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Multimodal Network Alignment

Huda Nassar*

Abstract

A multimodal network encodes relationships between the
same set of nodes in multiple settings, and network alignment
is a powerful tool for transferring information and insight
between a pair of networks. We propose a method for
multimodal network alignment that computes a matrix which
indicates the alignment, but produces the result as a low-
rank factorization directly. We then propose new methods
to compute approximate maximum weight matchings of low-
rank matrices to produce an alignment. We evaluate our
approach by applying it on synthetic networks and use it to
de-anonymize a multimodal transportation network.
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1 Introduction é Motivation

Network alignment is a technique to identify related
nodes between two distinct networks. The result is a
formal alignment or matching between the vertices of
each network such that a vertex can only be aligned or
matched to a single vertex in the opposite network. This
methodology has its roots in the domains of ontology
alignment [9], protein-protein network analysis [10,
22], social network de-anonymization [15], and object
recognition [5]. The results of network alignment are
often used for hypothetical information transfer. For
instance, if we understand how a particular experiment
disrupts a subnetwork of protein interactions in a mouse
and we know the related interactions in a human, we
have evidence for the hypothesis that the experiment
would disrupt the mapped interactions in a human.
The network alignment problem and methods have
traditionally been formulated for a pair of networks.
Recently, much of the network data emerging in scientific
applications and engineering studies is multimodal and
contains separate types of relational information between
vertices [23, 4, 1, 20, 19]. For instance, transportation
networks are often described as multimodal when they
feature multiple interconnecting but distinct networks,
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such as when subway lines reach airports and national
train systems. In biology, multimodal networks show
different types of relationships that can occur between
proteins and genes such as protein sequence similarity,
co-occurrence in genes, co-occurrence in scientific papers,
experimental interaction and more.

This motivates our present manuscript. We seek to
produce effective methods to align a pair of multimodal
networks. We will be more specific about our notion
of a multimodal network in the following section. For
now, consider multimodal networks in biology where
proteins have many different types of relationships as
described above. We may, for instance, be interested in
aligning these networks generated from two species to
infer related complexes and systems. In this case, the
modes of each multimodal network are shared between
the two networks to align.

We propose a new method that takes in a pair of
multimodal networks with the same set of modes and
produces an alignment between the vertices encoded in
the network with no apriori knowledge of the relationship
between the vertices. Network alignment problems are
notoriously difficult from a theoretical perspective as
they generalize the subgraph isomorphism problem. In
this context, principled heuristic solutions abound [17,
22, 5.  Our method is a principled and effective
heuristic that generalizes the ideas utilized in the
IsoRank method [22] in concert with the insights from
the network similarity decomposition [13]. It is designed
for multimodal networks with 10s-1000s of modes with
1,000-100,000 vertices.

On top of this new method, we contribute a new
theory about how to take the output from our heuristics
and efficiently turn it into a matching between the
graphs. This solves one of the key challenges in how to
deal with multimodal networks and alignment. Many
good ideas result in a polynomial explosion in problem
size. This causes methods that have been developed
for the pairwise case to be nearly impossible to use
for the multimodal setup we propose [2, 11]. More
specifically, this is a memory bottleneck: they would
need terabytes of memory to handle problems that start
off as a megabyte of data. We state this new theory as
an independently useful primitive of finding a matching
in a low-rank matrix. For this problem, we investigate a
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Figure 1: A multimodal network consists of a common
set of vertices identifiers (in this case, 1-7) and a set
of modes that define edges. Below, we illustrate the
multimodal adjacency matrix, which we will use to align
the multimodal networks.

highly efficient 1/k approximation for a rank-k matrix
that finds the matching by using the low rank factors of
the matrix only.

One of the difficulties with network alignment is that
effective solutions for applications often exploit and use
features of the data arising in those applications, which
may not be generalizable to other instances. For instance,
in biology, using information about the relationship
between the protein sequences is vital to attain the
best solutions [22, 17]. Thus, when we seek to evaluate
our new methods, we will do so in (i) detailed synthetic
experiments and (ii) a case-study and demonstration of
our technique where we de-anonymize a publicly released
transportation network that lacks meaningful vertex
identifiers [20]. The goal of the synthetic experiments
is to address the hypothesis that using multimodal
alignment is better than straightforward generalizations
of using existing network alignment methods to pairwise
align each mode or a combined network. In the case of
the transportation data, only our multimodal alignment
method is able to completely map the data between
the public data and the original database with labels.
Our goal with both of these experiments is to reveal
properties of our method and ideas that would be useful
in any domain-specific application of network alignment
but without the engineering that tends to occur in these
applications. Towards that end, we do no tuning or
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Figure 2: An illustration of the multimodal alignment
problem. The goal is to identify the matching illustrated
between the node id’s given only the multimodal net-
works A and B. We assume the modes have a known
alignment. The overlap of this matching is 20.

parameter selection.
In short, the contributions of our manuscript are:

1. A precise statement of a multimodal network
alignment problem (Section 2).

2. A new method, multimodal similarity decomposi-
tion (MSD), to solve multimodal network alignment
problems that uses all the information among the
modes (Section 4) and goes beyond baseline meth-
ods that align the modes individually (Section 6).

3. Independently useful results about how to approx-
imate a bipartite max-weight matching where the
matching matrix is low-rank (Section 5).

4. We find that simple methods for multimodal align-
ment outperforms strong methods for pairwise net-
work alignment of the individual modes when there
are many vertices missing in each mode (Section 7).

5. A case-study with de-anonymizing a publicly re-
leased multimodal network of airports and air-
lines [20] that cannot be de-anonymized using state-
of-the-art network alignment methods. We also
study the set of most-helpful modes to find this
alignment (Section 8).

We also review existing network alignment methods and
ideas to contextualize our contribution (Section 3). We
will post our codes at www.cs.purdue.edu/~dgleich/
codes/multinsd/ for reproducibility and additional
sensitivity experiments.
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2 Multimodal networks € Multimodal network
alignment

In the context of this paper, a multimodal network is
a common set of vertex labels (the set V) and multiple
sets of undirected edges over these vertices. Each set
of edges represents a mode, so we have E(1) ... E(™)
for m modes. We illustrate an example in Figure 1 with
three modes. Note that only a subset of vertices may be
present in each mode.

To manipulate multimodal network data computa-
tionally, we use a multimodal adjacency matrix. Our
definition is in the spirit of how multislice, multiplex
networks, and temporal networks are represented [18],
although the details of our specific construction differ.

Let Aq,..., A,, represent the adjacency matrices of each
mode. Then the multimodal adjacency matrix is:

Ajl Cy, ... Cyq,

C 2 A2 .. C2m
(2.1) M=| T

ci, .. ... A,

Here, the matrix C;; represents the cross-modal asso-
ciations between mode i and mode j. This is always a
binary diagonal matrix where C;;(k, k) = 1 if vertex k
is present in both mode ¢ and mode j. All other entries
are 0. An example is illustrated in Figure 1. Note that
M is sparse, and the cross-modal edges do not introduce
too many new entries beyond the data.

The goal of the multimodal network alignment
problem is to produce a matching between the vertices
of two multimodal networks that aligns the networks by
maximizing the number of edges of each network that are
preserved under the matching. Recall that a matching
is a 1 — 1 relationship between two sets. Let V4 and
Vg be the vertex sets of multimodal networks A and
B, respectively. We use v <> v’ to denote a matching
between v € V4 and v’ € Vg. Let El(f) and Eg) be the
edge sets of the kth mode of A and B as well. Then we
seek a matching between V4 and Vp that maximizes

m 1 if ug+>up and
(2 2) 2 : 2 : § : vVAURB
0  otherwise.
k=1 (ua,va)(up,vB)
ey eBY

We call this objective the overlap of a matching. Note
that this is a single matching between the vertices that
is then evaluated over all the modes, which is possible
because we assume that the correspondence between each
mode is known and mode k in network A corresponds
to mode k in network B. See Figure 2 for an example.
In many cases it is convenient to state the matching
as a matrix X where the rows are indexed by vertices

in V4 and columns by vertices in Vp. Let X (v,v") =1
if v € V4 matches to v € Vg and 0 otherwise. Also,
let {Ar} and {Bj} be the adjacency matrices for each
mode of the multimodal networks A and B. Then the
multimodal network alignment problem is

max}cmize %Z;anl Zij [XTAkX]” [Bk]l]
(2.3) subject to ), X;; <1 for all j
Zj X;; <1 forall i
Xij S {0, 1}

This is an integer optimization problem over the space
of matrices that is extremely challenging to solve exactly.
It generalizes the subgraph isomorphism problem and all
existing network alignment instances, which correspond
to the case where m = 1.

3 Related work & Background

This section is meant to position our work within the
broader context of network alignment methods. For
recent surveys that explore these dimensions, see [6].
We are considering global network alignment which
seeks a single matching that applies to the entire
network instead of multiple local alignments between
the networks. The global network alignment problem
is almost always stated as an attempt to maximize the
number of overlapped edges combined with maximizing
domain-specific notions of apriori known vertex similarity.
For instance, in protein-protein interaction networks,
this notion of similarity is the similarity score of the
respective genetic sequences [22]. In ontology alignment,
this may come from a textual measure on the ontology
label. The hardest network alignment problems lack
these hints about how to align the networks. Our method
falls into this hard case where we assume no apriori
knowledge of the alignment. Another important feature
is scoring the resulting match when the networks have
substantially different sizes and edge densities. This
aspect has been explored most thoroughly in terms of
biological networks [24].

There are two prominent classes of methods: (i)
embedding and (ii) integer optimization relaxations and
heuristics. Embedding methods seek to compute a
feature vector for each node of A and B independently.
They then use relationships between the feature vectors
to generate the matching. Using eigenvectors is common
for this task in pattern recognition [12]. Recent methods
have proposed graphlet counts [16] and eigenvector
histograms [21]. One closely related method to our
multimodal proposal is to generate the embeddings
based on node and edge types [8]. Obtaining these
feature vectors can be extremely expensive in terms of
computation, but results in memory efficient methods.
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Our method is most strongly related to the integer
optimization and relaxation framework that seeks to
maximize functions related to (2.3) in the case of one
mode, perhaps with an additional term reflecting the
vertex similarity. This problem is a specific instance
of a quadratic assignment problem [3]. IsoRank was
one of the first methods in this class [22]. Subsequent
techniques include belief propagation methods [2], La-
grangian relaxations [11], spectral methods [7], and ten-
sor eigenvectors for motif-alignment [17]. Essentially,
all of these methods store a dense, real-valued heuristic
matrix Y of size |V4| x |Vp|. This needs memory that is
quadratic in the size of the networks and greatly limits
scalability. One of the most scalable methods results
from a crucial analytical insight into the structure of
the IsoRank heuristic. The resulting method — network
similarity decomposition [17] — can be considered a hy-
brid of embedding and integer optimization. Our results
show how these ideas enable a seamless generalization to
multimodal networks and we return to explain in more
depth in the next section.

4 Multimodal Similarity Decomposition:
A multi-modal generalization of IsoRank and
the Network Similarity Decomposition

We now present our approach to compute a multimodal
network alignment. The high level idea is that we
are going to run the IsoRank method to align the
multimodal adjacency matrices M and IN corresponding
to multimodal networks A and B. Doing so will involve
a number of new insights about how the methods will
behave on multimodal networks and exploiting the
structure of the methods. The result of this section
is a heuristic solution matrix Y,;n that we describe
how to turn into a multimodal alignment in Section 5.
We begin by reviewing IsoRank [22] and the network
similarity decomposition [13]. We assume the networks
are undirected in this derivations, but note that directed
generalizations are possible.

4.1 IsoRank & the network similarity decom-
position Consider aligning two standard networks A
and B with adjacency matrices A and B. The IsoRank
method generates a heuristic matrix Y where Y (v, v)
is large if v seems like it should match with v'. To do
this, IsoRank computes Y as the solution of a PageRank
problem on the product graph of A and B. In a small
surprise, this is a well-motivated idea. For more details
about this, we refer the reader to [2]. We can express
this PageRank problem in terms of the final matrix Y
where P is the degree-normalized matrix for network A,
P,; = Ai;/d;, Q is the degree-normalized matrix for B,
and S(v,v’) is the apriori similarity of node v in A and

v’ in B:
(4.4) Y =aPYQ" +(1-)S

One small note: we assume in these equations that A and
B have no nodes with zero outdegree. If there are such
nodes, then we need to normalize Y to be a probability
distribution. When there is no apriori similarity known,
then all entries S are the constant |V4|~1|Vz|~!, which
reflects uniform similarity.

The insight in the network similarity decomposition
(NSD) is that if S is rank 1 — as it would be in the
case of uniform similarity — then running ¢ iterations of
the power method to compute PageRank will result
in a rank ¢t + 1 matrix Y. Moreover, the low-rank
factorization of Y can be easily computed by running the
power method for PageRank on network A and network
B independently. (In this sense, this is similar to an
embedding method, because we compute the PageRank
iterates of each network separately, then combine them.)
This is easy to see when § = uv?’ then ¢ iterations of
the power-method for (4.4) produce:

t—1
YW =(1-0a)) ofPrav”(Q)F + o' Pruv”(Q")!
k=0

(This matrix is a sum of ¢ + 1 rank-1 matrices of the
form scalar - (P'u)(Q'v)”.) In this way, a low-rank
factorization of the IsoRank solution can be computed
extremely efficiently. Run ¢ steps of the power method
for PageRank on network A and B separately and store
the iterations (we will be more precise when we explain
our method for multimodal networks next). Reasonable
values of ¢ are between 5 and 25 as the PageRank series
converges extremely quickly; for o we use o = 0.9.

4.2 Our Multimodal Similarity Decomposition
Our goals with the multimodal similarity decomposition
and multimodal alignment closely mirror those of NSD
and IsoRank. In our case, we want to allow alignment
information to flow between modes of the network to
reinforce alignments between vertices that are present
in various modes. This intuition suggests that the Iso-
Rank scores for the alignment of multimodal adjacency
matrices will be an effective heuristic for our problem.
This will flow alignment information between modes via
the cross-modal edges Cj;.

Since we assume that the alignment between modes
of the network are already known, we can strengthen
our heuristic by customizing the matrix S. Recall that
S;j is the apriori similarity of node ¢ in A and j in B.
The multimodal adjacency matrix has m copies of each
vertex identifier — one for each vertex in each of the m
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modes. Thus, we use the matrix

v-ones 0 ... 0
(4.5) S = : : ,
0 ... 0 ~-ones

where ones is a matrix of size |V4| x |Vp| and ~ is
chosen such that all entries of S sum to 1 (that is,
v = m~1|V4|71Vp|~!). This choice of S corresponds
to a rank-m matrix, where each mode constitutes a
single rank-1 factor suggesting that nodes in mode 1 in
multimodal network A should correspond to nodes in
mode 1 of multimodal network B.

Let M and N be the multimodal adjacency matrices
for multimodal networks A and B, respectively. Let Py,
and Qy correspond to degree-normalization (by columns)
of M and N. Thus, the heuristic Y);y we compute
solves:

where S is the multimodal similarity (4.5). The result
YN gives a score for aligning each node in each mode
of A to each node in each mode B. This is not the type
of output we want, so in subsequent sections, we discuss
how to turn this output into the type of matching we
expect.

At this point, we can utilize the same methodology
underlying the network similarity decomposition to

efficiently compute a low-rank decomposition of Yy, .

Note that the matrix S is rank-m. Thus, we can compute
t iterations of the power-method to solve (4.6) and the
result is a rank (m) - (¢ + 1) matrix Yy n following
the exact same argument as expression for the network
similarity decomposition. The pseudocode is shown in
Figure 3. One small detail is that we assumed in the
derivation that Py; and @y have no empty rows or
columns. If this is not the case, then each iterate needs
to be normalized to be a probability distribution as in
the pseudocode.

5 Matching algorithms & Resolving conflicts
After the multimodal network decomposition (MSD), the

next step is to produce a matching between the vertices.

A standard technique here is to run a max-weight
bipartite matching on the matrix Y for the network
alignment case [22, 2]. There are two issues with this
step. The first is the size of the resulting matrix Ya;n can

be prohibitively large if we realize it as a dense matrix.

This is especially true if we have a large multimodal
network with many modes. A problem with 100 modes
and 5000 vertices would produce a 500,000 x 500, 000
dense matrix whereas the low-rank factors for 8 iterations
would require two 500,000 x 900 matrices. Thus, we

Input: Multimodal networks A, B, «, iteration ¢
Output: Matrices U and V such that Ylé[tj)\,:UVT
U = PageRankPowers (A,a,t)
V = PageRankPowers (B,a,t)

PageRankPowers (A, a,t)
Set M to be the multimodal adjacency of A.
Set P to be the column normalized matrix M.
Allocate Z as a |V|x(t+1)xXxm array
for k=1 to m (the number of modes)
for all i=1 to |V|m
Z0i.0.x] = {(\/ﬁ\/Dl ¢ is an index in mode k
0 otherwise
for j=1:t
Z[:,j,k] = normalize(P Z[:,j—1,k])

Z[:,j—1,k]1 = /(1 —a)ad—1 Z[:,j—1,k]

end
Z[:,t,k] = Vot Z[:,t,k]
end

return U as Z reshaped to |V|Xx (t+1)(m)

Figure 3: Pseudocode for the multimodal similarity de-
composition: m is the number of modes of the multi-
modal networks A and B, and the column-normalization
computes: Pj; = M;;/> , My ;. The normalize func-
tion divides a vector by its sum. The reshaping occurs
by column such that U(:,1) = Z(:,0,1). We assume the
reshaping happens the same way on U and V to ensure
the low-rank factors are aligned. The result U and V'
must still be matched as in Section 5 to solve (2.3).

investigate memory-efficient matching routines that deal
with Y,y via its low-rank decomposition. The second
issue is that this output is a matching on the rows of
the multimodal adjacency matrix and not a matching on
the vertex set of the multimodal network. Aggregating
them can result in conflicting matches and we describe
a few ways to resolve these.

5.1 Approximate matching via low-rank factors
Bipartite matching is a common subroutine that has a
well-known polynomial time algorithm. The problem
with this algorithm is that it requires the matrix of
weights associated with each edge of the bipartite graph.
For our case, this matrix is large and dense, rendering
the algorithm infeasible due to the memory required.
However, note that the bottleneck is the density of
the matrix. Bipartite matching is computationally
tractable with sparse matrices of exactly the same size
because the algorithms utilize the sparsity to lower the
memory requirement. For the purposes of this section,
let Y = UV be the matrix we wish to run a bipartite
matching on and U be m x k. We note that the low-
rank factors from MSD are non-negative, so we assume
U,V >0.

We begin with an extremely idealized case. If k =1,
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then Y = uv” is rank-1, and it is extremely easy
to compute a maximum weight matching. This only
involves sorting the vectors u and v in decreasing order
and taking the largest feasible set of components. (This
fact is a simple corollary of the rearrangement inequality,
so we omit a formal statement and proof.)

For the remainder of this derivation, we’ll need one
additional bit of notation: the matrix inner product
AeB = Zij AijB;;. Recall that a matching can be
expressed as a matrix where X;; = 1 if 7 is matched to j
and all other entries are 0. Given any matching X the
weight of the matching is X ¢ Y. We now show that
using the best matching from each rank-1 factor of Y
gives a 1/k-approximation when Y has rank-k.

THEOREM 5.1. Let Y = UV be a rank-k non-negative
decomposition for Y. Let X; be the mazimum weight
matching corresponding to the rank-1 factor u, v}, and
let f; = X, o (w;vl) be its weight. If f* is the largest
value of f;, then f* is a 1/k-approximation to the
mazimum weight matching on'Y .

Proof. Let X™ be any optimal maximum weight match-
ing. Then
X*eY =YF (X eu~vT)<SF fi<kfr

fi is optimal for uiv;r

optimal matching
weight

While this provides a simple approximation bound,
the value of k for our experiments is often around
1000, rendering it rather pointless in terms of theory.
However, we find that a single factor often produces
exceptionally good approximation factors — far beyond
what the theory from this result would show. We plan
to continue investigating this problem and conjecture
that the structure of the MSD vectors themselves may
suggest a tighter approximation.

In practice, there are a few additional improvements
we can make. Two of these apply to general problems
and also produce a 1/k approximation. The third
improvement is specific to the multimodal network
alignment objective. We also discuss a few other ideas
suggested in the literature.

Maximum weight 1/k. In the first variant, we
compute the weight of the matching X; in the full matrix
Y via Y e X ;. The runtime of this computation is nk and
it can be done entirely with the low-rank factors. Then
we select the largest weight among matchings X ;. This is
still a 1/k approximation because Y @ X; > (w;v’ )e X;
due to the non-negativity.

Union of matchings. While we cannot always
expect to solve the dense bipartite matching problem,
we are able to solve sparse bipartite matching problems
on the size of the vertex sets easily. In this case, we

Table 1: We compare runtimes of approximate bipartite
matching where U and V are n x k for simplicity; all
methods use O(nk) memory. Also, BM(E) is the runtime
for bipartite matching on n nodes with E total entries,
and |E| is the number of edges in the original networks.

Method

Simple 1/k nklogn
Max Weight 1/k  nklogn + nk?

Runtime

Union 1/k nklogn + nk? + BM(nk)
Max Overlap nklogn + |E|
r-Sparsified n%k + BM(nr)

Greedy 1/2 n’k

can take the union of edges produced by the matchings
X1,..., X and find the best bipartite matching in this
sparse subset of the entries of Y. Again, this can only
make our approximation better and so we still get 1/k.

Maximum overlap. The actual goal of our prob-
lem is to achieve the best alignment between two multi-
modal networks. Thus, rather than compute the weight
of the matching in the heuristic Y, we directly evaluate
the overlap produced by each of the matchings X; be-
tween the multimodal adjacency matrices. (Note this is
slightly different from the matching we will consider after
we resolve conflicts below.) This picks the matching X;
that corresponds with the true objective functions.

Other possibilities. In ref. [14], they suggest
computing Y a row at a time and retaining the largest
r entries as edges of a graph. This forms a sparse graph
that can be used in a parallel maximum weight bipartite
matching. Alternatively, it is feasible to run a greedy
1/2-approximate matching. We found both of these
underperformed our ideas in terms of final quality and
were no faster.

Runtime & Memory All of these schemes keep
the matrix Y stored as factors U and V. Each matching
takes O(n) storage, so storing k matches requires O(nk)
memory, and this exactly mirrors the storage of the
factors U and V themselves. We provide a comparison
of runtime in Table 1.

Practical considerations. All of the approxima-
tions here are extremely fast to compute for values of
n up to a few million. So in our codes, we will usually
compute multiple matchings and choose the best based
on the overall alignment scores after we resolve conflicts
as discussed next.

5.2 Resolving conflicts So far, we have presented
methods to derive a matching on a low-rank approxi-
mation. In the context of multimodal networks, this
matches at the level of the row and column identifiers
of the multimodal adjacency matrices. This is a prob-
lem because each vertex id in the multimodal network
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occurs at m different rows of the multimodal adjacency
matrix. For instance, if multimodal network A consists
of 3 modes, vertex 1 can be matched to three different
vertices, one for each mode!

To resolve these conflicts, we have two methods
and choose the best among them based on the overlap
of the alignment they produce. The first method is
to greedily examine the multimodal matching, project
each match to nodes in V4 and Vg, and accept it if it’s
still feasible in the projected alignment. The second
method is to project the multimodal matchings to one
bipartite network on V4 and V. Put another way, we
take the union of all matches induced by the single
multimodal matching. Each edge is weighted by the
value in Yy n (and duplicates are summed) that arose
from the matching. Once we project all the matchings,
we use a bipartite matching to obtain the final matching.

6 Baseline methods

Before we describe our experiments, we explain how the
multimodal alignment problem can be addressed using
existing methods for network alignment. These methods
do not take advantage of the multimodality of the data
to guide the alignment, but nevertheless provide strong
baselines. The first baseline is to smash the networks
together and look at an alignment of the unimodal
networks with edge set UZL:lE(Ak) and U}f:lEgc). We can
use any existing network alignment tool for this task. In
the following experiments, we use Klau’s relaxation [11]
because it had the highest performance among a number
of methods we evaluated (see online codes). In addition
to aligning the smashed unimodal networks, we can also
compute a pairwise alignment between each mode. Thus,
we align the edges Egk) to Eg), which provides another
matching. Note that each alignment produces exactly
the type of output we need and there is no need to
resolve conflicts as we saw in the multimodal case. We
can then pick the best among these m + 1 alignments (1
alignment for each mode and 1 alignment for the smashed
network) based on the total overlap they induce in the
full multimodal network. We call these methods pairwise
alignment rather than multimodal alignment.

7 Synthetic experiments

In our first experiment, we want to understand when mul-
timodal alignment results in better alignment compared
with using a strong algorithm for the pairwise case. We
use our multimodal method with o« = 0.9, 10 iterations,
and then compute the dense matrix Y,y to use with
bipartite matching because this test case is sufficiently
small. We compare it against Klau’s method [11] as a
pairwise aligner as in Section 6. Klau’s algorithm takes

Vertex Del. 0.1, Edge Del. 0.2 Vertex Del. 0.2, Edge Del. 0.1
1 1r
R~

0.5
1 2 3 45 6 7 8 910 1 2 3 4 5 6 7 8 9 10
Number of modes Number of modes

Figure 5: At left, we show how the recovery rate changes
as we add modes when p = 0.1 and ¢ = 0.2; at right
we see p = 0.2 and ¢ = 0.1. The performance of our
multimodal alignment increases as we add modes. The
line is the mean over 50 trials and the bands show the
10% and 90% percentiles.
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significantly longer than MSD.

We generate a multimodal network alignment prob-
lem with 36 nodes and 6 modes as follows. We first create
a 12-node Erdos-Rényi graph with average degree 3, and
then join copies into a single 36-node network. The
purpose of combining the networks is to put a degree of
symmetry into the graph to make the alignment harder.
(For more details about the networks construction refer
to the code associated with this paper). This is our
reference graph. Next, we generate a mode by randomly
deleting vertices with probability p and randomly delet-
ing edges with probability ¢q/2. Then we generate two
instances of this modal graph with deleted edges again
with probability ¢/2. One instance goes to multimodal
network A and the other goes to multimodal network B.
At the end, we have two multimodal networks A and B
where each mode shares a number of relationships.

In figure 4, we show the fraction of edges aligned
using a method over the total number of edges in
the networks as we vary p and ¢ for both MSD and
the best of pairwise alignments (Section 6). We do
not use node-based recovery due to many nodes of
degree one, which cannot be resolved. The results
are the mean over 50 trials, and they show a large
regime where multimodal alignment is superior to
any pairwise alignment. Specifically, when the vertex
deletion probability p is large, the multimodal alignment
is the only method to accurately align the networks.
When edge deletion is high, smashing the networks
effectively reconstitutes the original network and we
see the superior performance of Klau’s pairwise method.

Next, in Figure 5, we show how the behavior of the
methods change as we vary the number of modes of the
multimodal network. As expected, the performance of
our method increases with additional modes, whereas
the performance of the pairwise method is consistent (or
even slightly decreasing).
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Figure 4: At left, the recovery results for our multimodal similarity decomposition (MSD) show excellent
performance even in the high vertex deletion regime. In the middle, the best of any pairwise recovery result shows
good results in the high edge deletion, but worse results with high vertex deletion. At right, the difference shows
blue when MSD outperforms the best of the pairwise alignments by at least 5% recovery.

8 De-anonymizing transportation datasets

In this section we present a case-study with de-
anonymizing a publicly released dataset of airlines and
airports, where we treat each airline as a mode. We
show in this section that only our proposed multimodal
alignment method can fully de-anonymize the network
and align each edge. We run these experiments with
a = 0.9, 10 and illustrate how various low-rank matching
procedures perform. The anonymized network is the Eu-
ropean air network from ref. [20], which was released with
anonymized airport identifiers but with all airline iden-
tifiers. The data originally came from the OpenFlights
repository (http://openflights.org). We wanted to
take the original data and use it to restore identifiers to
the anonymized data. We selected the May 2013 release
based on the publication dates. These networks have 594
airports and 175 airlines and 6468 edges, respectively.
Our goal is to align the multimodal network such that
each edge is matched.

8.1 Performance at de-anonymization We con-
sider an alignment to de-anonymize the network if it
is able to overlap all 6468 edges through the matched
vertex identifiers. In Table 2, we show the overlap size
for our multimodal methods and a number of different
low-rank matching techniques from Section 5. This time
we are not able to run the full bipartite matching un-
less we use a computer with 512G B of RAM and so
we don’t report those results. The best result from the
baseline pairwise alignment methods miss 70 edges. All
of our low-rank matching approximations achieve the
full overlap score.

8.2 Which modes help multimodal alignment?
The final experiment seeks to understand which modes
have the highest impact on the de-anonymization per-
formance. In many applications, collecting additional
data incurs a cost and this experiment is designed to
provide insight as far as what type of multimodal data
would be most helpful to collect. Our goal is to use
only a subset of the 175 modes to produce an alignment,
and then compute the overlap that results from using
this alignment on all 175 modes. We sort the modes
based on a number of graph theoretic measures to pro-
duce interesting subsets. The per-mode measures are:
edge count, unique vertex count, average degree, triangle
count, density. Figure 6 shows the results for these mea-
sures along with a few random orderings of the modes.
The goal is to align the highest fraction of edges using
the fewest modes. Most of the graph theoretic measures
have similar performance, which suggests that any could
be a proxy for which data to collect. Density is a notable
outlier as some of the modes consist of a single edge,
resulting in a high density, but little information about
the global alignment.

9 Conclusion & Future Work

This paper demonstrates an advantage to using multi-
modal features of data: it makes alignment problems
easier. Here, we compared our multimodal network
decomposition (MSD) against a carefully engineered
method in pairwise alignment (Klau’s). We also did
all of the pairwise experiments reported here with the
IsoRank method instead of Klau’s and the results were
uniformly worse as far as the alignment quality. How-
ever, when we use the multimodal extension to IsoRank
we have proposed, accurate alignments are easy to ob-
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Table 2: The multimodal airport networks have 6468
edges. All the multimodal methods are able to de-
anonymize this network. The best pairwise results come
from smashing the multimodal structure and aligning
the resulting networks, which misses 70 edges compared
to the multimodal alignments and takes more time.

Type Method

Overlap

Multimodal ~MSD & Max Weight 1/k 6468
Multimodal ~MSD & Union 1/k 6468
Multimodal MSD & Max Overlap 6468
Pairwise smashed 6398
Pairwise best mode 3127
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Figure 6: As we use more modes to produce an alignment
for the airport data, the performance increases. This
experiment shows that using modes that have many
edges (edge count), touch many unique vertices (vertex
count), have a high average degree (avg degree), or
have high triangle count (# triangles) all outperform
random selections. Alternatively, density does not work
as discussed in the main text.

tain. For instance, note that in Figure 5, MSD used the
additional modes to improve the alignment, whereas the
pairwise method did not.

Although we have not captured runtimes precisely
in this manuscript, let us note that Klau’s method
takes a great deal more computational effort than our
approximation, and results in a extremely high quality
pairwise solution for any mode or the smashed networks.
To give some sense of the difference in effort required,
the results on the synthetic experiment for Figure 4 took
hours to compute with Klau’s method whereas MSD
and all the matching took a few minutes.

In future work, we plan to explore using this type of
multimodal alignment in the context of protein and
gene relationships. We believe that using this new
methodology — combined with particular domain specific
adaptations — will result in new biological insights.
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