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Abstract—Link prediction is a common problem in network
science that transects many disciplines. The goal is to forecast
the appearance of new links or to find links missing in the
network. Typical methods for link prediction use the topology
of the network to predict the most likely future or missing
connections between a pair of nodes. However, network evolution
is often mediated by higher-order structures involving more than
pairs of nodes; for example, cliques on three nodes (also called
triangles) are key to the structure of social networks, but the
standard link prediction framework does not directly predict
these structures. To address this gap, we propose a new link
prediction task called “pairwise link prediction” that directly
targets the prediction of new triangles, where one is tasked with
finding which nodes are most likely to form a triangle with a
given edge. We develop two PageRank-based methods for our
pairwise link prediction problem and make natural extensions to
existing link prediction methods. Our experiments on a variety
of networks show that diffusion based methods are less sensitive
to the type of graphs used and more consistent in their results.
We also show how our pairwise link prediction framework can
be used to get better predictions within the context of standard
link prediction evaluation.

Index Terms—link prediction, higher order methods,
PageRank

I. INTRODUCTION

Networks are a standard tool for data analysis in which
links between data points are the primary object of study. A
fundamental problem in network analysis is link prediction [1],
[2], which is typically formulated as a problem of identifying
pairs of nodes that will either form a link in the future
(when viewing the network as evolving over time) or whose
connection is missing from the data [3]. The link prediction
problem has applications in a variety of domains. For instance,
in online social networks of friendships, predicting that two
people will form a connection can be used for friendship
recommendation [4]. Similarly, predicting new links between
users and items on platforms such as Amazon and Netflix can
be used for product recommendation [5]. And in biology, link

prediction is used to identify novel interactions between genes,
diseases, and proteins within interaction networks [6].

In the settings above, the link prediction problem is oriented
around—and evaluated in terms of—the identification of pairs
of nodes that are likely to be connected. However, there
is mounting evidence that the organization and evolution of
networks is centered around higher-order interactions involv-
ing more than two nodes [7]–[11]. In the case of social
networks, triangles (a clique on three nodes) are extremely
common due to various sociological mechanisms driving tri-
adic closure [12]–[15]. Methods for link prediction are indeed
motivated by these ideas. For instance, the Jaccard similarity
between the sets of neighbors of two nodes—a common
heuristic for link prediction [1]—measures the number of
triangles that would be created if the two nodes are linked,
normalized by the total number of neighbors of the two nodes.
Still, methods such as Jaccard similarity are used to make
predictions on pairs of nodes, rather than a prediction on the
appearance of the higher-order structures directly.

Here, we develop a framework for directly predicting the
appearance of a higher-order structure. We focus on the case of
triangles, which is one of the simplest higher-order structures
while also being critical to social network analysis. Again,
classical link prediction is centered around the following
question: given a node u in the network, which nodes are
likely to link to u? This scenario is illustrated in Figure 1A.
Our framing of the problem is similar, but we instead ask
the following: given an edge (u, v) in the network, which
nodes are likely to connect to both u and v? We call this
the pairwise link prediction problem, and it is illustrated in
Figure 1B. There are several scenarios where the pairwise link
prediction problem is natural, such as recommending a new
friend to a couple on an online social network, recommending
a movie to a couple in a video site, or predicting an effective
drug given a disease-gene pair.

We devise two new algorithms for the pairwise link pre-
diction problem. The first is based on a variant of seeded
(personalized) PageRank that uses multiple seeds, namely, one
seed at each end point of the edge for which we are trying
to predict new triadic connections. The second is based on a
PageRank-like iteration that puts more weight on edges that
participate in many triangles. In this sense, the method rein-
forces triangles, and we call the method “Triangle Reinforced
PageRank” (TRPR). We compare these algorithms to natural
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Fig. 1. (A) In standard link prediction, we are tasked with finding nodes that
are likely to link to a given node u. (B) In this paper, we study pairwise link
prediction, where we are tasked with finding nodes that are likely to form a
triangle with a given edge (v, w).

extensions of local similarity measures that are common in
link prediction, such as Jaccard similarity [1], Adamic-Adar
similarity [16], and preferential attachment [17].

For a given edge, each of the above methods produces
a score for the remaining nodes in the graph. We use the
ordering of these scores to measure the area under the ROC
curve with respect to a held-out test set. We find that our
proposed pairseeded PageRank and TRPR methods outper-
form the baseline measures based on local neighborhood
information on a number of synthetic benchmark and real-
world datasets. For instance, on predicting future links in
a temporal graph, our methods had median AUC scores of
0.93 compared with 0.76 for the baseline methods. Based on
this success of our PageRank-based methods for pairwise link
prediction, we then go back and adapt them for the classical
link prediction problem. We find that these adapted methods
out-perform traditional seeded PageRank on a number of real-
world datasets with average AUC increases of up to 0.28 in
predicting missing drug interactions.

II. BACKGROUND AND RELATED WORK

We now briefly review some related work in link prediction
and higher-order structure. As part of this, we will go over
methods that we will generalize in the next section for the
pairwise link prediction problem. All of these methods assign
some similarity score between pairs of nodes, where a larger
similarity is indicative of pairs that are likely to connect. For
notation, we use Γ(u) to denote the set of neighbors of node
u in the graph.
Local methods. Several approaches to link prediction are
based on local information in the graph, namely a score is
assigned to a pair of nodes u and v based on their 1-hop neigh-
borhoods Γ(u) and Γ(v). One approach that falls under this
category stems from the idea that as |Γ(u)∩Γ(v)| increases, the
chance that u and v are connected also increases [17]. Here,
|Γ(u)∩Γ(v)| is the number of triangles that would be formed if
u and v were connected. Often, this number is normalized by
the size of the neighborhoods, which gives rise to the Jaccard
similarity between two nodes u and v:

|Γ(u) ∩ Γ(v)|
|Γ(u) ∪ Γ(v)|

.

The Adamic–Adar similarity measure [16] is a local score that
assigns similarity between two nodes based on how important
their common neighbors are, where importance is measured by

the inverse log degree of a node. Formally, the Adamic–Adar
similarity measure between nodes u and v is:∑

z∈Γ(u)∩Γ(v)

1

log(|Γ(z)|)
.

A third local method is based on preferential attachment,
where nodes are more likely to connect to established nodes
in the network, and, established nodes have a higher chance to
connect to each other [17], [18]. Using degree as a proxy for
how established a node is, the preferential attachment score
between nodes u and v is:

|Γ(u)| · |Γ(v)|.

Global methods. Another set of approaches for link pre-
diction are based on aggregating (weighted or normalized)
path counts of varying lengths. In contrast to the local meth-
ods described above, these methods use global information
about the entire network. For example, the Katz similarity
counts the number of paths between two nodes, weighting
paths of length-k by βk [1], [19]. Another class of global
methods are methods based on conservative diffusions such as
PageRank [20]. Such diffusion methods are typically seeded
by a particular node u, and the similarity of u to all other
nodes is given by the amount of “mass” that diffuses to each
other node. We will make use of PageRank-like methods in
the next section.
Higher-order structure. Since a network encodes pairwise
relationships (edges) between elements (nodes), the link pre-
diction problem is natural in many cases. Nevertheless, recent
studies have shown that networks evolve through higher-
order interactions, i.e., much of the structure in evolving
networks involves interactions between more than just two
nodes [10]. Moreover, random graph models constructed from
distributions of triangles have shown to be good fits for real-
world data [21], providing additional evidence that triadic
relationships are important to the assembly of networks.

III. METHODS

We propose several methods for the pairwise link prediction
problem. First, we extend the three local metrics described
above to measure node-edge similarity—these methods will
serve as our baseline metrics. After, we propose two diffusion-
based methods akin to seeded PageRank.

A. Local similarity measures for pairwise prediction

Our goal here is to extend common local methods for link
prediction to the scenario of pairwise link prediction. In other
words, instead of computing similarity between nodes, we now
compute similarity between an edge and a node. To do this,
we simply replace the neighborhood of one node with the
neighborhood of an edge. This requires that we specify what
the neighborhood of an edge (u, v) should capture. We define:

Γ((u, v)) = {node z | z forms a triangle with (u, v)}
= Γ(u) ∩ Γ(v).
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Note that this is different from the boundary of a set of
vertices in the graph that is often used to define the size of
a cut, which—for an edge—would correspond to the union
of neighborhoods. Our choice here preserves the intuition
behind the link prediction methods given below in the context
of the pairwise prediction problem because we want strong
relationships with both u and v. We explore other types of
neighborhoods in an extended version of this paper [22].

Using the substitution gives us three similarity measures
that will serve as our baseline methods:

• Jaccard Similarity.

JS(w, (u, v)) =
|Γ(w) ∩ Γ((u, v))|
|Γ(w) ∪ Γ((u, v))|

• Adamic–Adar.

AA(w, (u, v)) =
∑

z∈Γ(w)∩Γ((u,v))

1

log|Γ(z)|

• Preferential Attachment.

PA(w, (u, v)) = |Γ(w)| · |Γ((u, v))|

Next, we develop two new methods for pairwise link predic-
tion based on seeded PageRank.

B. Pair-seeded PageRank

Seeded PageRank is a foundational concept in network
analysis that models a flow of information in a network to
predict links and communities on a network [23], [24]. Seeded
PageRank models information flow from the seed node to other
nodes in the network via a Markov chain, and the stationary
distribution of the chain provides the scores on the nodes.
A high score on a node is a signal that the node should
be connected to the seed node. More formally, let A be the
symmetric adjacency matrix of an undirected graph, and let
P be the column stochastic matrix of a random walk on that
graph. Specifically, P (i, j) = A(i, j)/|Γ(j)|. Let u be the
seed node. Then the seeded PageRank scores are entries of the
solution vector x to the linear system (I−αP )x = (1−α)eu.

Here, eu is the vector of all zeros, except at index u, where
eu(u) = 1 (i.e., eu is the indicator vector on node u) and α
is the PageRank damping parameter. The entries of x provide
similarities between node u and the other nodes and thus can
be used for standard link prediction.

In the same way seeded PageRank predicts the relevance of
other nodes in the network to a single seed node, we propose
pair-seeded PageRank to predict the relevance of nodes to
a single edge; with these similarities, we are able to make
predictions for the pairwise link prediction problem. For a
given edge (u, v), pair-seeded PageRank solves the following
linear system:

(I − αP )x = (1− α)eu,v.

In this case, eu,v is the vector of all zeros, except at indices u
and v, where eu,v(u) = eu,v(v) = 1/2. The solution x can be
interpreted as the similarity of each node to the edge (u, v).

We now note that pair-seeded PageRank is equivalent to
the sum of single-seeded PageRank on each of the nodes,
up to a scalar multiple. This follows quickly from linearity
of the PageRank problem. To see this, let xu and xv be the
seeded PageRank solutions corresponding to nodes u and v
respectively. Then,

(I − αP )xu = (1− α)eu

(I − αP )xv = (1− α)ev.

Adding the above two equations yields
(I − αP )(xu + xv) = (1− α)(eu + ev)

(I − αP )(xu + xv) = (1− α)(2eu,v)

1

2
(I − αP )(xu + xv) = (1− α)eu,v

(I − αP )x = (1− α)eu,v.

Hence, 2x = xu +xv , and the pair-seeded PageRank solution
is equivalent to the summation of the single seeded PageRank
equations, up to scaling. Indeed, this is a useful observation
as there are many systems designed to estimate large seeded
PageRank values for single-seeds by using highly scalable
random walk methods [25]. Thus this technique could be used
wherever a PageRank-style prediction is already employed.

C. Triangle Reinforced PageRank (TRPR)

We now propose a PageRank-like method that uses a
weighting scheme on edges based on the number of triangles
that contains each edge, which we call Triangle Reinforced
PageRank (TRPR). For an unweighted graph, the PageRank
solution is highly affected by the degree of nodes in the
network. Here, we reinforce the influence of triangles by
giving edges participating in many triangles a higher weight.
Figure 2 presents a motivating example for the usefulness of
reinforcing triangles.

To develop our TRPR method, we first introduce a tensor
T , that encodes all triangles in a network:

T (i, j, k) =

{
1 if (i, j, k) is a triangle
0 otherwise.

Again, in our derivation, we assume that the graph is undi-
rected so that T is fully symmetric in all permutations of
indices.

A typical way to solve the PageRank linear system is the
power method. With TRPR, we modify the power method by
adding a step that redistributes the weights in the network.
Specifically, we compute the matrix X̂ = T [x], where
X̂(i, j) =

∑
k T (i, j, k)x(k), which measures the relevance

of edge (i, j) to the distribution of node scores in the vector x.
We then run an iteration of the power method on a weighted
adjacency matrix X = X̂ + A, where the columns are re-
normalized to make the matrix column stochastic. Algorithm 1
shows the idealized algorithm.
TRPR can be implemented efficiently. Although TRPR
involves the tensor T , we do not need to form it explicitly, and
we show an alternative derivation here. We first unwrap one
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iteration of TRPR. Let Ai = T [xi−1] + A. Then, at iteration
i, we can translate xi = αP ixi−1 + (1− α)x0 into

xi = α((T [xi−1] + A)D−1
Ai

)xi−1 + (1− α)x0,

where D−1
Ai

is a diagonal matrix with the ith diagonal entry
being the inverse of the sum of edge weights connected to
node i in Ai (again, we assume a connected graph so these
values are all non-zero). Then,

xi = αT [xi−1]D−1
Ai

xi−1 + αAD−1
Ai

xi−1 + (1− α)x0.

Set yi−1 = D−1
Ai

xi−1. Then

xi = αT [xi−1]yi−1 + αAyi−1 + (1− α)x0.

This leaves us with the relevant computationally expen-
sive pieces to compute being T [xi−1]yi−1, and the en-
tries in D−1

Ai
. Both will actually involve the same type

of operation. Note that, using the definition of T [x] we
have that the matrix-vector product z = T [x]y has zi =∑

j

∑
k T (i, j, k)y(j)x(k). Consequently, if we have any

means of iterating over the triangles of a graph, then we can
compute T [x]y for any pair x and y in a fashion akin to a
sparse-matrix-vector product but in runtime proportional to the
number of triangles in the graph.

This directly enables us to compute T [xi−1]yi−1. To com-
pute the entries in D−1

Ai
, note that T [x] is a symmetric matrix

because it can be written as a sum of symmetric matrices
(since T is fully symmetric in all permutations). Thus, the
row-sums of Ai are the vertex-degrees we need to build D−1

Ai
.

Let e be the vector of all ones, then these are computed as
Aie = T [xi]e+Ae. Since A is not changing, we only need to
compute the column sums of T [xi]e at each iteration. Again,
we can use an implicit tensor-vector-vector product operation
to compute the column sums. Thus, all operations involving
the tensor T are linear in terms of the number of triangles in
the network.

Convergence of this type of nonlinear system of equations
is theoretically delicate with bounds that are often insufficient
for practice [26]. Empirically, we observe that the iterations
converge. However, absent a robust theory, this method is only
run for a small and fixed number of iterations (10). This will
produce a unique deterministic and reproducible set of scores
that locally capture the influence of both the graph and the
reinforced triangles.

For ease of reuse, we provide our code for TRPR

https://github.com/nassarhuda/pairseed.

IV. EXPERIMENTAL SETUP

We now perform a series of experiments on synthetic
as well as real-world graphs from a variety of disciplines,
including online social networks, communication networks,
and biological interaction networks. We include experiments
for static networks as well as a temporal network and find that
in both cases, our pairseeded PageRank and TRPR methods

Fig. 2. Motivating social network example for
the TRPR algorithm. If all of the friends of
the blue couple know the red node, we want
to predict that the red node must know the blue
couple as well. Running TRPR on the above
example, with eu,v being a seed vector on the
blue nodes reveals that the red node has the
third highest score after the two blue nodes.
After 10 iterations of Algorithm 1 with α =
0.8, the ouput vector assigns a score of 0.102
to the red node, 0.063 to the black nodes, and
0.257 to the blue nodes.

Algorithm 1: TRPR
Input: T ,A, α, eu,v, number of iterations n
Output: x
x0 = eu,v
for i = 1, 2, . . . , n do

X̂
(i)

=T [xi−1] # i.e. X̂(i)
r,s =

∑
k T (r, s, k)xi−1(k)

P i = normalize(X̂
(i)

+ A) # column stochastic
xi = αP ixi−1 + (1− α)x0

return xn

consistently outperform the baseline measures in terms of
AUC score, often substantially.

In this section, we lay out the setup of our main types of
experiments and summarize the methods that we evaluate. The
specific scenarios investigated are discussed in the subsequent
sections along with the results.

A. Wedges experiments

The wedges experiments are akin to the leave-p-out cross
validation metric, in the sense that we will drop a select
number of edges from the network and use them as a validation
set. An experimental trial in this setting is designed as follows.
For a given graph, we first randomly pick an edge in this
graph (call it the seed edge) and find all of the triangles
to which it belongs. Next, we drop one edge from each
triangle uniformly at random, which transforms each triangle
containing the seed edge into a length-2 path, or wedge. For
evaluation, we use a pairwise link prediction method on the
seed edge, which produces an ordering on the nodes. Given
this ordering, we compute the area under the ROC curve
(henceforth, AUC score) as a measure of performance. The
experiment is repeated for a fixed number of edges.

B. 80-20 experiments

The 80-20 experiments are akin to hold-out cross valida-
tion and are a standard way of evaluating the classical link
prediction problem. In this setup, for a given network, we
drop 20% of the edges and label them as testing data, and use
the remaing 80% as training data to make predictions. Then,
for random edges in the training data (call them seed edges),
we use the pairwise link prediction methods to predict which
nodes will form triangles with each edge that is selected. A
“correct” prediction is a node that forms a triangle with the
seed edge when including the test data, but at least one edge
from the triangle is missing in the training data. Again, for
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a given edge, each method produces a similarity score on all
nodes, and we use the ordering of the nodes induced by the
scores to determine the AUC score.

We also perform a similar experiment on a temporal network
(CollegeMsg) with timestamps on the edge arrivals. In this
scenario, the dropped 20% edges are not chosen at random.
Instead, we split the data into training and test sets based on
the time—the first 80% of the edge to appear in time are the
training data and the remaining 20% are the test data.

C. Summary of methods and parameter settings

Finally, we summarize all of the methods that we use for
pairwise link prediction.
• Pairseed: This is our method described in

Section III-B. We use the implementation from
MatrixNetworks.jl [27] with α = 0.8.
This implementation solves the linear system until
convergence to machine precision.

• Single seed (SS): For comparison, we present the results
of single-node seeded PageRank on an arbitrary end
points of the seed edge. We use the same implementation
as above, with α = 0.8.

• TRPR: This is our method described in Section III-C. We
use α = 0.8 and number of iterations n = 10.

• AA, PA, JS: For a seed edge, we compute the generalized
Adamic-Adar, Preferential Attachment, and Jaccard sim-
ilarity scores, respectively (as in Section III-A) between
the seed edge and all remaining nodes in the graph.

V. PAIRWISE LINK PREDICTION RESULTS

For the results in this section, we report the distribution of
AUC scores of our predictions over 300 random experiments.

A. Synthetic experiments

In this set of experiments, we use preferential attachment
and stochastic block model networks, generating 600-node
graphs as input to the wedges and 80-20 experiments.
Generalized Preferential Attachment (GPA). Generalized
Preferential Attachment [28] is a graph generation model that
generalizes the classical preferential attachment model [17]
that permits the addition of new components at each step of the
algorithm, and not just nodes. In our generation of synthetic
graphs, the event of node addition occurs with probability 1/2,
and the event of edge addition occurs with probability 1/2.
The starting graph structure is a clique of size 5. At each step
of the graph generation process, an edge or node is added by
attaching proportionally to the degrees of the existing nodes.
Stochastic Block Model (SBM). In this model, we plant three
communities of size 200 nodes each, where the edge probabil-
ity within each community is 20/200 and the edge probability
between any two communities is 10/200. When testing our
methods on the SBM model, we keep the connections within
communities and only hide edges across communities to be
predicted. In the wedges experiment, we only select edges
between two communities and find their corresponding third
node to form triangles with from the third community.
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Fig. 3. Box plots of the AUC scores distribution from the wedges experiment
applied on synthetic graphs under the GPA (top panel) and SBM (bottom
panel) models. The numbers are the median value. Pair-seeded PageRank and
TRPR are our proposed methods for pairwise link prediction and they are
consistently better than other single-seeded PageRank and the local similarity
metrics. See the discussion in the text about AA, PA, and JS on the GPA
experiment.
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Fig. 4. Box plots of the AUC scores distribution from the 80-20 experiment.
The numbers are the median value. In both scenarios, GPA (top panel) and
SBM (bottom panel), we observe that pair-seeded PageRank and TRPR are
superior to other methods.

Results. Figures 3 and 4 show the results of the pairwise link
prediction for the wedges experiments and 80-20 experiments,
respectively. In all experiments, our pair-seeded PageRank and
TRPR methods produce better results than the single-seeded
method and the local similarity measures. For the results
in Figure 3 with the GPA model, the setup of the wedges
experiment forces the constraint that any edge (u, v) used
for prediction participates in no triangles in the training data.
Thus, Γ((u, v)) is empty and the local methods evaluate to
zero. In the SBM experiment, we only removed certain types
of edges, so the local methods do not always evaluate to zero.

The results in Figure 4 for the PA baseline makes many
good predictions on the GPA graph, with the median close to
1. This is not a surprise since the GPA graph model builds the
graph by appending new nodes or edges to existing nodes with
probability proportional to the degrees of the existing nodes.
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TABLE I
STATISTICS OF THE REAL-WORLD DATASETS USED IN THIS PAPER.

Network name nodes edges type

Penn94 41536 1362220 Social
MU78 15425 649441 Social
Caltech36 762 16651 Social
Ch-Ch-Miner 1510 48512 Biology
P-P-Pathways 21521 338624 Biology
email 1133 5451 Comm.
CollegeMsg 1899 13838 Temporal

B. Real-world graphs

In this section we perform our pairwise link prediction
experiments on six real-world graphs from different domains.
The networks are as follows:
• Penn94, MU78, and Caltech36 are online social networks

from the Facebook100 collection of datasets [29].
• Ch-Ch-Miner is a biological network of drug (chemical)

interactions [30], [31].
• P-P-Pathways is a biological network of physical inter-

actions between proteins in humans [32].
• email is an email communication network [33].

Table I provides summary statistics for these datasets, along
with the temporal network we use in the next section.

Figure 5 shows the results of the wedges experiments.
Recall that the baseline measures do not produce meaningful
output for this experiment. Again, we see that pair-seeded
PageRank and TRPR consistently produce better performance
as compared to single-seeded PageRank. The results of the 80-
20 experiments for the online social networks are in Figure 6.
Here, we observe an improvement of the local methods such
as Adamic-Adar and Jaccard Similarity. Nevertheless, this is
not unexpected, as these metrics model the social interac-
tions paradigm such as having a large number of common
friends. We show the 80-20 experiment on the remaining
networks in Figure 7. The one scenario in which a local
method outperforms the diffusion methods is the protein-
protein interaction network where the PA metric produces the
best performance. This might not be surprising, as studies have
suggested that preferential attachment governs the evolution of
protein-protein interaction networks [34].

C. Case study on a temporal graph

As stated in the introduction, link prediction can be viewed
as the task of predicting missing links from the network or
future hidden links. With our wedges and 80-20 experiments,
we modeled the prediciton task of missing links. Next, we
intend to focus on a case study of predicting future links
on a communication network. We use the temporal network
CollegeMsg [35], which has timestamped edges between stu-
dents on a college’s private messaging service. The summary
statistics of the dataset are in Table I.

We run the 80-20 experiment on this network while treating
the earliest 80% of the unique edges as our training data and
the remainder in the test data. We use two evaluations here:
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Fig. 5. Results of the wedges experiment on six real-world networks
from Table I. Pair-seeded PageRank and TRPR produce superior results as
compared to single-seeded PageRank in all experiments.
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Fig. 6. Results of the 80-20 experiments on the three Facebook100 networks.
AA and JS produce the best results on Penn94 and MU78. These local meth-
ods give comparable results compared to TRPR and pair-seeded PageRank
on the Caltech36 network. Pair-seeded PageRank and TRPR still outperform
single-seeded PageRank.

• The “AND” metric (top panel of Figure 8) considers
predictions on nodes where both edges connecting the
node to the seed edge are in the test data.

• The “OR” metric (bottom panel of Figure 8) considers
predictions on nodes where exactly one of the two edges
connecting the node to the seed edge is in the test data.

Figure 8 shows that our pair-seeded PageRank and TRPR
outperform all the other link prediction metrics, and thus, both
pair-seeded PageRank and TRPR are well suited for pairwise
link prediciton on temporal networks.
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Fig. 7. Results of the 80-20 experiment on the biological and email
networks. PA can perform better than diffusion type methods on protein-
protein interaction networks; however, this result agrees with the literature
showing that such networks evolve preferentially.

                                                            
0.00

0.25

0.50

0.75

1.00

Co
lle

ge
M

sg
AN

D 
pr

ed
ict

io
ns

0.46 0.48 0.46 0.46 0.3 0.46

PairseedPairseed SSSSSS TRPRTRPR AAAAAA PAPAPA JSJS
0.00

0.25

0.50

0.75

1.00

Co
lle

ge
M

sg
OR

 p
re

di
ct

io
ns

0.93 0.74 0.93 0.49 0.76 0.49

Fig. 8. The 80-20 experiment applied on the CollegeMsg temporal network
where training and test data are split by edge arrival time. The “AND” metric
(top panel) measures pairwise link prediction performance for triangles where
both edges connecting the predicted node to the seed edge are in the test data.
The “OR” metric (bottom panel) measures performance where only one of the
two triangle edges connecting the predicted node to the seed edge is in the test
data. The “AND” metric is more challenging, and performance is generally
worse compared to the “OR” metric. Regardless, in both cases, our pair-seeded
PageRank and TRPR methods have the best prediction performance.

VI. BACK TO STANDARD LINK PREDICTION

In this section we bring our attention back to the stan-
dard link prediction problem and show how the methods we
presented in this paper can also be used to further enhance
standard link prediction. We split our data in the same way
to the 80-20 experiments. Then, for the top 100 nodes with
the largest degree in the training data, we perform different

TABLE II
DESCRIPTION OF METHODS INSPIRED BY PAIRWISE LINK TO PERFORM

THE STANDARD LINK PREDICTION TASK

sumN For a certain node i, aggregate the pair-seeded
PageRank results from all edges adjacent to
i. This is equivalent to performing PageRank
with a normalized initial vector valued 1 at the
indices of all the neighbors of i, and degree(i)
at index i.

max• This is similar to the previous approach, but
we instead take the element-wise maximum
value of the pair-seeded PageRank vectors.

star-seed+ This is similar to pair-seeded PageRank, ex-
cept that we start PageRank with a normalized
initial vector valued 1 at the index of the seed
node and all its neighbors.

TRPR� This uses the same starting vector as star-seed,
but instead, applies the TRPR algorithm on it.

types of seeded PageRank diffusion for link prediction on these
nodes. This choice of nodes serves the purpose of identifying
nodes that have a higher chance of making connections in the
test data. Again, we measure performance in terms of AUC
scores. Our baseline is single-seeded PageRank.

Our results on pairwise link prediction suggest that multiple
seeds with PageRank-like methods are effective. Here, we
consider four multiple-seeding strategies and compare them
to single-seeded PageRank for the classical link prediction
problem. We summarize the four new methods in Table II.

We use real-world networks from Section V-B, and present
our results in Figure 9. The scatter plots compare the AUC
score of the neighborhood-based seeding methods to the AUC
scores from single-seeded PageRank. These results suggest
that neighborhood-based seeding are superior to single-seeded
PageRank as a link prediction method.

VII. DISCUSSION AND FUTURE WORK

Having a reliable link prediction algorithm is an well-
studied research topic due to its utility in many disciplines.
Traditional link prediction methods aim to find pairs of
nodes that are likely to form a link. Here, we have studied
a higher-order version of the problem called pairwise link
prediction where we predict nodes that are likely to form a
triangle with an edge. We generalized local link-prediction
methods and we developed two PageRank-based methods
for this problem. These PageRank-based methods generally
out-performed extensions of local link prediction methods
on a variety of datasets. Using these results as inspiration,
we then developed multiple-seeding strategies for PageRank
in classical link prediction, which outperform their standard
single-seeded counterparts.

While we haven’t focused on computational efficiency for
the sake of space, we note that highly efficient implementa-
tions of our procedures are possible given their close relation-
ships with traditional PageRank methods. Scaling to billions
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Fig. 9. Results of standard link prediction experiment on four real-world
networks. Each scatter plot shows the link prediction AUC results of 100
experiments of methods inspired by our pairwise link prediction proposal with
respect to the AUC scores of single-seeded PageRank. The solid black line
is the plot of f(x) = x. Points above the line are cases where our proposed
methods have superior performance to standard single-seeded PageRank. We
see that in most cases the four methods outperform the classical seeded
PageRank method. This study suggests that it is useful to consider a node’s
neighborhood for the purposes of seeding for link prediction with PageRank.
The values in the legend serve as a summary performance measure, which is
the average distance to the f(x) = x line.

of nodes and edges is simply not a problem given current
abilities to compute PageRank [25]. The space of higher-
order prediction problems also has limitless sub-structure. An
alternate problem is to predict an edge that is important when
given a single node. In the future, we intend to extend this
work to the latter scenario, and TRPR can be adapted for this
purpose.
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