
Euro. Jnl of Applied Mathematics (2016), vol. 27, pp. 812–845. c© Cambridge University Press 2016

doi:10.1017/S0956792516000280
812

Seeded PageRank solution paths

D. F. GLEICH1 and K. KLOSTER2

1Department of Computer Science, Purdue University, West Lafayette IN, USA

email: dgleich@purdue.edu
2Department of Mathematics, Purdue University, West Lafayette IN, USA

email: kkloste@purdue.edu

(Received 30 November 2015; revised 26 May 2015; accepted 27 May 2016; first published online 1 July 2016)

We study the behaviour of network diffusions based on the PageRank random walk

from a set of seed nodes. These diffusions are known to reveal small, localized clusters

(or communities), and also large macro-scale clusters by varying a parameter that has

a dual-interpretation as an accuracy bound and as a regularization level. We propose a

new method that quickly approximates the result of the diffusion for all values of this

parameter. Our method efficiently generates an approximate solution path or regularization

path associated with a PageRank diffusion, and it reveals cluster structures at multiple

size-scales between small and large. We formally prove a runtime bound on this method that

is independent of the size of the network, and we investigate multiple optimizations to our

method that can be more practical in some settings. We demonstrate that these methods

identify refined clustering structure on a number of real-world networks with up to 2 billion

edges.

Key words: Random walks on graphs, graphs and linear algebra (matrices, eigenvalues, etc.),

programming involving graphs or networks, social networks, complex networks.

1 Introduction

Networks describing complex technological and social systems display many types of

structure. One of the most important types of structure is clustering because it reveals the

modules of technological systems and communities within social systems. A tremendous

number of methods and objectives have been proposed for this task (survey articles

include refs. [28, 32]). The vast majority of these methods seek large regions of the graph

that display evidence of local structure. For the case of modularity clustering, methods

seek statistically anomalous regions; for the case of conductance clustering, methods seek

dense regions that are weakly connected to the rest of the graph. All of the objective

functions designed for these clustering approaches implicitly or explicitly navigate a

trade-off between cluster size and the underlying clustering signal. For example, large

sets tend to be more anomalous than small sets. Note that these trade-offs are essential

to multi-objective optimization, and the choices in the majority of methods are natural.

Nevertheless, directly optimizing the objective makes it difficult to study these structures

as they vary in size from small to large because of these implicit or explicit biases. This

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792516000280
Downloaded from https:/www.cambridge.org/core. Purdue University Libraries, on 22 Mar 2017 at 15:22:02, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792516000280
https:/www.cambridge.org/core

Seeded PageRank solution paths 813

intermediate regime represents the meso-scale structure of the network, and includes such

network characteristics as the core-periphery property found in many real-world networks.

In this manuscript, we seek to study structures in this meso-scale regime by analysing

the behaviour of seeded graph diffusions. Seeded graph diffusions model the behaviour of

a quantity of “dye” that is continuously injected at a small set of vertices called the seeds

and distributed along the edges of the graph. These seeded diffusions can reveal multi-

scale features of a graph through their dynamics. The class we study can be represented

in terms of a column-stochastic distribution operator P:

x =
∑∞

k=0 γkP
ks,

where γk are a set of diffusion coefficients that reflect the behaviour of the dye k steps

away from the seed, and s is a sparse, stochastic vector representing the seed nodes. More

specifically, we study the PageRank diffusions

x =
∑∞

k=0(1 − α)αkPks.

The PageRank diffusion is equivalent to the stationary distribution of a random walk

that: (i) with probability α, follows an edge in the graph and (ii) with probability (1 − α)

jumps back to a seed vertex (see Section 3 more detail on this connection).

PageRank itself has been used for a broad range of applications including data mining,

machine learning, biology, chemistry, and neuroscience; see our recent survey [11]. Among

all the uses of PageRank, the seeded variation is frequently used to localize the PageRank

vector within a subset of the network; this is also known as personalized PageRank due to

its origins on the web, or localized PageRank because of its behaviour.(We will use these

terms: seeded PageRank, personalized PageRank, and localized PageRank interchangeably

and use the standard acronym PPR to refer to them.) Perhaps, the most important

justification for this use is presented in [2], where the authors determined a relationship

between seeded PageRank vectors and low-conductance sets that allowed them to create

a type of graph partitioning method that does not need to see the entire graph. Their

PageRank-based clustering method, called the push method, has been used for a number

of important insights into communities in large social and information networks [18, 22].

Our focus is a novel application of this push method for meso-scale structural analysis

of networks. The push method, which we’ll describe formally in Section 4, depends on

an accuracy parameter ε. As we vary ε, the result of the push method for approximating

the PageRank diffusion reveals different structures of the network. We illustrate three

PageRank vectors as we vary ε for Newman’s network science collaboration graph [26] in

Figure 1. There, we see that the solution vectors for PageRank that result from push have

only a few non-zeros for large values of ε. (Aside: There is a subtle inaccuracy in this

statement. As we shall see shortly, we actually are describing degree-normalized PageRank

values. This difference does not affect the non-zero components or the intuition behind

the discussion.) This is interesting because an accurate PageRank vector is mathematically

non-zero everywhere in the graph. push, with large values of ε, produces sparse approx-

imations to the PageRank vector. This connection is formal, and the parameter ε has a

dual interpretation as a sparsity regularization parameter [12] (reviewed in Section 4.2).

The solution path or regularization path for a parameter is the set of trajectories that

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792516000280
Downloaded from https:/www.cambridge.org/core. Purdue University Libraries, on 22 Mar 2017 at 15:22:02, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792516000280
https:/www.cambridge.org/core

814 D. F. Gleich and K. Kloster

Figure 1. Nodes coloured by their degree-normalized PageRank values as ε varies: dark red is

large, yellow is small. The hidden nodes are mathematically zero. As ε decreases, more nodes become

non-zero. (a) ε = 10−2, (b) ε = 10−3 and (c) ε = 10−4.

the components of the solution trace out as the parameter varies [9]. This interpretation

motivates our study of solution paths for seeded PageRank diffusions.

1.1 Our contributions

We present new algorithms based on the push procedure that allow us to approximate

the solution path trajectories for seeded PageRank as a function of ε. We use our solution

path approximation to explore the properties of graphs at many size-scales in Section 5,

identifying features such as community strength and nested communities. In our technical

description, we show that the solution path remains localized in the graph (Theorem 1).

Experiments show that it runs on real-world networks with millions of nodes in less than

a second (Section 7).

The push method has become a frequently used graph mining primitive because of

the sparsity of the vectors that result from when push is used to approximate the seeded

PageRank diffusion, along with the speed at which they can be computed. The method

is typically used to identify sets of low-conductance (defined in Section 3) in a graph as

part of a community or cluster analysis [10, 14, 15, 18, 22, 30]. In these cases, the insights

provided by the solution paths are unlikely to be necessary. Rather, what is needed is a

faster way to compute these diffusions for many values of ε. To address this difficulty, we

propose a data structure called a shelf that we demonstrate can use 40 times as many

values of ε in only seven times the runtime (Section 7.3).

In the spirit of reproducible research, we make all our codes publicly available:

https://github.com/kkloste/pagerank-paths

2 Related work

As we already mentioned, regularization paths are common in statistics [9, 16], and they

help guide model selection questions. In terms of clustering and community detection,

solution paths are extremely important for a new type of convex clustering objective

function [17, 23]. Here, the solution path is closely related to the number and size of

clusters in the model.

One of the features of the solution path that we utilize to understand the behaviour

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792516000280
Downloaded from https:/www.cambridge.org/core. Purdue University Libraries, on 22 Mar 2017 at 15:22:02, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792516000280
https:/www.cambridge.org/core

Seeded PageRank solution paths 815

of the diffusion is the stability of the set of best conductance over time. In ref. [8], the

authors use a closely related concept to study the persistence of communities as a different

type of temporal relaxation parameter varies. Again, they use the stability of communities

over regions of this parameter space to indicate high-quality clustering solutions.

In terms of PageRank, there is a variety of work that considers the PageRank vector

as a function of the teleportation parameter α [5, 21]. Much of this work seeks to

understand the sensitivity of the problem with respect to α. For instance, we can compute

the derivative of the PageRank vector with respect to α. It is also used to extrapolate

solutions to accelerate PageRank methods [6]. More recently, varying α was used to show

a relationship between personalized-PageRank-like vectors and spectral clustering [24].

Note that PageRank solution paths as α varies would be an equally interesting parameter

regime to analyse. The parameter α functions akin to ε in that large values of α cause the

diffusion to propagate further in the graph.

3 Technical preliminaries

We first fix our notation and review the Andersen–Chung–Lang procedure, which forms

the basis for many of our contributions. We denote a graph by G = (V , E), where V is

the set of nodes and E the set of edges. All graphs we consider are simple, connected,

and undirected. Let G have n = |V | nodes and fix a labelling of the graph nodes using

the numbers 1, 2, . . . , n. We refer to a node by its label. For each node j, we denote its

degree by dj .

The adjacency matrix of the graph G, which we denote by A, is the n × n matrix

having Ai,j = 1, if nodes i and j are connected by an edge, and 0 otherwise. Since G is

simple and undirected, A is symmetric with 0s on the diagonal. The matrix D denotes the

diagonal matrix with entry (i, i) equal to the degree of node i, di. Since G is connected, D

is invertible, and we can define the random walk transition matrix P := AD−1.

We denote by ej the standard basis vector of appropriate dimensions with a 1 in entry

j, and by e the vector of all 1s. In general, we use subscripts on matrices and vectors to

denote entries, e.g. Ai,j is entry (i, j) of matrix A; the notation for standard basis vectors,

ej , is an exception. Superscripts refer to vectors in a sequence of vectors, e.g. x(k) is the

kth vector in a sequence.

For any set of nodes, S ⊆ V , we define the volume of S to be the sum of the degrees of

the nodes in S , denoted vol(S) =
∑

j∈S dj . Next, define the boundary of S ⊆ V to be the

set of edges that have one endpoint inside S and the other endpoint outside S , denoted

∂(S). Finally, the conductance of S , denoted φ(S), is defined by

φ(S) :=
|∂(S)|

min{vol(S), vol(V − S)} .

Conductance can be thought of as measuring the extent to which a set is more connected

to itself than the rest of the graph and is one of the most commonly used community

detection objectives [28].

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792516000280
Downloaded from https:/www.cambridge.org/core. Purdue University Libraries, on 22 Mar 2017 at 15:22:02, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792516000280
https:/www.cambridge.org/core

816 D. F. Gleich and K. Kloster

3.1 PageRank and Andersen–Chung–Lang method

The Andersen–Chung–Lang method uses PageRank vectors to identify a set of small

conductance focussed around a small set of starting nodes [2]. We call such starting nodes

seed sets and the resulting communities, local communities. We now briefly review this

method starting with PageRank.

For a stochastic matrix P, a stochastic vector v, and a parameter α ∈ (0, 1), we define

the PageRank diffusion as the solution x to the linear system:

(I − αP)x = (1 − α)v. (3.1)

Note that when α ∈ (0, 1), the system in (3.1) can be solved via a Neumann series

expansion, and so the solution x to this linear system is equivalent to the PageRank

diffusion vector described in Section 1. When v = (1/|S |)eS , i.e. the indicator vector for a

seed set S , normalized to be stochastic, then we say the PageRank vector has been seeded

on the set S (or personalized on the set S).

Given PageRank diffusion scores x, the Andersen–Chung–Lang procedure uses the val-

ues xj/dj to determine an order for a sweep-cut procedure (described below) that identifies

a set of good conductance. Thus, we would like to bound the error in approximating the

values xj/dj . Specifically, for their theoretical guarantees regarding conductance to hold,

we need our approximate solution x̂ to satisfy

0 � xj − x̂j < εdj or equivalently, x � x̂, and ‖D−1(x − x̂)‖∞ < ε. (3.2)

Once a PPR diffusion x is computed to this accuracy, a near-optimal conductance set

located nearby the seed nodes is generated from the following a sweep cut procedure.

Rank the nodes in descending order by their scaled diffusion scores xj/dj , with large

scores ranking the highest. Denote the set of nodes ranked 1 through m by S(m). Iteratively

compute the conductance of the sets S(m) for m = 2, 3, . . . , until xm/dm = 0. Return the

set S(t) with the minimal conductance. This returned set is related to the optimal set of

minimum conductance nearby the seed set through a localized Cheeger inequality [2]. The

value of ε relates to the possible size of the set.

4 The push procedure

The push procedure is an iterative algorithm to compute a PageRank vector to satisfy

the approximation (3.2). The distinguishing feature is that it can accomplish this goal

with a sparse solution vector, which it can usually generate without ever looking at the

entire graph or matrix. This procedure allows the Andersen–Chung–Lang procedure to run

without ever looking at the entire graph. As we discussed in the introduction, this idea and

method are at the heart of our contributions and so we present the method in some depth.

At each step, push updates only a single coordinate of the approximate solution like a

coordinate relaxation method. We will describe its behaviour in terms of a general linear

system of equations. Let Mx = b be a square linear system with 1s on the diagonal,

i.e. Mi,i = 1 for all i. Consider an iterative approximation x(k) ≈ x after k steps. The

corresponding residual is r(k) = b − Mx(k). Let j be a row index where we want to relax,

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792516000280
Downloaded from https:/www.cambridge.org/core. Purdue University Libraries, on 22 Mar 2017 at 15:22:02, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792516000280
https:/www.cambridge.org/core

Seeded PageRank solution paths 817

i.e. locally solve, the equation, and let r be the residual value there, r = r(k)
j . We update the

solution by adding r to the corresponding entry of the solution vector, x(k+1) = x(k) + rej ,

in order to guarantee r(k+1)
j = 0. The residual can be efficiently updated in this case. Thus,

the push method involves the operations:

x(k+1) = x(k) + rej;

r(k+1) = r(k) − rMej . (4.1)

Note that the iteration requires updating just one entry of x(k) and accessing only a

single column of the matrix M. It is this local update that enables push to solve the

seeded PageRank diffusion efficiently.

4.1 The Andersen–Chung–Lang push procedure for PageRank

The full algorithm for the push method applied to the PageRank linear system to compute

a solution that satifies (3.2) for a seed set S is:

(1) Initialize x = 0, r = (1 − α)eS using sparse data structures such as a hash-table.

(2) Add any coordinate i of r, where ri � εdi to a queue Q.

(3) While Q is not empty

(4) Let j be the coordinate at the front of the queue and pop this element.

(5) Set xj = xj + rj

(6) Set δ = αrj/dj

(7) Set rj = 0

(8) For all neighbours u of node j

(9) Set ru = ru + δ

(10) If ru exceeds εdu after this change, add u to Q.

The queue maintains a list of all coordinates (or nodes) where the residual is larger than

εdj . We choose coordinates to relax from this queue. Then, we execute the push procedure

to update the solution and residual. The residual update operates on only the nodes that

neighbour the updated coordinate j. Once elements in the residual exceed the threshold,

they are entered into the queue.

We have presented the push method so far from a linear solver perspective. To instead

view the method from a graph diffusion perspective, think of the solution vector as

tracking where “dye” has concentrated in the graph and the residual as tracking where

“dye” is still spreading. At each step of the method, we find a node with a sufficiently

large amount of dye left (Step 4), concentrate it at that node (Step 5), then update the

amount of dye that is left in the system as a result of concentrating this quantity of dye

(Lines 6–10). The name push comes from the pattern of concentrating dye and pushing

newly unprocessed dye to the adjacent residual entries.

Note that the value of ε plays a critical role in this method as it determines the

entries that enter the queue. When ε is large, only a small number of coordinates or

nodes will ever enter the queue. This will result in a sparse solution. As ε → 0, there

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792516000280
Downloaded from https:/www.cambridge.org/core. Purdue University Libraries, on 22 Mar 2017 at 15:22:02, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792516000280
https:/www.cambridge.org/core

818 D. F. Gleich and K. Kloster

will be substantially more entries that enter the queue. In the original description of the

Andersen–Chung–Lang algorithm, the authors proved that the push method computes

the diffusion with accuracy ε in work bounded by O(ε−1(1 − α)−1), and so the solution

can have no more than O(ε−1(1 − α)−1 non-zeros. The convergence theory (and, hence,

sparsity) of our novel method depends on constants which we have not yet introduced,

and so for bounds on our proposed methods we direct the interested reader to Section 5.

4.2 Implicit regularization from push

To understand the sparsity that results from the push method, we introduce a slight

variation on the standard push procedure inspired in part by Andersen’s interesting

implementation of this algorithm. Rather than using the full update xj + rj and pushing

αrj/dj to the adjacent residuals, we consider a method that takes a partial update. The

form we assume is that we will leave εdjρ “dye” remaining at node j. For ρ = 0, this

corresponds to the push procedure described above. For ρ = 1, this update will remove

node j from the queue, but push as little mass as possible to the adjacent nodes such that

the dye at node j will remain below εdj . Andersen used ρ = 0.5, possibly as a means to

increase the sparsity of the solution. The change is just at steps 5–7:

(5′) Set xj = xj + (rj − εdjρ)

(6′) Set δ = α(rj − εdjρ)/dj

(7′) Set rj = εdjρ

In previous work [12, Theorem 3], we showed that ρ = 1 produces a solution vector x

that exactly solves a related 1-norm regularized optimization problem. The form of the

problem that x solves is most cleanly stated as a quadratic optimization problem in z, a

degree-based rescaling of the solution variable x:

minimize
1

2
zTQz − zTg + Cε‖Dz‖1

subject to z � 0.
(4.2)

The details of the optimization problem that are required to demonstrate the equivalence

between z and x are tedious to state and uninformative to our purposes in this work.

The important point is that ε can also be interpreted as a regularization parameter that

governs the sparsity of the solution vector x. Large values of ε increase the magnitude of

the 1-norm regularizer and thus cause the solutions to be sparser. Moreover, the resulting

solutions are unique as the above problem is strongly convex.

In this work, we seek algorithms to compute the solution paths or regularization paths

that result from trying to use all values of ε to fully study the behaviour of the diffusion.

In the next section, we explore some potential utilities of these paths before presenting

our algorithms for computing them in Section 6.

5 Personalized PageRank paths

In this section, we aim to show the types of insights that the PageRank solution paths can

provide. We should remark that these are primarily designed for human interpretation.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792516000280
Downloaded from https:/www.cambridge.org/core. Purdue University Libraries, on 22 Mar 2017 at 15:22:02, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792516000280
https:/www.cambridge.org/core

Seeded PageRank solution paths 819

Our vision is that they would be used by an analyst that was studying a network and

needed to better understand the “region” around a target node. These solution paths

would then be combined with something like a graph layout framework to study these

patterns in the graph. Thus, much of the analysis here will be qualitative. In subsequent

sections, we present our algorithm for computing these solution paths, as well as the

quantitative advantages of the path methodology. We emphasize that these PageRank

solution paths exist separately from our algorithms: Our method is simply one manner

of computing the solution paths efficiently. Therefore, no understanding of our algorithm

is required to be able to draw insights from the solution paths themselves.

The focus of this section is to illustrate the kinds of information that the solution paths

can uncover near a seed node. With this in mind, the examples that we present use seeds

that we selected as follows. First, we randomly sampled dozens of seeds from different

datasets and determined what kinds of insights their solution paths offered. Then, we

chose a subset of those seeds as case studies for the kinds of features we noticed in the

solution paths. Those are the seeds used in the figures below.

5.1 Exact paths and fast path approximations

As discussed in Section 4, the solution paths for displaying the behaviour of PageRank as

ε varies have a single, exact, unique solution. We can obtain the exact solution path for the

seeded PageRank diffusion by solving the regularized optimization problem (4.2) itself for

all values of ε. This could be accomplished by using ideas similar to those used to compute

solution paths for the Lasso regularizer [9]. Our algorithms and subsequent analysis

evaluate approximate solution paths that result from using our push-based algorithm with

ρ = 0.9 (Section 6.2). In this section, we compare our approximate paths to the exact paths.

We find that, while the precise numbers change, the qualitative properties are no different.

Figure 2 shows the results of such a comparison on Newman’s netscience dataset (379

nodes, 914 edges [26]). Each curve or line in the plot represents the value of a non-zero

entry of an approximate PageRank vector xε as ε varies (horizontal axis). As ε approaches

0 (and 1/ε approaches ∞), each approximate PageRank entry approaches its exact value

in a monotonic manner. Alternatively, we can think of each line as the diffusion value of

a node as the diffusion process spreads across the graph. The plots in the figure are for a

PageRank vector from the same seed, using α = 0.99.

The left plot was computed by solving for the optimality conditions of (4.2); the right

plot was computed using our PPR path approximation algorithm (described in detail in

Section 6.2), with ρ = 0.9. The values of ε are automatically determined by the algorithm

itself. The plots show that our approximate paths and the exact paths have essentially

identical qualitative features. For example, they reveal the same bends and inflections in

individual node trajectories, as well as large gaps in PageRank values. The maximum

difference between the two paths never exceeds 1.1 × 10−4. The lower row of plots

displays the behaviour of the best conductance attained as ε varies. These conductance

plots also show that the approximate paths (right plot) reveal nearly exactly the same

information as the exact paths (left plot).

These results were essentially unchanged for a variety of other sample diffusions we

considered, and so we decided that using ρ = 0.9 was an acceptable compromise between

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792516000280
Downloaded from https:/www.cambridge.org/core. Purdue University Libraries, on 22 Mar 2017 at 15:22:02, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792516000280
https:/www.cambridge.org/core

820 D. F. Gleich and K. Kloster

Figure 2. This figure compares the exact and approximate paths for a seeded PageRank vector

from the same seed node, with α = 0.99. (Top, left) The solution paths for a PageRank diffusion on

Newman’s netscience dataset from a single seed node computed by exactly solving the regularized

problem. (Top, right) The approximate solution paths computed by our push-based solution path

algorithm with ρ = 0.9. Each line traces a value xj as ε varies. The maximum infinity-norm

distance between the two paths is 1.1 × 10−4, showing that ρ = 0.9 provides a good quantitative

approximation. Moreover, the two plots highlight identical qualitative features—for example, the

large gaps between paths, and the strange bend in the paths near ε = 10−3. The colouring of

the lines is based on the values at the smallest value of ε. The values of ε used were generated

by the approximate algorithm itself and we computed the exact solution at these same values

for comparison. (Bottom row) The bottom plot shows that the approximate and exact paths yield

sets of nearly identical conductance. More specifically, for each value of ε, the plot displays the

best conductance obtained by a sweep over the ε-accurate solution vector produced by the exact

solution paths (dashed blue curve) and the approximate curve (solid red curve). The only differences

between these two “conductance curves” occur at sharp drops in conductance, where one algorithm’s

conductance does not drop at the exact same value of ε as the other algorithm’s conductance.

speed and exactness. Thus, all path plots in this paper were created with ρ = 0.9, unless

noted otherwise. (For analysis of the differences of the exact paths and ρ-paths, and in

particular, the behaviour of the ρ-approximate paths as ρ varies, see Figure 7 below.)

5.2 The seeded PageRank solution path plot

We now wish to introduce a specific variation on the solution path plot that shows

helpful contextual information (we refer the reader to Figure 3 for an example). In the

course of computation, our solution path algorithm identifies a set of values of ε (a few

hundred to many thousands, depending on the underlying graph and settings for ρ, α,

and the minimum ε used), where it computes a PageRank approximation that satisfies

the solution criteria (6.2). At each of these values of ε, we perform a sweep-cut procedure

to identify the set of best conductance induced by the current solution. In the solution

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792516000280
Downloaded from https:/www.cambridge.org/core. Purdue University Libraries, on 22 Mar 2017 at 15:22:02, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792516000280
https:/www.cambridge.org/core

Seeded PageRank solution paths 821

Figure 3. An example of the seeded PageRank solution path plot on Newman’s netscience dataset.

Each coloured line represents the value of a single node as the diffusion progresses from large ε

to small ε. Because of our ρ-approximation to the true paths, the smallest value any node obtains

is (1 − ρ)ε and we plot this as a thin, black, diagonal line. The thick black curve traces out the

boundary of the set of best conductance found at each distinct value of ε as determined by a

sweep-cut procedure. The vertical blue lines indicate values of ε, where set of minimum conductance

reaches half of the conductance value of the previous blue line, and they are labelled with the

conductance value. The colouring of the trajectory lines is based on the PageRank values at the

smallest value of ε. Finally, whereas the thick black curve in the path plot indicates the set of nodes

that attains the best conductance, the lower plot displays the conductance value that is attained by

the set of nodes. The line denoting the set of best conductance is smooth and stable over certain

intervals where the conductance value plateaus, indicating nested communities (manually annotated

as A, B, C , D, and E). We discuss implications of the plot in Section 5.3.

path plot, we display the cut-point identified by this procedure as a thick black curve. All

the nodes whose trajectories are above the dark black curve at a particular value of ε are

contained in the set of best conductance at that value of ε. This curve allows us to follow

the trajectory of the minimum-conductance set as we vary ε. We call this the “best-set

curve”.

Another property of our algorithm is that the smallest possible non-zero diffusion value

in the solution is (1 − ρ)ε. Thus, we plot this as a thin, diagonal, black line that acts as

a pseudo-origin for all of the node trajectories. The vertical blue lines in the bottom left

of the plot mark values of ε, where we detect a significant new set of best conductance.

That is, each vertical blue line indicates that the best conductance attained has decreased

by a factor of 2 since the previous vertical blue line.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792516000280
Downloaded from https:/www.cambridge.org/core. Purdue University Libraries, on 22 Mar 2017 at 15:22:02, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792516000280
https:/www.cambridge.org/core

822 D. F. Gleich and K. Kloster

Finally, we also include a plot (bottom) that shows how conductance varies with ε.

More specifically, for each value of ε, the best conductance attained during a sweep over

the PageRank vector xε is displayed. We call this plot the “conductance curve”. Regions

where the conductance curve stays flat indicate a set of best conductance that does not

vary even as ε is varied. These regions correspond to intervals where the set of best

conductance changes very little, or not at all. This can also be observed in the path plot

as intervals where the best-set curve remains smooth and closely follows a single node’s

trajectory, rather than oscillating or dipping sharply. We interpret such good-conductance

sets to be strong or “stable” communities, because no nodes enter or exit this set across

a wide interval of ε values. Alternatively, such a “stable” set of best conductance can

be understood as a set of nodes that does not change across an entire interval of the

diffusion process.

5.3 Nested communities in netscience and Facebook

We now discuss some of the insights that arise from the solution path plot. In Figure 3,

we show the seeded PageRank solution path plot for netscience with the settings α = 0.99

and ρ = 0.9, and a minimum accuracy of 10−5. With these settings, the plot displays

information from 268,595 values of ε computed via our algorithm. (We remark that this

number is quite large compared to other datasets. This occurs because netscience is such a

small graph; on larger datasets the number of distinct ε values explored is in the hundreds

to tens of thousands.) This computation runs in less than a second. Here, we see that

large gaps in the degree normalized PageRank vector indicate cutoffs for sets of good

conductance. This behaviour is known to occur when sets of really good conductance

emerge [1]. We can now see how they evolve and how the procedure quickly jumps between

them. In particular, the path plots reveal multiple communities (good conductance sets)

nested within one another through the gaps between the trajectories. Additionally, such

nested communities can also be observed from the conductance curve (Figure 3, lower

right). Intervals where the conductance curve is flat (marked as A,B, C, D, and E in the

figure) indicate that the set of best conductance is identical across an entire interval of

different ε values. At the same time, the thick curve indicating the best set smoothly

follows a single node’s trajectory over these intervals of ε, indicating that the set of nodes

does not change, suggesting a good or “stable” community. Multiple intervals where the

conductance curve is flat indicate multiple instances of such stable best-conductance sets

nested within one another.

On a crawl of a Facebook network from 2009 where edges between nodes correspond

to observed interactions [31] (see Table 1, fb-one, for the statistics), we are able to find

a large, low conductance set using our solution path method. (Again, this takes about

a second of computation.) Pictured in Figure 4, this diffusion shows no sharp drops in

the PageRank values like in the network science data, yet we still find good conductance

cuts. Note the few stray “orange” nodes in the sea of yellow. These nodes quickly grow

in PageRank and break into the set of smallest conductance. Finding these nodes is

likely to be important to understand the boundaries of communities in social networks;

these trajectories could also indicate anomalous nodes. Furthermore, this example also

shows evidence of multiple nested communities. These are illustrated with the manual

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792516000280
Downloaded from https:/www.cambridge.org/core. Purdue University Libraries, on 22 Mar 2017 at 15:22:02, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792516000280
https:/www.cambridge.org/core

Seeded PageRank solution paths 823

Figure 4. The seeded PageRank solution path for a crawl of observed Facebook network activity

for 1 year (fb-one from Table 1) shows large, good cuts do not need to have large drops in the

PageRank values. Nodes enter the solution and then quickly break into the best conductance set,

showing that the frontier of the diffusion should be an interesting set in this graph. Furthermore,

this path plot shows evidence of multiple nested communities (A through D), which were manually

annotated. The set A is only a few nodes, but has a conductance score of 0.27; set B grows and

improves this to a conductance of 0.1. The set C has nearly the same conductance as B, yet

grows into a much larger set of nodes; and finally set D includes many more nodes to achieve a

conductance of 0.07, which is an unusually small conductance value in a large social network.

annotations A,B, C, and the small curve D, which all indicate intervals of ε values, where

the conductance curve is flat and the best-set curve is smooth, representing minimum-

conductance sets that do not change as ε changes. These solution paths were computed

using the settings α = 0.99, ρ = 0.9, and a minimum accuracy of 10−5.

5.4 Core and periphery structure in the US Senate

The authors in [18] analysed voting patterns across the first 110 US-Senates by comparing

senators in particular terms (original data available here [27]). We form a graph from this

US Senate data in which each senator is represented by a single node. For each term of the

senate, we connect senators in that session with edges to their three nearest neighbours

measured by voting similarities. This graph has a substantial temporal structure as a

senator from 100 years ago cannot have any direct links to a senator serving 10 years ago.

We show how our solution paths display markedly different characteristics when seeded

on a node near the core of the network compared with a node near the periphery. This

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792516000280
Downloaded from https:/www.cambridge.org/core. Purdue University Libraries, on 22 Mar 2017 at 15:22:02, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792516000280
https:/www.cambridge.org/core

824 D. F. Gleich and K. Kloster

Figure 5. (Top.) The solution paths on the US-Senate graph for a senator in the core (who served

multiple terms and is centrally located in a graph layout) and for a senator in the periphery (who

served a single term and is located on the boundary of the graph layout). (Bottom.) The diffusions

for each of these senators are shown as heat-plots on the graph layout. Red indicates nodes with

the largest values and yellow the smallest. The seed nodes are circled in black in these layouts. The

solution paths for a peripheral node indicate multiple nested communities, visible in the images of

the diffusion on the whole graph and marked A through F . These sets are strongly correlated with

successive terms of the Senate. In contrast, the core node diffusion appears to have only indicates

one good cut. For the core node, we can see the diffusion essentially spreads across multiple dense

regions simultaneously, without settling in one easily separated region until ε is small enough that

the diffusion has spread to the entire left side of the graph. The sets F and I are also almost the

same. (a) Core, ε = 3× 10−4, (b) Core, ε = 10−4, (c) Core, ε = 3× 10−5, (d) Periphery, ε = 3× 10−4,

(e) Periphery, ε = 10−4 and (f) Periphery, ε = 3 × 10−5.

example is especially interesting because the two different diffusions eventually lead to

closely related cuts, as ε approaches 0.

Figure 5 displays solution paths seeded on a senator on the periphery of the network

(top right) and a senator connected to the core of the network (top left). Here are some

qualitative insights from the solution path plots. The peripheral seed is a senator who

served a single term in the fifth Congress; the diffusion spreads across the graph slowly

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792516000280
Downloaded from https:/www.cambridge.org/core. Purdue University Libraries, on 22 Mar 2017 at 15:22:02, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792516000280
https:/www.cambridge.org/core

Seeded PageRank solution paths 825

because the seed is poorly connected to the network outside the seed senator’s own

senate term. As the diffusion spreads outside the seed’s particular term, the paths identify

multiple nested communities (manually annotated as sets A through F) that essentially

reflect previous and successive terms of the Senate. We add the annotated sets based on

intervals of ε, where the conductance curve plateaus and the best-set curve appears to be

smooth.

In contrast, the core node is a senator who served eight terms between the 21st and

34th Congresses. The core node’s paths skip over such smaller scale community structures

(i.e. individual senate terms) as the diffusion spreads to each of those terms nearly

simultaneously. Instead, the paths of the core node identify a few different cuts that

appear to be nearly the same set of nodes (marked G, H , and I), with one particularly

good cut (set I): The cut roughly separating all of the seed’s terms from the remainder

of the network. These solution paths were computed using the settings α = 0.99, ρ = 0.9,

and a minimum accuracy of 3 × 10−5.

This example demonstrates the paths’ potential ability to shed light on a seed’s rela-

tionship to the network’s core and periphery, as well as the seed’s relationship to multiple

communities.

5.5 Cluster boundaries in handwritten digit graphs

Finally, we use the solution paths to study the behaviour of a diffusion for a semi-

supervised learning task. The USPS handwritten digits dataset consists of roughly 10,000

images of the digits 0 through 9 in human hand-writing [34]. Each digit appears in

roughly 1,000 of the images, and each image is labelled accordingly. From this data, we

construct a three-nearest-neighbours graph, and carry out our analysis as follows. Pick

one digit, and select four seed nodes uniformly at random from the set of nodes labelled

with this digit. Then, compute the PageRank solution paths from these seeds. Figure 6

shows the path plots with labels (right) and without (left). In the labelled plot, the correct

labels are red and the incorrect labels are green. These solution paths used the settings

α = 0.99, ρ = 0.9, and a minimum accuracy of 10−4.

We can use the best conductance set determined by the PPR vector to capture a

number of other nodes sharing the seeds’ label. However, this straight-forward usage of

a PageRank vector results in a number of false positives. Figure 6 (right) shows that a

number of nodes with incorrect labels are included in the set of best conductance (curves

coloured green do not share the seed’s label).

Looking at the solution-paths for this PageRank vector (Figure 6, left), we can see that

a number of these false positives can be identified as the erratic lighter orange paths

cutting across the red paths. Furthermore, the solution paths display earlier sets of best

conductance (manually annotated as A) that would cut out almost all false positives.

This demonstrates that the solution paths can be used to identify “stable” sets of best

conductance that are likely to yield higher precision labelling results, even though they

potentially have worse conductance than other sets found. Consequently, these results

hint that a smaller, but more precise, set lurks inside of the set of best conductance. This

information would be valuable when determining additional labels or trying to study new

data that is not as well characterized as the USPS digits dataset.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792516000280
Downloaded from https:/www.cambridge.org/core. Purdue University Libraries, on 22 Mar 2017 at 15:22:02, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792516000280
https:/www.cambridge.org/core

826 D. F. Gleich and K. Kloster

Figure 6. Seeded PageRank solution path plots for diffusions in the USPS digit dataset. The seeds

are chosen to be images of handwritten digits with the same label. (At left.) The solution paths

reveal a number of anomalous node trajectories near the set of best conductance. The black line

indicating the set of best conductance oscillates up and down in many places, showing that the set

of best conductance is erratic and frequently changes over those intervals. But two regions show a

particularly flat conductance curve and smooth best-set curve (annotated as A and B) indicating

a set of best conductance that is stable.(At right.) Here, we have coloured the solution path lines

based on the true-class label. Red shows a correct label and green shows an incorrect label. We

can see that the set achieving the best possible conductance (set C) does not have particularly good

precision. Instead, stabler sets of good conductance, like A and B, obtain better precision.

This dataset is constructed using a parameter that must be chosen (i.e. k, in the k-

nearest-neighbours graph), which raises the question of whether or not the behaviour

of the solution paths depends on the parameter k. A recent work of ours explores this

question of how different graph constructions affect the performance of graph algorithms;

for example, how the choice of k in a k-NN graph affects the precision of a classification

algorithm [13]. The conclusion is that the value of k that should be used is the value

that is smallest while still preserving the signal of the underlying structure; we chose the

smallest k such that the graph is still connected, k = 3.

5.6 Discussion

Overall, these seeded PageRank solution path plots reveal information about the clusters

and sets near the seeds. Some of the features we’ve seen include nested community

structure, core-periphery structure, and the stability of a community across an interval

of a diffusion. They all provide refined information about the boundary of a community

containing the seed, and suggest nodes with seemingly anomalous connections to the

seed. For instance, some nodes enter the diffusion early but have only a slow-growing

value indicating a weak connection to the seed; other nodes are delayed in entering the

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792516000280
Downloaded from https:/www.cambridge.org/core. Purdue University Libraries, on 22 Mar 2017 at 15:22:02, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792516000280
https:/www.cambridge.org/core

Seeded PageRank solution paths 827

diffusion but quickly grow in magnitude and end up being significant members of the

cluster. Each of these features offers refined insights over the standard single-shot diffusion

computation.

6 Algorithms

Here, we present two novel algorithms for analysing a PPR diffusion across a variety

of accuracy parameter settings by computing the diffusion only a single time. Our

first algorithm (Section 6.2) computes the best-conductance set from the ρ-approximate

solution paths described in Section 4.2. Instead of obtaining the best-conductance set

from a single PPR diffusion, this effectively finds the best-conductance set that can be

obtained from any PPR diffusion that has accuracy in the interval [εmin, εmax], where εmin

and εmax are inputs. We prove the total runtime is bounded by O(ε−2
min(1 − α)−2(1 − ρ)−2),

though we believe improvements can be made to this bound. In addition to identifying

the best-conductance set taken from the different approximations, the algorithm enables

us to study the solution paths of PageRank, i.e. how the PPR diffusion scores change as

the diffusion’s accuracy varies. Hence, we call this method ppr-path.

We describe a second algorithm optimized for speed (Section 6.3) in finding sets

of low conductance, as the exhaustive nature of our first method generates too much

intermediate data for stricter values of ε. Instead of computing the full solution paths, the

second method searches for good-conductance sets over an approximate solution for each

accuracy parameter taken from a grid of parameter values. The spacing of the accuracy

parameters values on the grid is an additional input parameter. For this reason, we call the

algorithm ppr-grid. For a log-spaced grid of values ε0 > ε1 > · · · > εN , we locate the best-

conductance set taken from a sweep over each εk-approximation. The work required to

compute the diffusions is bounded by O(ε−1
N (1−α)−1); we show this yields a constant factor

speedup over the practice of computing each diffusion separately. However, our method

requires the same amount of work for performing the sweeps over each different diffusion.

We begin by describing a modification to the PageRank linear system that will simplify

our notation and the exposition of our algorithm.

6.1 A modified PageRank linear system for the push procedure

Recall that the goal is to solve the PageRank linear system (3.1) to the accuracy condi-

tion (3.2) and then sort by the elements xj/dj . If we multiply Equation (3.1) by D−1, then

after some manipulation we obtain

(I − αPT)D−1x = (1 − α)D−1v.

Note this transformation relies on A being symmetric so that PT = (AD−1)T = D−1A =

D−1PD. To avoid writing D−1 repeatedly, we make the change of variables y = (1/(1 −
α))D−1x and b = D−1v. The modified system is then

(I − αPT)y = b, (6.1)

and we set x(k) = (1 − α)Dy(k).

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792516000280
Downloaded from https:/www.cambridge.org/core. Purdue University Libraries, on 22 Mar 2017 at 15:22:02, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792516000280
https:/www.cambridge.org/core

828 D. F. Gleich and K. Kloster

This connection between x and y enables us to establish a convergence criterion for

our algorithms that will guarantee we obtain an approximation with the kind of accuracy

typically desired for methods related to the push operation, e.g. (3.2). More concretely, to

guarantee ‖D−1(x − x̂)‖∞ < ε, it suffices to guarantee ‖y − ŷ‖∞ < ε
1−α

, so it suffices for

our purposes to bound the error of the system (6.1).

The accuracy requirement has two components: non-negativity, and error. We relate

the solution to its residual as the first step towards proving both of these. Left-multiplying

the residual vector for (6.1) by (I − αPT)−1 and substituting y = (I − αPT)−1b, we get

y − y(k) =

(∞∑
m=0

αm
(
PT

)m)
r(k),

where the right-hand side replaces (I − αPT)−1 with its Neumann series. Note here that,

if the right-hand side consists of all non-negative entries, then it is guaranteed that

y − y(k) � 0 holds. Recall from Section 4.1 that the residual update involved in the push

procedure consists of adding non-negative components to the residual, and so the residual

must be non-negative. Then, since (1 − α)y(k) = D−1x(k), this implies x � x(k), proving one

component of the accuracy criteria (3.2) is satisfied.

Next, we bound the error in y in terms of its residual, and then control the residual’s

norm. Using the triangle inequality and sub-multiplicativity of the infinity norm allows us

to bound ‖y − y(k)‖∞, which implies (3.2), with the following

∞∑
m=0

αm
∥∥∥(

PT
)m

r(k)
∥∥∥

∞
�

(∞∑
m=0

αm
∥∥PT

∥∥m

∞

)∥∥r(k)
∥∥

∞ .

Finally, since P is column stochastic, PT is row-stochastic, and so ‖PT‖∞ = 1. Substituting

this and noting that
∑∞

m=0 α
m = 1/(1 − α) allows us to bound

1
1−α

∥∥D−1x − D−1x(k)
∥∥

∞ =
∥∥y − y(k)

∥∥
∞ � 1

1−α

∥∥r(k)
∥∥

∞ .

So to guarantee x satisfies the desired accuracy, it is enough to guarantee that∥∥r(k)
∥∥

∞ < ε (6.2)

holds, where r(k) = b − (I − αPT)y(k) and x(k) = (1 − α)Dy(k). Thus, for our algorithms

to converge to the desired accuracy, it suffices to iterate until the residual norm satisfies

the bound (6.2). With this terminating condition established, we can now describe our

algorithm for computing the solution paths of xε as ε varies.

6.2 PageRank solution paths

Recall that our goal is computing the solution paths of seeded PageRank with respect

to the parameter ε. That is, we want an approximation xε of PageRank for all ε values

inside some region. Let P be a stochastic matrix, choose α satisfying 0 < α < 1, let v

be a stochastic vector, and set b = D−1v. Fix input parameters εmin and εmax. Then, for

each value εcur ∈ [εmin, εmax] (εcur denotes “the value of ε currently being considered”), we

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792516000280
Downloaded from https:/www.cambridge.org/core. Purdue University Libraries, on 22 Mar 2017 at 15:22:02, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792516000280
https:/www.cambridge.org/core

Seeded PageRank solution paths 829

want an approximation ŷ of the solution to (I − αPT)y = b that satisfies ‖y − ŷ‖∞ < εcur

1−α
.

(Or rather, we want a computable approximation to this information.) As discussed in

Section 4.2, we also use the approximation parameter ρ ∈ [0, 1) in the push step.

Given initial solution y(0) = 0 and residual r(0) = b, proceed as follows. Maintain a pri-

ority queue, Q(r), of all entries of the residual that do not satisfy the convergence criterion

rj < εmin. We store the entries of Q(r) using a max-heap so that we can quickly determine

‖r‖∞ at every step. For readers less familiar with data structures and sorting operations—

such as queues, heaps, and bubblesort—we provide brief descriptions in the Appendix.

Each time the value ‖r‖∞ reaches a new minimum, we consider the resulting solution

vector to satisfy a new “current” accuracy, which we denote εcur. For each such εcur

achieved, we want to perform a sweep over the solution vector. Because the sweep

operation requires a sorted solution vector, we keep y in a sorted array, L(y). By re-

sorting the solution vector each time a single entry yj is updated, we avoid having to do a

full sweep for each “new” εcur-approximation. The local sorting operation is a bubblesort

on a single entry; the local sweep update we describe below.

With the residual and solution vector organized in this way, we can quickly perform

each step of the above iterative update. Then, iterating until ‖r‖∞ < εmin guarantees

convergence to the desired accuracy. Next, we present the iteration in full detail.

6.2.1 PPR-path algorithm

The ppr-path algorithm performs the following iteration until the maximum entry in

Q(r) is below the smallest parameter desired, εmin.

(1) Pop the max of Q(r), say entry j with value r, then set rj = ρεcur and re-heap Q(r).

(2) Add r − ρεcur to yj .

(3) Bubblesort entry yj in L(y).

(4) If L(y) changes, perform a local sweep update.

(5) Add (r − ρεcur)αP
T ej to r.

(6) For each entry i of r that was updated, if it does not satisfy ri < εmin, then insert

(or update) that entry in Q(r) and re-heap.

(7) If ‖r‖∞ < εcur, record the sweep information, then set εcur = ‖r‖∞.

When the max-heap Q(r) is empty, this signals that all entries of r satisfy the conver-

gence criterion rj < εmin, and so our diffusion score approximations satisfy the accuracy

requirement (3.2).

6.2.2 Sweep update

The standard sweep operation over a solution vector involves sorting the entire solution

vector and iteratively computing the conductance of each consecutive sweep set. Here, we

re-sort the solution vector after each update by making only the local changes necessary

to move entry yj to the correct ranking in L(y). This is accomplished by bubblesorting

the updated entry yj up the rankings in L(y). Note that if y(k) has Tk non-zero entries,

then this step can take at most Tk operations. We believe this loose upperbound can be

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792516000280
Downloaded from https:/www.cambridge.org/core. Purdue University Libraries, on 22 Mar 2017 at 15:22:02, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792516000280
https:/www.cambridge.org/core

830 D. F. Gleich and K. Kloster

improved. We could determine the new rank of node yj in work logTk via a binary insert.

However, since we must update the rank and sweep information of each node that node

yj surpasses, the asymptotic complexity would not change.

Once the node ranks have been corrected, the conductance score update proceeds as

follows. Denote by S (k−1)(m) the set of nodes that have rankings 1, 2, . . . , m during step

k − 1. Assuming we have the cut-set (cut and volume) information for each of these sets,

then we can update that information for the sets S (k)(m) as follows.

Suppose the node that changed rankings was promoted from rank j to rank j − Δk .

Observe that the sets S (k)(m) and their cut-set information remain the same for any

set S (k)(m) lying inside the rankings [1, . . . , j − Δk − 1], because the change in rankings

happened entirely in the interval [j − Δk, . . . , j]. This occurs for m < j − Δk . Similarly,

any set S (k)(m) with m > j would already contain all of the nodes whose rank changed—

altering the ordering within the set does not alter the conductance of that set, and so

this cut-set information also need not be changed. Hence, we need to update the cut-set

information for only the intermediate sets.

Now, we update the cut-set information for those intermediate sets. We refer to the

node that changed rank as node L(j). Its old rank was j, and its new rank is j − Δk .

Note that the cut-set information for the set S (k)(j − t) (for t = 0, . . . , Δk) is the exact same

as that of set S (k−1)(j − t − 1) ∪ {L(j)}. In words, we introduce the node L(j) to the set

S (k−1)(j − t− 1) from the previous iteration, and then compute the cut-set information for

the new iteration’s set, S (k)(j−t), by looking at just the neighbourhood of node L(j) a single

time. This provides a great savings in work compared to simply re-performing the sweep

procedure over the entire solution vector up to the index where the rankings changed.

If the node being operated on, L(j), has degree d, then this process requires work

O(d+Δk). As discussed above, we can upperbound Δk with the total number of iterations

the algorithm performs Tk .

Theorem 1 Given a random walk transition matrix P = AD−1, stochastic vector v, and input

parameters α ∈ (0, 1), ρ ∈ [0, 1), and εmax > εmin > 0, our ppr-path algorithm outputs the

best-conductance set found from sweeps over εcur-accurate degree-normalized, ρ-approximate

solution vectors x̂ to (I − αP)x = (1 − α)v, for all values εcur ∈ [εmin, εmax]. The total work

required is bounded by O
(

1
ε2min(1−α)2(1−ρ)2

)
.

Proof We carry out the proof in two stages. First, we show that the basic iterative update

converges in work O(ε−1
min(1 − α)−1(1 − ρ)−1). Then, we show that the additional work of

sorting the solution vector and sweeping is bounded by O(ε−2
min(1 − α)−2(1 − ρ)−2).

Push work. Here, we count the operations performed on just the residual r(t) and

solution vector y(t). The work required to maintain the heap Q and sorted array L is

accounted for below.

In step t, the push operation acts on a single entry in the residual that satisfies rt � εmin.

The step consists of a constant number of operations to update the residual and solution

vectors (namely, updating a single entry in each). Let j = j(t) denote the index of the

residual that is operated on in step t. The actual amount that is removed from the residual

node is (rt −ρεmin); then, we add (rt −ρεmin) to entry j in the solution, and (rt −ρεmin)α/dj

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792516000280
Downloaded from https:/www.cambridge.org/core. Purdue University Libraries, on 22 Mar 2017 at 15:22:02, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792516000280
https:/www.cambridge.org/core

Seeded PageRank solution paths 831

to r(t)
i for each neighbour i of node j. Since node j has dj such neighbours, the total

work in one step is bounded by O
(
dj

)
. Suppose T total steps of the push operation are

performed in order to obtain an accuracy of εmin. Then, the amount of work required is

bounded by O(
∑T

t=0 dj(t)).

Next, we bound this expression for the work done in these “push” steps, O(
∑T

t=0 dj(t)).

First, as noted above each step, we add a small amount to a particular entry of the

solution vector y: in step t, we add (rt − ρεmin) to entry j in the solution, y(t)
j . This means

that at any given step, k, the solution can be expressed y(k) =
∑k

t=0 ej(t)(rt − ρεmin). But

x and y are always related by y(k) = (1/(1 − α))D−1x(k). Thus, using the expression for y

above, we can write that

x(k) = (1 − α)D

(
k∑

t=0

ej(t)(rt − ρεmin)

)
(6.3)

= (1 − α)

k∑
t=0

ej(t)dj(t)(rt − ρεmin). (6.4)

Summing both sides at any step k yields eTx(k) = (1 − α)
∑k

t=0 dj(t)(rt − ρεmin). We claim

that the sum eTx(k) � 1 for all steps k, and in particular at the last step T . Assuming this

for the moment, we get from Equation (6.4) that (1−α)
∑T

t=0(rt−ρεmin) ·dj(t) = eTx(T) � 1.

Since each step of ppr-path operates on a residual value satisfying rt � εmin, we know

that (rt − ρεmin) � εmin(1 − ρ), and so

1 �(1 − α)

T∑
t=0

(rt − ρεmin) · dj(t) (6.5)

� (1 − α)

T∑
t=0

εmin(1 − ρ) · dj(t). (6.6)

Dividing by εmin(1 − α)(1 −ρ) completes the proof that the expression for work,
∑T

t=0 dj(t),

is bounded by O
(
ε−1
min(1 − α)−1(1 − ρ)−1

)
.

Lastly, we justify the claim eTx(k) � 1. Left-multiplying the equations in (6.1) by (De)T

and using stochasticity of v gives

eT (I − αP)Dy(k) = eTDb − eTDr(k);

(1 − α)eT 1
(1−α)

x(k) = eT v − eTDr(k);

eTx(k) = 1 − eTDr(k). (6.7)

All entries of the residual and iterative solution vector are non-negative at all times. The

sum eTx(k) cannot exceed 1 for any step k, then, because that would imply that the residual

summed to a negative number, contradicting non-negativity of the residual vector. Hence,

eTx(k) � 1 for all steps k.

Sorting and sweeping work. The proof of our work bound involves tedious details of

data structures, and is less informative to our current purposes. We present the full proof

of our work bound in the Appendix. �

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792516000280
Downloaded from https:/www.cambridge.org/core. Purdue University Libraries, on 22 Mar 2017 at 15:22:02, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792516000280
https:/www.cambridge.org/core

832 D. F. Gleich and K. Kloster

6.3 Fast multi-parameter PPR

Here, we present a fast framework for computing ε-approximations of a push-based

PPR diffusion without computing a new diffusion for each ε. This enables us to identify

the optimal output that would result from multiple diffusion computations for different

ε values, but without having to do the work of computing a new diffusion for each

different ε. This algorithmic framework does not admit the parameter ρ as easily, because

of implementation details surrounding the data structures used to handle sorting and

updating the residual.

The framework is compatible with every set of parameter choices for ε that allows

for constant-time bin look-ups. More precisely, the set of parameters ε0, ε1, . . . , εN must

have an efficient method for determining the index k such that, given a value r, we have

εk−1 > r � εk . We focus on a set of ε values that are taken from a log-spaced grid: that is,

the parameters are of the form εk = ε0θ
k for constants 0 < ε0, θ < 1. Because we assume

our ε parameters are taken from such a grid, we call our method ppr-grid. Another

possibly useful case is choosing εk values taken from a grid formed from Chebyshev-like

nodes, allowing for constant-time shelf-placement via cos−1 evaluations.

We emphasize that the underlying algorithm we use to compute the PageRank diffusion

is closely related to the push method discussed in Section 4 as implemented by [2]; in the

case that only a single accuracy parameter is used, the algorithms are identical. When more

than one accuracy setting is used, we employ a special data structure, which we call a shelf.

6.3.1 The shelf structure

The main difference between our algorithm ppr-grid and previous implementations of

the push method lies in our data structure replacing the priority queue, Q, discussed in

ppr-path. Instead of inserting residual entries in a heap as in ppr-path, we organize

them in a system of arrays. Each array holds entries between consecutive values of εk , so

that each array holds entries larger than the shelf below it. For this reason, we call this

system of arrays a “max-shelf”, H , and refer to each individual array as a “shelf”, Hk .

The process is effectively a bucket sort: Each shelf (or bucket) of H holds entries of

the residual lying between consecutive values of εk in the parameter grid. For parameters

ε0, ε1, . . . , εN , shelf Hk holds residual values r satisfying εk−1 > r � εk . Residual entries

smaller than εN are omitted from H (since convergence does not require operating on

them). Residual entries with values greater than ε0 are simply placed in shelf H0.

6.3.2 PPR on a grid of ε parameters

During the iterative step of ppr-grid, then, rather than place a residual entry at the

back of Q, we instead place the entry at the back of the appropriate shelf, Hk . Once all

shelves Hm(r) are cleared for m � k, then the residual has no entries larger than εk , and

so we have arrived at an approximation vector satisfying convergence criterion (3.2) with

accuracy εk . At this point, we perform a sweep procedure using the εk-solution. We then

repeat the process until the next shelf is cleared, and a new εk+1-solution is produced.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792516000280
Downloaded from https:/www.cambridge.org/core. Purdue University Libraries, on 22 Mar 2017 at 15:22:02, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792516000280
https:/www.cambridge.org/core

Seeded PageRank solution paths 833

PPR-grid algorithm. The iterative step is as follows:

(1) Determine the top-most non-empty shelf, Hk .

(2) While H contains an entry in shelf k or above, do the following:

(3) Pop an entry on or above shelf Hk , say value r in entry rj , and set rj = 0.

(4) Add r to xj .

(5) Add rαPT ej to r.

(6) For each entry of r that was updated, move that node to the correct shelf, Hm,

where εm−1 > r � εm. If an entry is placed on a shelf higher than k, record the new

top-shelf.

(7) Shelves 0 through k are cleared, so the εk-solution is done; perform a sweep.

Once all shelves are empty, the approximation with strictest accuracy, εN , has been

attained, and a final sweep procedure is performed. For more details on how the shelf

structure works, for example, how to determine on which shelf an entry should be placed,

see the Appendix.

Theorem 2 Given a random walk transition matrix P = AD−1, stochastic vector v, and

input parameters α, θ ∈ (0, 1) and εk = ε0θ
k , our ppr-grid algorithm outputs the best-

conductance set found from sweeps over εk-accurate degree-normalized solution vectors x̂

to (I − αP)x = (1 − α)v, for all values εk for k = 0 through N. The work in computing

the diffusions is bounded by O(1
εN (1−α)

). This improves on the method of computing the N

diffusions separately, which is bounded by O
(

1
εN (1−α)(1−θ)

(1−θN+1)
)
. The two methods perform

the same amount of sweep-cut work.

Proof Note that the amount of push-work required to produce a diffusion with smallest

accuracy εN is exactly the same as the push-work performed in computing an εN solution

via ppr-path; The only difference is in how we organize the residual and solution vectors.

Hence, the push-work for ppr-grid is bounded by O(ε−1
N (1 − α)−1). Updating the shelf

structure for ppr-grid requires only a constant number of operations in each iteration,

and so the dominating operation in one step of ppr-grid is the residual push work.

Thus, the push-work bound for ppr-grid is O(ε−1
N (1 − α)−1). �

Push-work for N separate diffusions. As noted above, computing a diffusion with

parameters εk and α requires push-work O(ε−1
k (1 − α)−1). Summing this over all values of

εk gives
∑N

k=0 ε
−1
k (1 − α)−1 = (1 − α)−1

∑N
k=0(1/εk). Substituting ε0θ

k in place of εk , we see

this sum is simply a scaled partial geometric series,
∑N

k=0 ε
−1
k = ε−1

0 θ−N(1 − θN+1)/(1 − θ).

Simplifying gives

N∑
k=0

1
εk(1−α)

= 1
εN (1−α)(1−θ)

(
1 − θN+1

)
,

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792516000280
Downloaded from https:/www.cambridge.org/core. Purdue University Libraries, on 22 Mar 2017 at 15:22:02, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792516000280
https:/www.cambridge.org/core

834 D. F. Gleich and K. Kloster

Table 1. Datasets

Graph |V | |E| dave

itdk0304 190,914 607,610 6.37

dblp 226,413 716,460 6.33

youtube 1,134,890 2,987,624 5.27

fb-one 1,138,557 4,404,989 3.9

fbA 3,097,165 23,667,394 15.3

ljournal 5,363,260 49,514,271 18.5

hollywood 1,139,905 56,375,711 98.9

twitter 41,652,230 2,041,892,992 98

friendster 65,608,366 1,806,067,135 55.1

proving the bound on the push-work. For our choices ε0 = 10−1, εN = 10−6/3, and

θ = 0.66 (which correponds to using N = 32 diffusions), this quantity is roughly 2.9 times

greater than computing only one diffusion, as our method does.

Sweep work. The number of operations required in computing the diffusion is bounded

by O(ε−1
N (1 − α)−1), but this does not include the work done in sweeping over the various

εk-approximation vectors. The sweep operation requires sorting the solution vector. As

noted in the proof of work for ppr-path, the number of non-zeros in the solution vector

is bounded by O(ε−1
N (1−α)−1), and so the sorting work is O(ε−1

N (1−α)−1 log(ε−1
N (1−α)−1)).

This implies that sorting is the dominant subroutine of the algorithm. In practice, the

bound on the number of non-zeros in the solution is loose, and the push operations

comprise most of the labour.

7 Experimental results on finding small conductance sets

We have presented two frameworks for computing a single personalized PageRank diffu-

sion across multiple parameter settings. Here, we analyse their performance on a set of

real-world social and information networks with varying sizes and edge-densities with the

goal of identifying sets of small conductance. All datasets were altered to be symmetric

and have 0s on their diagonals; this is done by deleting any self-edges and making all

directed edges undirected. In addition to versions of the Facebook dataset analysed in

Section 5, we test our algorithms on graphs including twitter-2010 from [20], friendster

and youtube from [25,33], dblp-2010 and hollywood-2009 in [3,4], idk0304 from [29], and

ljournal-2008 in [7]. See Table 1 for a summary of their properties.

7.1 The effect of ρ on conductance

Our first experimental study regards the selection of the parameter ρ for finding sets

of small conductance. We already established that ρ = 0.9 yielded qualitatively accurate

solution path plots. However, for the specific problem of identifying small conductance

sets, we want to understand the effect that ρ has on the best conductance that is attained.

To study this, we carry out the following experiment. For each dataset, select 100 distinct

seed nodes uniformly at random. For each seed node, compute the PageRank solution

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792516000280
Downloaded from https:/www.cambridge.org/core. Purdue University Libraries, on 22 Mar 2017 at 15:22:02, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792516000280
https:/www.cambridge.org/core

Seeded PageRank solution paths 835

rho
0 0.2 0.4 0.6 0.8 1

C
on

du
ct

an
ce

 g
ap

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

youtube
twitter
ljournal
hollywood
friendster
fbA
dblp

rho
0 0.2 0.4 0.6 0.8 1

R
un

tim
e

(s
ec

)

10 −3

10 −2

10 −1

10 0

10 1

10 2

Figure 7. Here, we display the behaviour of the solution paths as ρ scales from 0 to 1. At left,

we display the gap between φ(ρ), the best conductance found at that value of ρ, and φmin, the

minimum conductance found over all values of ρ. The lines depict the maximum difference, over

100 trials, of the quantity φ(ρ) − φmin. This plot shows that the best conductance found becomes

worse as ρ approaches 1. At right, the runtime of our ppr-path algorithm appears to scale with

1/(1 − ρ), which is better than the 1/(1 − ρ)2 predicted by our theory.

paths using our algorithm ppr-path, with the following settings. In all cases, we use

α = 0.99 and a smallest accuracy of ε = 10−5; we perform a different computation for

each setting ρ = 0, 0.02, 0.04, . . . , 0.98. This allows us to study the effect of ρ on the best

conductance obtained by the solution paths. We find a curious behaviour and get the best

results with small values of ρ. We will explain why this is shortly, but first we consider

the results in Figure 7. In the left subplot, we report the maximum difference between the

minimum conductance found for any value of ρ over the 100 trials. It can be large, for

instance, 0.7 for one trial on the LiveJournal graph, where large ρ shows worse results. We

remark that we choose to display the maximum difference, instead of the mean or median

difference, because we want to understand the extent to which changing ρ can change

conductance results. Changing ρ will often lead to little or no change in the conductance

attained; but by displaying the maximum difference in performance, we emphasize that

our new method can sometimes obtain large performance improvements.

In that same figure, we show the runtime scaling. It seems to scale with 1/(1−ρ), which

is slightly better than expected from the bound in Theorem 1.

The greatest difference between the best conductance found for any value of ρ and

the worst conductance found for any ρ occurs in the livejournal graph, with a gap of

nearly 0.7. We discovered that the cause for this disparity is that large values of ρ delay

the propagation of the diffusion, and so the ρ = 0.9 paths at ε = 10−5 did not spread

far enough to find a set of conductance near 0.07. In contrast, all paths with ρ < 0.5

did diffuse deep enough into the graph to identify this good conductance set. Thus, it

is possible that many of the differences in conductance performance between paths with

different values of ρ might in fact be caused by the size of the region to which the

diffusion spreads for a given value of ε. Figure 8 illustrates this finding.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792516000280
Downloaded from https:/www.cambridge.org/core. Purdue University Libraries, on 22 Mar 2017 at 15:22:02, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792516000280
https:/www.cambridge.org/core

836 D. F. Gleich and K. Kloster

Figure 8. At left, the ρ = 0 paths identify mostly poor conductance sets φ ≈ 0.8, and locate a set

of low conductance, φ = 0.0788, only towards the end of the diffusion (the deep dip in conductance

just before ε = 10−5, indicated by a vertical dashed line). At right, we see that the ρ = 0.9 paths

cannot find this set with ε = 10−5 (again, indicated by a vertical dashed line). With a slightly smaller

accuracy (ε = 5 × 10−6 instead of ε = 10−5), the diffusion is able to spread far enough to locate the

good conductance set.

Our conclusion from these experiments is that, for the goal of finding sets of small

conductance, we should use small values of ρ near zero. While it sometimes happens that

ρ > 0 slightly improves conductance, this is not a reliable observation, and so for the

remaining experiments on conductance, we set ρ = 0. (This has the helpful side effect of

making it easier to compare with our ppr-grid.)

7.2 Runtime and conductance: ppr-path

Our first method, ppr-path, is aimed at studying how PPR diffusions vary with the para-

meter ε. Towards this, Table 2 emphasizes the shear volume of distinct ε-approximations

that ppr-path explores. We also want to highlight both the efficiency of our method over

the näıve approach for computing the solution paths, and the additional information that

the solution paths provide compared to a single diffusion.

With this in mind, our experiment proceeds as follows. On each dataset, we selected

100 distinct nodes uniformly at random, and ran three personalized PageRank algorithms

from that node, with the settings α = 0.99 and ε = 10−5. Table 2 displays results for our

solution paths algorithm (“path” in the table) compared with two other algorithms chosen

to emphasize the runtime and the performance of ppr-path. We describe the other two

algorithms below.

To show how ppr-path scales compared to the runtime of a single diffusion, and to

emphasize that the solution paths can locate better conductance sets in some cases, we

compare our solution paths method with a standard implementation for computing a

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792516000280
Downloaded from https:/www.cambridge.org/core. Purdue University Libraries, on 22 Mar 2017 at 15:22:02, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792516000280
https:/www.cambridge.org/core

Seeded PageRank solution paths 837

Table 2. Runtime and conductance comparison of the solution paths (all accuracies from

10−1 to 10−5) with (1) a single PPR diffusion with accuracy 10−5 (labelled “Single diff.”)

and (2) 10,000 PPR diffusions, accuracies k−1 for k = 1 to 10,000 (labelled “multi diff.”).

On each dataset, we selected 100 distinct nodes uniformly at random and ran the algorithms

with the settings α = 0.99, ε = 10−5, and ρ = 0. Column “num ε” displays the median

number of distinct accuracy parameters ε explored by our algorithm ppr-path. Columns

under “Time” report 25th, 50th, and 75th percentiles of runtimes over these 100 trials.

The column “φ-ratio” lists the largest (best) ratio of conductance achieved by a single

diffusion with conductance achieved by our ppr-path, showing our method can improve on

the conductance found by a single diffusion by as much as a factor of 2.09

Single diff. time (sec.) ppr-path time (sec.) multi diff. time (sec.)

Data num ε 25 50 75 25 50 75 25 50 75 φ-ratio

itdk0304 5292 0.02 0.02 0.03 0.28 0.41 0.69 70.8 94.2 123.2 1.77

dblp 8138 0.02 0.02 0.02 0.40 0.51 0.65 87.3 97.9 111.5 1.12

youtube 2844 0.01 0.01 0.01 0.05 0.10 0.15 28.6 38.7 49.2 1.47

fb-one 3464 0.01 0.01 0.01 0.03 0.05 0.07 28.1 34.6 40.5 1.09

fbA 862 < 0.01 < 0.01 0.01 0.01 0.01 0.01 14.0 16.5 19.5 1.16

ljournal 2799 0.01 0.01 0.01 0.01 0.02 0.05 24.5 30.9 43.6 2.09

hollywood 423 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.01 14.0 17.2 22.4 1.19

twitter 172 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.01 6.5 10.3 18.1 1.05

friendster 402 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.01 11.1 13.6 16.6 1.09

single PPR diffusion (“Single diff.” in Table 2). Columns 3 to 5 in the table give the 25th,

50th, and 75th percentiles of runtime (computed over 100 trials) for the single diffusion

algorithm. To compare with our ppr-path, columns 6 to 8 give the 25th, 50th, and

75th percentiles (computed over 100 trials) of the runtime of our ppr-path. Although

ppr-path is slower on the small graphs, on the larger graphs we see the runtime is nearly

the same as for a single PPR diffusion. At the same time, column 2 shows that “path”

computes the results from hundreds or even thousands of diffusions, a significant gain in

information over the single PPR diffusion. Finally, column 12 (φ-ratio) gives the best ratio

of conductance found by ppr-path compared to that found by “Single diff”. This shows

that the solution paths can improve on the conductance obtained by a single diffusion by

as much as a factor of 2.09.

To display the efficiency of our algorithm in computing these many diffusion settings,

we again use the standard PPR implementation, but this time set to compute the diffusion

for every accuracy setting ε = k−1 for k = 1 to 10,000. This algorithm is “multi diff.” in

Table 2, and is essentially a näıve method for approximating the solution paths. Columns

9 to 11 give the 25th, 50th, and 75th percentiles (computed over 100 trials) of the runtimes

of “multi diff.”, and show that this näıve approach to computing diffusions with multiple

accuracies is prohibitively slow—it is hundreds to thousands of times slower than our

ppr-path method.

Lastly, we acknowledge here that both variations on the PPR diffusion are näıve

approaches to the problem at hand. However, currently there is no other algorithm

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792516000280
Downloaded from https:/www.cambridge.org/core. Purdue University Libraries, on 22 Mar 2017 at 15:22:02, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792516000280
https:/www.cambridge.org/core

838 D. F. Gleich and K. Kloster

for computing the PPR solution paths which we can use as a more competitive

baseline.

7.3 Runtime and conductance: ppr-grid

We compare our second method ppr-grid with a method called ppr-grow. The ppr-grow

method is an optimized implementation [14] of the Andersen–Chung–Lang push al-

gorithm described in Section 4. Each of these algorithms uses a variety of accuracy

settings, and returns the set of best conductance found from performing a sweep-cut over

the diffusion vector resulting from each accuracy setting. The algorithm ppr-grow has

32 pre-set accuracy parameters εk . In contrast with ppr-grid, which takes its accuracy

parameters from a log-spaced grid εk = ε0θ
k , the parameters for ppr-grow are chosen as

the inverses of values from the grid 10j ·
[
2 3 4 5 10 15

]
for j = 0, 1, . . . , 4, along with two

additional parameters, 10−6/2 and 10−6/3.

In addition to α, our method ppr-grid has the parameters ε0 and εN , the laxest and

strictest accuracies (respectively), and θ, which determines the fineness of the grid of

accuracy parameters. We use the settings α = 0.99, ε0 = 10−1, and εN = 10−6/3, and use

values of θ corresponding to N = 32, 64, and 1, 256 different accuracy parameters.

We emphasize that this comparison with the ppr-grow method is not as näıve as it

might seem: out of the 32 calls that it makes, in practice the very last call (with the

strictest value of ε) constitutes near 37% of the total runtime. This means that making

only a single call would save little work, and would sacrifice the information from the

other 31 (smaller) approximations. Furthermore, the primary optimizations that would be

made to the ppr-grow framework to improve on this are exactly the optimizations that

we make with our ppr-grid algorithm, namely avoiding re-doing push work between

diffusion computations for different values of ε.

Because the two algorithms compute the same PageRank diffusion, comparing their

runtimes here allows us to study what proportion of the total work is made up of

redundant push operations, and what proportion is comprised of the sweep cut procedures,

which both algorithms perform anew for each diffusion. To study this, we highlight the

results in Table 3 which displays the runtimes for ppr-grow and the ratios of the

runtimes of ppr-grid with ppr-grow for computing the best-conductance set from

the same number of different diffusions, N = 32. We also display ppr-grid results for

the cases N = 64 and 1, 256 to show how the algorithm scales with the fineness of the

grid.

To compare runtimes, we perform the following for each different dataset. For 100

distinct nodes selected uniformly at random, we ran both algorithms with the setting

α = 0.99. We display the best (25%) and worst (75%) quartile of performance of each

algorithm and parameter setting. On almost all datasets, we see that ppr-grid with N = 32

has a speedup of a factor 2 to 3. This is consistent with our theoretical comparison of

the two runtimes in Theorem 2, which predicts a factor of 2.9 difference in the push-work

that the two algorithms perform. Then, columns 6 through 9 of Table 3 display how

quickly ppr-grid can compute even more diffusions: whereas ppr-grow takes around 1

second to compute and analyse N = 32 diffusions, ppr-grid takes little more than half

that time to compute on N = 64 diffusions (columns 6 and 7). Columns 8 and 9 show

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792516000280
Downloaded from https:/www.cambridge.org/core. Purdue University Libraries, on 22 Mar 2017 at 15:22:02, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792516000280
https:/www.cambridge.org/core

Seeded PageRank solution paths 839

Table 3. Runtime comparison of our ppr-grid with ppr-grow. For each dataset, we selected

100 distinct nodes uniformly at random and ran ppr-grow with 32 and ppr-grid with N

different accuracy settings εk . Columns 2 and 3 display the 25th and 75th percentile runtimes

for ppr-grow (in seconds). The other columns display the median over the 100 trials of the

ratios of the runtimes of ppr-grid (using the indicated parameter setting) with the runtime

of ppr-grow on the same node. These results demonstrate that our algorithm computing

over N = 32 accuracy parameters εk achieves the factor of 2 to 3 speed-up predicted by our

theory in Section 6.3

Time (sec.) Time ratio Time ratio Time ratio

ppr-grow grid, N = 32 grid, N = 64 grid, N = 1256

Data 25 75 25 75 25 75 25 75

itdk0304 6.23 8.73 0.56 0.61 0.61 0.66 1.10 1.20

dblp 4.52 7.21 0.56 0.62 0.62 0.67 1.28 1.43

youtube 1.73 2.39 0.39 0.50 0.54 0.65 3.35 4.38

fb-one 1.25 1.60 0.33 0.39 0.45 0.53 3.72 4.38

fbA 0.49 0.65 0.47 0.55 0.63 0.72 5.99 6.59

ljournal 0.82 1.20 0.44 0.55 0.58 0.74 4.57 6.12

hollywood 0.28 0.64 0.34 0.49 0.44 0.60 3.47 5.00

twitter 0.13 0.37 0.39 0.44 0.54 0.60 4.61 5.44

friendster 0.34 0.49 0.39 0.44 0.51 0.58 3.90 4.32

that ppr-grid can compute and analyse N = 1256 diffusions, nearly 40 times as many as

ppr-grow, in an amount of time only 1.10 to 6.59 times greater than the time required by

ppr-grow.

The conductances displayed in Table 4 are taken from the same trials as the runtime

information in Table 3. As with the table of runtimes, for each dataset the table gives

the 25% (best) and 75% (worst) percentiles of conductance scores produced by each

algorithm on the 100 trials. We see nearly identical conductance scores for ppr-grow

and ppr-grid with N = 32, which we expect because the two perform nearly identical

work. It is interesting to note, however, that increasing the number of diffusions can

result in significantly improved conductance scores in some cases, as with N = 1256 on

the “fb-one” and “hollywood” datasets. This demonstrates concretely the potential effect

of using a broad swath of parameter settings for ε to study the meso-scale structure.

Moreover, it demonstrates that even a finely spaced mesh of ε values, as with ppr-grow

and ppr-grid with N = 64, can miss informative diffusions.

8 Conclusions and discussion

We proposed two algorithms that utilize the push step in new ways to generate refined

insights on the behavior of diffusions in networks. The first is a method to rapidly

estimate the degree-normalized PageRank solution path as a function of the tolerance ε.

This method is slower than estimating the solution of a single diffusion in absolute

run time, but still fast enough for use on large graphs. We designed that method, and

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792516000280
Downloaded from https:/www.cambridge.org/core. Purdue University Libraries, on 22 Mar 2017 at 15:22:02, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792516000280
https:/www.cambridge.org/core

840 D. F. Gleich and K. Kloster

Table 4. Conductance comparison of our ppr-grid with ppr-grow. Column 2 displays the

median of the conductances found by ppr-grow in the same 100 trials presented in Table 3.

The other columns display the 25% and 75% percentiles of the ratio of the conductances

achieved by ppr-grow and ppr-grid for the same seed set. For example, on the dataset “fb-

one”, the conductances found by ppr-grow are 18% larger than those found by ppr-grid

with N = 1256 accuracy settings—and that comparison is on the quartile of trials where

ppr-grid compares the worst to ppr-grow. We report the ratios in this manner (rather

than their reciprocals) because in this form the values displayed are greater than 1, which

distinguishes the values from conductance scores (which are between 0 and 1)

N = 32 N = 64 N = 1, 256

Data grow 25 75 25 75 25 75

itdk0304 0.06 1.00 1.00 1.00 1.01 1.00 1.02

dblp 0.07 1.00 1.00 1.00 1.00 1.00 1.01

youtube 0.18 1.01 1.30 1.09 1.50 1.21 1.72

fb-one 0.37 1.06 1.16 1.10 1.26 1.18 1.37

fbA 0.56 1.00 1.05 1.00 1.06 1.00 1.09

ljournal 0.32 1.00 1.01 1.00 1.01 1.00 1.01

hollywood 0.29 1.00 1.01 1.00 1.01 1.00 1.02

twitter 0.80 1.00 1.00 1.00 1.00 1.00 1.00

friendster 0.85 1.00 1.00 1.00 1.00 1.00 1.01

the associated degree-normalized PageRank solution path plot, in order to reveal new

insights about regions at different size-scales in large networks. The second method is a

fast approximation to the solution path on a grid of logarithmically spaced ε values. It

uses an interesting application of bucket sort to efficiently manage these diffusions. We

demonstrate that both of these algorithms are fast and local on large networks.

The seeded PageRank solution plots, in particular, are effective at identifying a number

of subtle structures that emerge as a diffusion propagates from a set of seed nodes to the

remainder of the network. We hope that these become useful tools to diagnose and study

the properties of large networks.

As recently established by Ghosh et al. [10], there are many related diffusion methods

that all share Cheeger-like inequalities for specific definitions of conductance. We anticip-

ate that our solution path algorithm could apply to any of these diffusions as well. For

instance, our recent result on estimating the heat kernel diffusion in large graphs is based

on the push step as well [19]; we anticipate only mild difficulty in adapting our results to

that diffusion.

Fast access to the solution path trajectories provides a number of additional opportun-

ities that we have not yet explored. We may be able to track multiple clusters directly

by managing intermediate data. We may be able to find near-optimal conductance sets

that are larger than those that directly optimize the objective. Also, nodes in an egonet or

larger set could be further clustered by properties of their solution paths instead of their

connectivity patterns.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792516000280
Downloaded from https:/www.cambridge.org/core. Purdue University Libraries, on 22 Mar 2017 at 15:22:02, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792516000280
https:/www.cambridge.org/core

Seeded PageRank solution paths 841

Acknowledgements

We thank the following people for their careful reading of several early drafts: Huda

Nassar, Bryan Rainey, and Varun Vasudevan. This work was supported by NSF CAREER

Award CCF-1149756.

References

[1] Andersen, R. & Chung, F. (2007) Detecting sharp drops in pagerank and a simplified local

partitioning algorithm. In Jin-Yi Cai, S. Barry Cooper, and Hong Zhu (Eds). Theory and

Applications of Models of Computation, Springer-verlag, Berlin Heidelberg, pp. 1–12.

[2] Andersen, R., Chung, F. & Lang, K. (2006) Local graph partitioning using PageRank vectors.

In: FOCS.

[3] Boldi, P., Bonchi, F., Castillo, C., Donato, D., Gionis, A. & Vigna, S. (2008) The query-flow

graph: Model and applications. In: Proceedings of the 17th ACM Conference on Information

and Knowledge Management, CIKM ’08, New York, NY, USA, ACM, pp. 609–618.

[4] Boldi, P., Rosa, M., Santini, M. & Vigna, S. (March 2011) Layered label propagation: A

multiresolution coordinate-free ordering for compressing social networks. In: Proceedings of

the 20th WWW2011, pp. 587–596.

[5] Boldi, P., Santini, M. & Vigna, S. (2009) PageRank: Functional dependencies. ACM Trans.

Inf. Syst. 27(4), 1–23.

[6] Brezinski, C., Redivo-Zaglia, M. & Serra-Capizzano, S. (March 2005) Extrapolation meth-

ods for pagerank computations. Comptes Rendus Mathematique 340(5), 393–397.

[7] Chierichetti, F., Kumar, R., Lattanzi, S., Mitzenmacher, M., Panconesi, A. & Raghavan,

P. (2009) On compressing social networks. In: Proceedings of the 15th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, KDD ’09, New York,

NY, USA, ACM, pp. 219–228.

[8] Delvenne, J.-C., Yaliraki, S. N. & Barahona, M. (June 2010) Stability of graph communities

across time scales. Proc. Natl. Acad. Sci. 107(29), 12755–12760.

[9] Efron, B., Hastie, T., Johnstone, I. & Tibshirani, R. (2004) Least angle regression. Ann.

Statist. 32(2), 407–499.

[10] Ghosh, R., Teng, S.-H., Lerman, K. & Yan, X. (2014) The interplay between dynamics and

networks: Centrality, communities, and cheeger inequality. In: KDD, pp. 1406–1415.

[11] Gleich, D. F. (August 2015) PageRank beyond the web. SIAM Rev. 57(3), 321–363.

[12] Gleich, D. F. & Mahoney, M. M. (2014) Algorithmic anti-differentiation: A case study with

min-cuts, spectral, and flow. In: ICML, pp. 1018–1025.

[13] Gleich, D. F. & Mahoney, M. W. (2015) Using local spectral methods to robustify graph-based

learning algorithms. In: Proceedings of the 21th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD ’15, New York, NY, USA, ACM, pp. 359–368.

[14] Gleich, D. F. & Seshadhri, C. (2012) Vertex neighborhoods, low conductance cuts, and good

seeds for local community methods. In: KDD, pp. 597–605.

[15] Gutierrez-Bunster, T., Stege, U., Thomo, A. & Taylor, J. (2014) How do biological networks

differ from social networks? (an experimental study). In: ASONAM, pp. 744–751.

[16] Hastie, T., Tibshirani, R. & Friedman, J. (2009) The Elements of Statistical Learning: Data

Mining, Inference, and Prediction, New York, Springer.

[17] Hocking, T., Vert, J.-P., Joulin, A. & Bach, F. R. (2011) Clusterpath: An algorithm for

clustering using convex fusion penalties. In: ICML, pp. 745–752.

[18] Jeub, L. G. S., Balachandran, P., Porter, M. A., Mucha, P. J. & Mahoney, M. W. (January

2015) Think locally, act locally: Detection of small, medium-sized, and large communities

in large networks. Phys. Rev. E 91, 012821.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792516000280
Downloaded from https:/www.cambridge.org/core. Purdue University Libraries, on 22 Mar 2017 at 15:22:02, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792516000280
https:/www.cambridge.org/core

842 D. F. Gleich and K. Kloster

[19] Kloster, K. & Gleich, D. F. (2014) Heat kernel based community detection. In: KDD, pp.

1386–1395.

[20] Kwak, H., Lee, C., Park, H. & Moon, S. (2010) What is Twitter, a social network or a news

media? In: WWW ’10: Proceedings of the 19th International Conference on World Wide Web,

New York, NY, USA, ACM, pp. 591–600.

[21] Langville, A. N. & Meyer, C. D. (2006) Google’s PageRank and Beyond: The Science of

Search Engine Rankings, Princeton, NJ, Princeton University Press.

[22] Leskovec, J., Lang, K. J., Dasgupta, A. & Mahoney, M. W. (September 2009) Community

structure in large networks: Natural cluster sizes and the absence of large well-defined

clusters. Internet Math. 6(1), 29–123.

[23] Lindsten, F., Ohlsson, H. & Ljung, L. (2011) Just Relax and Come Clustering! A Convexi-

fication of k-Means Clustering, Technical Report, Linköpings Universitet.

[24] Mahoney, M. W., Orecchia, L. & Vishnoi, N. K. (August 2012) A local spectral method for

graphs: With applications to improving graph partitions and exploring data graphs locally.

J. Mach. Learn. Res 13, 2339–2365.

[25] Mislove, A., Marcon, M., Gummadi, K. P., Druschel, P. & Bhattacharjee, B. (2007)

Measurement and analysis of online social networks. In: Proceedings of the 7th ACM

SIGCOMM Conference on Internet Measurement, IMC ’07, New York, NY, USA, ACM, pp.

29–42.

[26] Newman, M. E. J. (September 2006) Finding community structure in networks using the

eigenvectors of matrices. Phys. Rev. E 74(3), 036104.

[27] Poole, K. T. (2011) Vote View. URL: http://voteview.com/. [Accessed 11/10/2015].

[28] Schaeffer, S. E. (2007) Graph clustering. Comput. Sci. Rev. 1(1), 27–64.

[29] C. (The Cooperative Association for Internet Data Analyais). (2005) Network

datasets. Accessed 2005. URL: http://www.caida.org/tools/measurement/skitter/

router topology/

[30] Whang, J. J., Gleich, D. F. & Dhillon, I. S. (2013) Overlapping community detection using

seed set expansion. In: CIKM, pp. 2099–2108.

[31] Wilson, C., Boe, B., Sala, A., Puttaswamy, K. P. & Zhao, B. Y. (2009) User interactions in

social networks and their implications. In: EuroSys, pp. 205–218.

[32] Xie, J., Kelley, S. & Szymanski, B. K. (2013) Overlapping community detection in networks:

The state-of-the-art and comparative study. ACM Comput. Surv. 45(4), 43:1–43:35.

[33] Yang, J. & Leskovec, J. (December 2012) Defining and evaluating network communities

based on ground-truth. In: IEEE 12th International Conference on Data Mining (ICDM),

pp. 745–754.

[34] Zhou, D., Bousquet, O., Lal, T. N., Weston, J. & Schölkopf, B. (2003) Learning with

local and global consistency. In: Advances in Neural Information Processing Systems (NIPS),

Vol. 16, pp. 321–328.

Appendix

In this appendix, we provide background information for data structures and sorting

operations, and give some of the more tedious details of our runtime analysis and shelf

system.

Heaps, queues, and sorting

A queue is a data structure that enables so-called “first in, first out” access to stored

entries. New elements are added at the “back” of a queue much like a queue of people;

then elements are accessed only from the front of the queue. Inserting an element at the

back (a process called “pushing”, not to be confused with the push diffusion operation

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792516000280
Downloaded from https:/www.cambridge.org/core. Purdue University Libraries, on 22 Mar 2017 at 15:22:02, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792516000280
https:/www.cambridge.org/core

Seeded PageRank solution paths 843

discussed in the main text), accessing the front entry, and removing the front entry

(a process called “popping”) are all constant-time operations.

A max-heap (abbreviated as just “heap” when the context is clear) is a data struc-

ture that enables constant-time access to and removal of the largest entry. A heap also

enables the ability to update any existing entry or insert a new entry in O(log n) time,

where n is the number of elements in the heap. A heap organizes its elements as a

rooted, binary tree so that the element stored at the root is always the largest, and

every node in the tree is larger than any children nodes that it is. Any time an ele-

ment is updated or a new element is inserted the elements must be “re-heaped”, which

simply means that each node in the tree must check that it is still greater than its

children.

The sorting process bubble-sort is a simple method for ensuring that a sorted array

remains sorted after an element is updated or a new element is inserted. Assume the array

is sorted in decreasing order. Then, if an element is updated (or inserted), to ensure that

the array is still properly ordered, the updated (or inserted) element is compared to the

element above and below it in the array. If it is larger than the element above it, the two

elements are swapped (if it is smaller than the element below, then those two are swapped

instead). This is repeated until no swapping is required, at which point the array is once

again properly sorted.

The bucket-sort procedure is an approximate sorting routine that operates by putting

entries into “buckets” such that the buckets are sorted, but entries within a particular

bucket are not necessarily sorted. Our shelf system (presented in Section 6.3) is an example

of a bucket-sort like procedure.

Completing the proof of Theorem 1

In the main text, we did not finish the proof of Theorem 1. In particular, we completed the

proof of a bound on the amount of work required to perform all of the push operations,

but did omitted a proof of bounds on the work required to sort and sweep over the

solution vectors. We present the rest of the proof here. First, we restate Theorem 1

for some context for the remainder of the proof. For additional information about the

algorithm, consult Section 6.2.

Theorem (1) Given a random walk transition matrix P = AD−1, stochastic vector v, and

input parameters α ∈ (0, 1), ρ ∈ [0, 1), and εmax > εmin > 0, our ppr-path algorithm

outputs the best-conductance set found from sweeps over εcur-accurate degree-normalized,

ρ-approximate solution vectors x̂ to (I − αP)x = (1 − α)v, for all values εcur ∈ [εmin, εmax].

The total work required is bounded by O
(

1
ε2min(1−α)2(1−ρ)2

)
.

Sorting and sweeping work. Here, we account for the work performed each step in

maintaining the residual heap Q(r), re-sorting the solution vector L(y), and updating the

sweep information for L(y). To ease the process, we first fix some notation: denote the

number of entries in the residual heap Q(r) by |Q|, and the number of non-zero entries

in the sorted solution vector L(y) by |L|. We will bound both of these quantities later

on. We continue to use Δt to denote the number of rank positions changed in L(y) in

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792516000280
Downloaded from https:/www.cambridge.org/core. Purdue University Libraries, on 22 Mar 2017 at 15:22:02, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792516000280
https:/www.cambridge.org/core

844 D. F. Gleich and K. Kloster

step t. Finally, recall that T denotes the number of iterations of the algorithm required

to terminate.

The work bounds we will prove, listed in the order in which the ppr-path algorithm

performs them, are as follows:

Operation Actual work Upperbound

Find max(r) 1 1

Delete max(r) log(|Q|) log(1
εmin(1−α)(1−ρ)

)

Bubblesort L(yj) Δt T

Re-sweep L(y) dj + Δt dj + T

Update r + rαPT ej dj dj
Re-heap Q(r) dj log(|Q|) dj log(1

εmin(1−α)(1−ρ)
)

The residual heap operations for deleting max Q(r) and re-heaping the updated entries

each require O(log(|Q|)) work, where |Q| is the size of the heap, i.e. the number of non-zero

entries in the residual. We can upperbound this number using the total number of pushes

performed (since a non-zero in the residual can exist only via a push operation placing

it there). We bound |Q| by O(ε−1
min(1 − α)−1(1 − ρ)−1), then. We remark that this is quite

loose, as values of ρ near 1 actually force the solution and residual to be sparser, so the

heap size should still be bounded by O(ε−1
min(1 − α)−1), though we do not yet have a proof

of this.

Re-sorting the solution vector via a bubblesort can involve no more operations than

the length of the solution vector. Since a non-zero in entry yj can exist only if a step of

the algorithm operates on an entry rj , the number of non-zeros in y is bounded by the

number of steps of the algorithm, i.e. |L| � T . We believe this bound to be loose, but

cannot currently tighten it. Note that the work required in updating sweep information

also requires Δt work, which we again upperbound by T . The dj term in updating sweep

information is from accessing the neighbours of the entry yj , the node changing its rank.

The dominant terms in the above expression for work are the re-heap updates and the

bubblesort and re-sweep operations, which require a total of O(dj log(|Q|) + |L|) work

each step. Summing this over all T steps of the algorithm, we can majorize work by

O(log(|Q|) ·
∑T

t=0 dj)+O(
∑T

t=0 |L|), which is upperbounded by O(1
εmin(1−α)(1−ρ)

log(|Q|)+T ·
|L|). ∗ ∗∗ Finally, substituting in our loose upperbounds for T , |Q|, and |L| mentioned

above completes the proof:

O
(

1
εmin(1−α)(1−ρ)

log(1
εmin(1−α)(1−ρ)

) + 1
ε2min(1−α)2(1−ρ)2

)
� O

(
1

ε2min(1−α)2(1−ρ)2

)
.

Shelf details

Here, we present further details on how the shelf system in Section 6.3 works.

Shelf computation. In each iteration of ppr-grid, we must place multiple entries into

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792516000280
Downloaded from https:/www.cambridge.org/core. Purdue University Libraries, on 22 Mar 2017 at 15:22:02, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792516000280
https:/www.cambridge.org/core

Seeded PageRank solution paths 845

their respective “shelves”. Here, we show that computing the correct shelf where a value

r will be placed can be accomplished in constant time.

Let εk = ε0θ
k for a fixed value of θ ∈ (0, 1). We want a value r satisfying εk−1 > r � εk

to be placed on shelf k. If r � ε0, then we place r into shelf 0. Otherwise, making the

substitution εk = ε0θ
k and performing some algebra yields

k − 1 <
log(r/ε0)

log(θ)
� k,

so k can be computed by taking the ceiling of log(r/ε0)/ log(θ), which is a constant time

operation. Note that this process requires that 0 < εk < 1 holds for all k, that θ ∈ (0, 1),

and that r > 0.

Top shelf. Each step of ppr-grid also requires determining the top non-empty shelf.

This can be done in constant time by tracking what the top shelf is during each residual

update. If k is the top shelf immediately prior to step (2.4), then k will still be the top shelf

after the residual update is complete, unless one of the updates in step (6) moves an entry

to a shelf l < k. By checking for this event during the update of each individual residual

entry in step (6), we will have knowledge of the top non-empty shelf at the beginning of

each step, with only constant work per step.

Once the current working shelf is emptied, then it is possible that the next non-empty

shelf is many shelves down, i.e. shelves Hk and higher are emptied and the next non-empty

shelf is Hk+c for some large number c. Then, determining k + c takes O(c) operations.

However, this operation is performed every time the algorithm switches from one value of

εk to the next. If there are N values of εk , then the total work in all calls of this top-shelf

computation is bounded by O(N).

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792516000280
Downloaded from https:/www.cambridge.org/core. Purdue University Libraries, on 22 Mar 2017 at 15:22:02, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792516000280
https:/www.cambridge.org/core

