) image
in a session to the first time slice. Motion correction ensures consistent labeling
of voxels between images in a session. This is followed by skull stripping, using
FSL’s Brain Extraction Tool (BET) [22]. The images are then resampled to vox-
els of size 4mm. This resampling is done to create networks whose dimensions
are accessible to network alignment using state of the art methods. Non-brain
voxels are masked out, along with voxels of low variance. The remaining, relevant
voxels are vectorized, to create a voxel × time matrix. It has been shown that
spontaneous firings observed in resting state functional MRI is best captured in
low frequency fluctuations < 0.1 Hz (Murphy et al. [15]), which is why we use a
bandpass filter with limits of 0.001 Hz to 0.08 Hz.

A voxel×voxel similarity matrix is created by computing Pearson correlation
between each pair of time series. We retain the top 5 percentile of correlation
values and construct networks with voxels as nodes and high correlation valued
edges between nodes. Prior to the creation of the similarity matrix, we regress
out the global signal. Since we only use strongly positive values in subsequent
steps we sidestep the issue of artificially induced negative correlations.

Rigid Graph Alignment Yields Higher Edge Overlap. In our first set
of results, we show that Rigid Graph Alignment improves on a commonly used
network alignment metric – edge overlap. For two adjacency matrices A and B,
edge overlap is defined as A•XBXT . We run Rigid Graph Alignment (Algorithm
1) for intra-subject (same subject across two sessions) and inter-subject (across
subjects) analysis on 20 subjects, with equal weights given to the prior (α),
edge overlap (β), and structural alignment (γ), as discussed in Sect. 2.1 for a
maximum of 20 iterations and a convergence threshold of 0.1% in edge overlap.
We find that the edge overlap at the end of first iteration is 20.18 ± 4.2%,
whereas the edge overlap after rigid network alignment is 53.05 ± 12.5%. The
improvement of edge overlap is due to increasingly accurate priors in the later
iterations of the algorithm. The increase per iteration in typical intra-subject
alignment is shown in Fig. 1. We observe that the scores are largely stagnant in
the first few iterations, which is attributed to the fact that the initial prior is not
as informative as priors in subsequent iterations. As stated before, to bootstrap
the algorithm, we use similarity of distance profiles to populate the initial prior
matrix because the “drawings” of graphs could look very different. In the later
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iterations, successive transformations result in corresponding nodes of the two
graphs being placed close together.

We also characterize the statistical significance of our performance improve-
ment. To do this, we transform the coordinates by random transformation matri-
ces (i.e., we randomly reorient the brains before alignment) in 100 trials. In each
case, we found that the edge overlap by rigid graph alignment was higher than
edge overlap by regular graph alignment. This implies that our performance
improvements are significant and robust.

Fig. 1. Increase in edge overlap score while aligning functional brain networks
of two subjects with themselves (i.e., across sessions) in resting state functional MRI.
These results show significant improvement in alignment quality over state of the art
alignment techniques. Note that the alignment results after the first iteration corre-
spond to that of state of the art network alignment technique. Subsequent iterations
demonstrate improvements from our method.

Residual Error in Structural Transformation as a Metric for Network
Alignment. The problem of identifiability of the connectome, or the so-called
brain fingerprint involves finding patterns in brain images (either structural or
functional) that are unique to an individual. In principle, two networks belonging
to the same subject should align “better” than two networks belonging to differ-
ent subjects. In our context, we need to devise a scoring measure for alignments
that can suitably distinguish intra-subject and inter-subject alignment.

Figure 2a shows the histogram of edge overlap at the end of the first itera-
tion. The edge overlap for intra-subject networks is 20.73 ± 4.45%, whereas for
inter-subject networks, it is 19.62 ± 4.28%. This suggests that edge overlap is not
a strong discriminatory measure for the brain signature. In fact, the improve-
ment in edge overlap as a consequence of our rigid graph alignment algorithm
is observed both for inter-subject and intra-subject alignments, as can be seen
in Fig. 2c. In such applications, where the position of the vertices are of impor-
tance, we show that the residual error in structural transformation, which we
call “rigidity metric” (Eq. 7) is a better indicator of quality of alignment.

Figure 2b shows the histogram of quality of inter-subject and intra-subject
alignments. For intra-subject alignments, the rigidity metric, normalized by the
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Fig. 2. Histogram of (a) edge overlap values, in both inter-subject and intra-subject
alignments after first iteration. The similar overlap values show that the edge overlap is
a not good metric for detecting brain fingerprints, (b) rigidity values for inter-subject
and intra-subject alignments. The values are significantly better separated than edge
overlap, suggesting that rigidity metric is better than edge overlap in the context of
brain fingerprints, and (c) edge overlap, after rigid graph alignment. The overlap has
increased in both intra-subject and inter-subject alignments

number of vertices was found to be 1.52 ± 0.01%, whereas for inter-subject
alignments, it was 1.99 ± 0.025%. This demonstrates significantly higher distin-
guishability from the rigidity metric.

3 Related Literature

Network alignment has been an active area of research over several decades
[9]. Early formulations of network alignment, in the form of exact graph matching
(subgraph isomorphisms) in small chemical networks were analyzed by Sussen-
guth [23].

For larger graphs, inexact techniques are used for matching graphs, due to
the high computational cost of isomorphism-based methods. These formulations
largely fall into two classes – local aligners and global aligners. Local aligners
(e.g., AlignNemo [6]) aim to find localized regions in graphs that align well.
A localized network alignment approach was used by Lässig et al. [2] to align
gene regulation networks in E. coli. The optimization criteria in this class of
methods rewards local matches and does not penalize mismatches over entire
graphs. Global aligners, on the other hand, use optimization functions that
reward matches and penalize mismatches over the entire graph. In [20], Singh
et al. describe IsoRank, a pairwise global network alignment method for protein
interaction networks. IsoRank is based on the intuition that a vertex in the first
network should be matched with a vertex in the second network if and only if
the neighbors of the two vertices are also well matched.

Memory-efficient heuristic methods such as GRAAL [14] and GHOST [16]
have been proposed, which require cubic runtime. Many alignment techniques
incorporate prior knowledge of potential matches to restrict the search space of
potential matches to a smaller subset of nodes, and to guide the search process.
Examples of such algorithms include the previously described Isorank [20], where
sequence similarity of proteins is often used as a prior for matching networks
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of interacting proteins. A message passing algorithm netalignmbp, proposed by
Bayati et al. [1] is based on making greedy decisions constrained by a given prior,
assuming that there are no cycles in the graph. In this paper, we focus on global
graph alignment techniques that incorporate prior knowledge to yield a one-
to-one mapping of nodes. We use netalignmbp with an informative prior as our
network alignment substrate. However, our algorithm can be used in conjunction
with any network alignment technique that allows the use of a prior.

Structural Alignment. One of the commonly used approaches to structural
alignment uses the iterative closest point (ICP) method of Besl et al. [4], and its
variants [5]. The generic steps of ICP described in [17] for matching two struc-
tures involve selection of source points from both bodies. ICP then matches the
sets of points and computes weights corresponding to the matches appropriately.
Points that do not match are rejected and the transformation that minimizes
error is computed. This process is repeated to convergence. Our algorithm can
be thought of as loosely following this framework, except that we use network
alignment as the process to find suitable matching. The transformation itself,
as stated in Eq. 4, is called the Orthogonal Procrustes Problem [19]. Kabsch’s
algorithm [13] provides an efficient solution to this problem in three dimensions.
In fact, the graph matching problem as stated by [24] can be thought of as a two-
sided Procrustes problem (Conroy et al. [7]), who approximate graph matching
when vertices of the two graphs can be parcellated into groups.
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D.C.V., Glasser, M.F.: Resting-state fMRI in the human connectome project. Neu-
roImage 80, 144–168 (2013)

22. Smith, S.M.: Fast robust automated brain extraction. Hum. Brain Mapp. 17(3),
143–155 (2002)

23. Sussenguth, E.H.: A graph-theoretic algorithm for matching chemical structures.
J. Chem. Documentation 5(1), 36–43 (1965)

24. Umeyama, S.: An eigendecomposition approach to weighted graph matching prob-
lems. IEEE Trans. Pattern Anal. Mach. Intell. 10(5), 695–703 (1988)

https://doi.org/10.1016/j.ins.2016.01.074
https://doi.org/10.1016/j.ins.2016.01.074
http://rsif.royalsocietypublishing.org/content/early/2010/03/24/rsif.2010.0063
http://rsif.royalsocietypublishing.org/content/early/2010/03/24/rsif.2010.0063
http://www.sciencedirect.com/science/article/pii/104996609190032K
http://www.sciencedirect.com/science/article/pii/104996609190032K

	Rigid Graph Alignment
	1 Introduction and Motivation
	2 Problem Formulation
	2.1 Problem Definition
	2.2 Rigid Graph Matching Algorithm
	2.3 Analyzing the Human Functional Connectome

	3 Related Literature
	References




