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Abstract

Motivation: Diffusion-based network models are widely used for protein function prediction using

protein network data and have been shown to outperform neighborhood-based and module-based

methods. Recent studies have shown that integrating the hierarchical structure of the Gene

Ontology (GO) data dramatically improves prediction accuracy. However, previous methods usu-

ally either used the GO hierarchy to refine the prediction results of multiple classifiers, or flattened

the hierarchy into a function–function similarity kernel. No study has taken the GO hierarchy into

account together with the protein network as a two-layer network model.

Results: We first construct a Bi-relational graph (Birg) model comprised of both protein–protein as-

sociation and function–function hierarchical networks. We then propose two diffusion-based meth-

ods, BirgRank and AptRank, both of which use PageRank to diffuse information on this two-layer

graph model. BirgRank is a direct application of traditional PageRank with fixed decay parameters.

In contrast, AptRank utilizes an adaptive diffusion mechanism to improve the performance of

BirgRank. We evaluate the ability of both methods to predict protein function on yeast, fly and

human protein datasets, and compare with four previous methods: GeneMANIA, TMC,

ProteinRank and clusDCA. We design four different validation strategies: missing function predic-

tion, de novo function prediction, guided function prediction and newly discovered function predic-

tion to comprehensively evaluate predictability of all six methods. We find that both BirgRank and

AptRank outperform the previous methods, especially in missing function prediction when using

only 10% of the data for training.

Availability and Implementation: The MATLAB code is available at https://github.rcac.purdue.edu/

mgribsko/aptrank.

Contact: gribskov@purdue.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Given a set of functionally uncharacterized genes or proteins from

a Genome-Wide Association Study, or differential expression ana-

lysis, experimental biologists often have little a priori information

available to guide the design of hypothesis-based experiments to

determine molecular functions. For example, what is the expected

phenotype if a particular gene is removed? It would greatly im-

prove hypothesis formation if biologists had prior insight from pre-

dicted functions of interesting genes or proteins in databases.

Computational annotation of genes or proteins with unknown

functions is thus a fundamental research area in computational

biology.
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In the past decade, there has been much work to accurately pre-

dict functional annotations of genes or proteins using heterogeneous

molecular feature data (Peņa-Castillo et al., 2008; Radivojac et al.,

2013). The collected molecular features include gene expression, se-

quence patterns, evolutionary conservation profiles, protein struc-

tures and domains, protein–protein interactions (PPIs) and

phenotypes or disease associations. In one comprehensive assess-

ment (Peņa-Castillo et al., 2008), one of the methods, GeneMANIA

(Mostafavi et al., 2008) slightly outperformed the other eight meth-

ods by integrating the multiple molecular features into a functional

association network (a.k.a., a kernel). The success story of

GeneMANIA suggests two important ideas. First, we can signifi-

cantly improve prediction methods that rely on a single data type by

integrating data of many types. And second, kernel integration is a

particularly powerful approach to combining multiple types of data.

Network diffusion is one of the most powerful methods for pro-

tein function prediction given an integrated protein association net-

work. This method generally simulates propagating information

from functionally known proteins to unknown ones through net-

work connectivity. Nabieva et al. (2005) constructed a network

flow model with fixed diffusion distances and capacities on network

edges. This method was claimed to capture both global network top-

ology as well as local network structure to improve the function pre-

dictability over the first two domains of methods mentioned above.

Freschi (2007) devised a tool called ProteinRank by utilizing

PageRank (Page et al., 1999), the method used by Google to rank

webpages, to diffuse functional annotation information throughout

a network without setting a fixed diffusion distance or edge capaci-

ties. Mostafavi et al. (2008) utilized the Label Propagation algo-

rithm (Zhou et al., 2004) to develop GeneMANIA as a classification

model with multiple heterogeneous network datasets using weighted

kernels and labeled negative samples. The method achieved approxi-

mately 70–90% accuracy in three-fold cross validation using a

benchmark dataset (Peņa-Castillo et al., 2008). Yu et al. (2013) de-

veloped the Transductive Multilabel Classifier (TMC), based on a

Bi-relational graph (Wang et al., 2011) consisting of a protein inter-

actome and cosine similarities in a protein functional profile as two

kernels in each graph layer. Then they used PageRank on this two-

layer graph to diffuse functional information to predict protein

functions.

Functional annotation data are usually organized in a tree-like

ontological structure with general terms at the root and specific

terms on the leaves (Gene Ontology Consortium, 2004). However,

the majority of previous methods disregard this intrinsic hierarchical

structure by assuming that the relationships between functions are

independent. Recently, several methods have been proposed in order

to take into account the interdependent relationships between func-

tional terms in the hierarchical structure. King et al. (2003) pre-

dicted gene functions using decision trees and Bayesian networks

while taking advantage of the annotation dependency between dif-

ferent branches of the GO hierarchy. Notably, when they trained

and tested the association of functional terms with genes, they

excluded the information from any ancestors and descendants of the

terms in question. This ensures a fair cross validation in which pre-

diction does not benefit from the GO annotation rule: if one gene is

annotated by a term, then that gene is automatically annotated by

all the ancestors of that term. Barutcuoglu et al. (2006) and

Valentini (2011) proposed a hierarchical Bayesian framework and a

True Path Rule, respectively, to perform ensemble learning of the

classification results yielded by multiple Support Vector Machines

(SVMs). They demonstrated that the accuracy of protein function

prediction can be significantly improved by integrating the

functional hierarchy (Valentini, 2014). Tao et al. (2007) and Pandey

et al. (2009) utilized Lin’s similarity (Lin, 1998) to flatten the func-

tional hierarchy, and then predicted protein functions using a k-

Nearest Neighbor (k-NN) method. Sokolov and Ben-Hur (2010)

directly modeled the hierarchical structure of functional ontology

using structured SVM (Tsochantaridis et al., 2005), and showed

that their method outperformed k-NN and other binary classifiers

without taking the hierarchy into account. Recently, Yu et al.

(2015) combined Lin’s similarity of protein functional profiles with

an ontological hierarchy using downward random walks with re-

starts, so as to improve the TMC model (Yu et al., 2013), which can

predict functions of a protein that are not in its neighborhood, but

are present in the hierarchy. Wang et al. (2015) proposed clusDCA

for protein function prediction by integrating protein networks and

a functional hierarchy, using PageRank for network smoothing and

low-rank matrix approximation to de-noise the network data.

In this study, we propose two methods that directly diffusing in-

formation on the functional hierarchy other than a flat functional

similarity constructed by Lin’s method (Lin, 1998). The first

method, which we call BirgRank, constructs a Bi-relational graph

model with a protein–protein functional association network as one

layer and an unflattened ontological hierarchy as a second layer,

and then directly applies PageRank to diffuse annotation informa-

tion across the two-layer network. The second method, which we

call AptRank, employs an adaptive version of PageRank that re-

places the standard PageRank parameters with values dynamically

chosen to better fit the training data. The main differences between

our methods and other diffusion-based methods are (1) we do not

require any negative labeled samples since our method is not a trad-

itional classification model; (2) we take full advantage of the func-

tional hierarchy as a two-way directed graph, and do not use Lin’s

similarity (Lin, 1998), or any kernel trick, to flatten the hierarchy

and (3) we avoid using the annotation of a particular term to predict

the annotation of its parental terms, i.e. we train and test our meth-

ods using the direct annotations only (see Fig. 1(B) and (C)), which

guarantees that the functional terms to be tested for each protein are

mutually neither ancestors nor descendants in the GO hierarchy.

To avoid the inflated accuracies of network-based methods in

protein function prediction noted by Gillis and Pavlidis (Gillis and

Pavlidis, 2011, 2012; Gillis et al., 2014; Pavlidis and Gillis, 2013),

we conduct a large and strict evaluation of our methods against the

other state-of-the-art methods. In addition to three small benchmark

A B

C D

Fig. 1. Given data visualization using simple example. (A) Protein–protein bin-

ary interaction network, (B) protein–function reference matrix (direct annota-

tions only, no parental annotation used in training and testing), (C) function–

function hierarchy, (D) adjacency matrix A of a bi-relational graph
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datasets, we use an up-to-date protein interaction network dataset

and exclude the functional annotations inferred from protein inter-

actions (evidence code: IPI). Rather than two-fold (Freschi, 2007),

three-fold (Mostafavi et al., 2008; Wang et al., 2015) or five-fold

(Yu et al., 2013) cross validation, we design four different valid-

ations: missing function prediction, de novo function prediction,

guided function prediction (a hybrid of the two strategies), and

newly discovered function prediction. For the first three types of val-

idations, we only use 20% or even 10% of the data in training. To

overcome the drawback of using Area Under the ROC curve

(AUROC) as a criterion in evaluating performance on imbalanced

data with a small number of positive samples, we also utilize Mean

Average Precision (MAP) which focuses on the ranking of positive

samples only, and is widely used in the field of information retrieval.

2 Materials and methods

2.1 BirgRank: bi-relational graph PageRank model
This study is motivated by the fact that there are still many proteins

whose functions are poorly characterized. The aim of this study is to

predict protein functions given a protein–protein association net-

work and a hierarchically structured set of functional terms. The hy-

pothesis is that associated proteins in the protein network are likely

to share similar functions. Here, we define a protein–protein associ-

ation network as pairwise quantitative relationships of proteins.

This network either can be sparse and binary, e.g. a protein–protein

physical interaction network, or weighted and dense, e.g. a pairwise

similarity of protein sequences.

We denote the number of proteins by m and the number of func-

tion terms by n. Then the three given datasets (protein–protein asso-

ciation network, protein–function annotations and function–

function hierarchy) are denoted by three matrices: G 2 Rm�m, a

symmetric matrix where G(i, j) denotes to which extent protein i is

associated with protein j; R 2 Rm�n, a binary matrix where Rði; jÞ
¼ 1 if protein i is annotated by function j, 0 otherwise; and

H 2 Rn�n, a binary matrix where Hði; jÞ ¼ 1 if functional term i is

the child of term j, 0 otherwise. We illustrate these three components

in Figure 1(A), (B) and (C), using a small example with 6 proteins

and 7 functional terms. For simplicity, Figure 1(A) shows a protein–

protein binary interaction network, but it can be replaced by any

protein–protein association network. Functional terms are hierarch-

ically structured in a Gene Ontology (Fig. 1(C)) like an upside down

‘tree’, where the terms on the top (root) are more general and the

ones in the bottom (leaves) are more specific. The annotation rule is

that if one gene/protein is annotated by one term, then this gene/pro-

tein is automatically annotated by all the parental terms of that term

in the hierarchy. However, note that in this study we only consider

training and predicting the direct annotations of each protein, and

do not propagate the corresponding parental annotations using the

annotation rule, as shown in Figure 1(B). This ensures that our pre-

diction does not benefit from the annotation rule.

Next, we construct a bi-relational graph (Wang et al., 2011) that

incorporates these three datasets into a single network (Fig. 1(D)).

To evaluate prediction performance, we split all the annotations in

R into RT , which we use for training during model construction, and

RE, which we use for evaluating predictions (see Fig. 2). For each

protein i, we predict its functions using Personalized PageRank (Jeh

and Widom, 2003), a.k.a., Random Walk with Restart (RWR) in

other literature (Tong, 2006) by computing

ðI � aAÞx ¼ ð1� aÞv; (1)

where we set the protein i as the diffusion source, i.e. by computing the

diffusion using v ¼ ei. And we the column-stochastic version of matrix

A as A which is computed by dividing each column of the matrix A by

the sum of the entries in that column. The parameter a 2 ð0;1Þ con-

trols the decay of the diffusion process. To predict the functions of all

proteins, we extend the linear system in Equation (1) to a matrix form:

Im 0

0 In

" #
� a

G 0

RT
T H

" # !
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XH

" #
¼ 1� að Þ

Im

0

" #
; (2)

where the bar over the block matrix still indicates the whole matrix

is normalized to be column-stochastic. The lower block of the solu-

tion, XH, is the output matrix of BirgRank for function prediction,

and has the same dimensions as RT .

We note that, although PageRank has an interpretation as a

Markov chain, and Markov chains must meet certain conditions to

guarantee convergence to a stationary distribution, a unique solu-

tion to Equation (1) always exists for any a 2 ð0; 1Þ and stochastic

matrix A. Thus, the existence of the unique solution x is guaranteed

regardless of the structure of the matrix A. We emphasize this be-

cause the form of linear system that we use differs from the trad-

itional PageRank setting, which uses Markov chain analysis in the

proof of its convergence; in contrast, our computations do not rely

on this Markov chain analysis.

To further control the proportion of diffusion passing between

the two layers of the bi-relational graph, we parameterize the model

in Equation (2) as
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2
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(3)

where H� ¼ kH þ ð1� kÞHT , and k controls the diffusion direction

on H. Specifically, k ¼ 0 indicates that the diffusion flows down the

Fig. 2. Missing Function Prediction Strategy. Split the given annotations R,

derived from GOA database, by putting 50% of non-zero entries into the train-

ing set RT and the remaining 50% into the evaluation set RE . Then run one of

the six methods to predict the missing entries of RT using the produced scor-

ing matrix X . Compare the prediction X against RE to evaluate the perform-

ance of the method using AUROC and MAP, respectively. All-zero rows and

columns in RE and the entries used in training are not used in evaluation
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hierarchy, and 1 indicates flow up the hierarchy. The parameter l

2 ð0; 1Þ controls the proportion of the diffusion flowing within G,

and h 2 ð0; 1Þ controls the weighted sources between the proteins

and functional annotations in the right-hand side of Equation (3).

2.2 Extension to AptRank
In the traditional model of PageRank, which we use in BirgRank, the

teleportation parameter a 2 ð0; 1Þ can be thought of as controlling the

rate of decay of the diffusion as it spreads from the nodes in the per-

sonalization vector v to the rest of the graph. After k steps the diffu-

sion has decayed by a factor of ak, for k ¼ 1; . . . ;1. There are a

variety of other empirical weighting schemes (Baeza-Yates et al.,

2006; Chung, 2007; Constantine and Gleich, 2010; Zhu et al., 2014),

each with slightly different theoretical properties. For example, the

heat kernel diffusion (using coefficients tk=k! at step k for some fixed

input t>0) finds smaller clusters than the standard PageRank diffu-

sion (which uses ak at step k for a fixed input a 2 ð0;1Þ) (Kloster and

Gleich, 2014). However, one motivation for our current work is to

avoid having to choose which coefficients to use by instead computing

which coefficients best fit the existing data.

In this section, we seek to replace the standard, fixed diffusion

coefficients ak at each step with an adaptive parameter, denoted by

cðkÞ, to optimize the predictive power of the Markov chain. To do

this we repeatedly split the training set of protein function annota-

tions, RT , into different subsets to use in fitting and validating the

coefficients. We denote the matrix used for fitting by RF, and the

matrix used in validation by RV . These matrices have the same di-

mensions as RT and consist of entries of RT , i.e. RT ¼ RF þ RV .

To determine the adaptive coefficients cðkÞ so that they bias predic-

tions toward the training data, we proceed as follows. The AptRank

method begins by computing terms in the following sequence:

X kð Þ ¼
X

kð Þ
G

X
kð Þ

H

2
4

3
5 ¼ G R�F

RT
F H�

" #k

X 0ð Þ; (4)

where the bar over the block matrices still denotes column-

stochastic normalization,

X 0ð Þ ¼
X

0ð Þ
G

X
0ð Þ

H

2
4

3
5 ¼ Im

0

" #
; (5)

and

R�F ¼
0 to use a one�way diffusion

RF to use a two�way diffusion
:

(

We denote AptRank using a one-way diffusion and a two-way

diffusion as AptRank-1 and AptRank-2, respectively. These two

variations can have significant differences in prediction performance

when the underlying networks have different sparsities.

To compute the optimal set of coefficients cðkÞ that best fits the val-

idation set RV , we solve the following constrained least squares model,

minimizec vecðRT
VÞ �

XK

k¼1

cðkÞvecðX ðkÞH Þ
�����

�����
2

2

subject to
XK

k¼1

cðkÞ ¼ 1;

cðkÞ � 0;

(6)

where vecð�Þ is a matrix-to-vector transformation that stacks the col-

umns of the matrix into a single column vector.

The entire AptRank framework is summarized in Algorithm 1.

We perform this fitting-validating process S times, each time

(denoted as s) splitting t% of entries in RT into new matrices RF and

RV by choosing entries from RT uniformly at random. Each such it-

eration generates a new set of coefficients cðkÞs , which we store. We

call these iterations ‘shuffles’ because in essence they consist of shuf-

fling the entries of RT into the two matrices RF and RV . After the

prescribed number of shuffles is completed, we compute the median

of the cðkÞs across all shuffles, denoted as cðkÞ� , and then use those me-

dian values to compute the final diffusion values XAptRank. This pre-

diction solution will be compared against the evaluation set RE (see

Section 3).

To investigate the similarities and differences of our methods

and the other four previous methods used for evaluation, we sum-

marize the features of each method in Table 1. A more detailed com-

parison of each method in theory can be found in the Supplementary

Text.

3 Results

3.1 Experimental setup
We present a comprehensive evaluation of the six methods using three

benchmark datasets from yeast, human and fly which were collected

by the developers of GeneMANIA-SW in 2010, and can be accessed

via http://morrislab.med.utoronto.ca/�sara/SW/. Additionally, we col-

lected one more dataset for human proteins from public databases in

March 2015 in order to test all the methods using up-to-date data

with a larger size than those collected by GeneMANIA-SW in 2010

(see Table 2). In this human dataset, denoted as human-2015, the net-

work G was downloaded from BioGRID (Stark et al., 2006), and the

annotations R and the hierarchy H from the Gene Ontology

Consortium (Gene Ontology Consortium, 2015). We primarily inves-

tigate and discuss the annotations in the Biological Process (BP)
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category in the main text. The results for the prediction of Molecular

Function (MF) and Cellular Component (CC) terms can be found in

Supplementary Figure S3. Also, we only use annotations with experi-

mental evidence codes, within which we remove the terms inferred by

physical interaction (evidence code: IPI). Within these annotations,

we only train and test the direct GO annotations (Table 2, 3rd col-

umn) without consideration of the parental annotations (see total

number of annotations in Table 2, 4th column). The multiple kernels

(Table 2, 5th column) from heterogeneous molecular data were dir-

ectly downloaded from the GeneMANIA-SW website, and combined

into a single network (i.e. G) with the weights provided in the

datasets.

To evaluate the quality of each method in protein function pre-

diction, we conducted cross validation using three different strat-

egies to split the given functional annotation data R into RT used for

training and RE used for evaluation (see Section 3.2). The three

strategies are:

1. missing function prediction

2. de novo function prediction

3. guided function prediction.

All three validation strategies ensure that the matrices R, RT and RE

have the same dimensions, and R ¼ RT þ RE. To measure the pre-

diction quality of each method, we use two evaluation metrics:

AUROC (Area Under the Receiver Operating Characteristic curve)

which is widely used in protein function prediction, and MAP

(Mean Average Precision) which is widely used in information re-

trieval (Fig. 2). The key advantage of MAP is that MAP does not

take true negatives into account, and is thus a more informative met-

ric than AUROC when negative samples outnumber positive sam-

ples. This is true in our case since in the human-2015 dataset, for

example, we attempt to predict around 45 functions on average for

each protein from 11 519 possible annotations (feature space, see

Table 2). In addition to the three cross validation, we evaluate each

method by using human-2010 dataset to predict human-2015 data-

set to investigate whether the methods can predict newly discovered

functional annotations from 2010 to 2015.

We determined parameter settings as follows. For the four meth-

ods other than our BirgRank and AptRank, we mostly used the

default settings specified in the corresponding literature. We only

tuned the reduced dimensionality d in clusDCA to be 500, rather

than the parameter setting 2500 specified by the authors (Wang

et al., 2015), since this parameter is a key factor in time complexity

of clusDCA. Empirically, we found that clusDCA is the most time-

consuming method as shown in Table 3, and a large d value dramat-

ically increases running time. For the parameters in BirgRank, we

set k ¼ 0:5 in determining H�, to allow equal diffusion upward and

downward the hierarchy. For the other three parameters a, h and l

in BirgRank (see Equation (3)), we observed that different settings

of these three parameters did not yield significant differences in per-

formance, and found that a value of 0.5 empirically achieved good

results (Supplementary Fig. S1). For the parameters in AptRank, we

set the total iteration number K to be 8, the splitting parameter t to

be 50%, and the number of shuffles S to be 5. These setting may

vary depending on the validation strategies and the data sizes, which

we discuss in Section 3.2.

3.2 Comparison of prediction performances
3.2.1 Missing function prediction

We first conducted a numerical experiment to evaluate the ability of

the six methods in predicting missing protein functions as follows.

We uniformly select a certain percentage of non-zero entries in R at

random, move them to a matrix RT for training, and let

RE ¼ R� RT be the evaluation set. Figure 2 illustrates how to split

matrix R with 14 entries into RT and RE when the splitting percent-

age is specified as 50%. We carried out this random sampling with

replacement 5 times for each specified splitting percentage. This is

not a circular cross validation since it does not guarantee that each

functional annotation is tested once and only once. This strategy

aims to test whether the methods can restore incomplete functional

annotations for each protein and is unbiased with respect to how

many annotations each protein has.

Table 3. Runtimes of the six methods in minutes (human-2015

dataset)a

Methods Training data proportion

10% 20% 40% 50% 70% 80%

GM-SW 252.52 214.47 232.02 231.65 225.54 234.56

TMC 6.71 7.10 7.52 7.58 7.37 7.12

ProteinRank 0.85 0.87 0.87 0.87 0.88 0.88

clusDCA 1054 1019 1072 1061 1025 1050

BirgRank 9.42 9.46 9.46 9.45 9.42 9.49

AptRank-1 51.79 53.48 55.82 55.28 57.85 58.69

aThe runtimes of 30% and 60% is not shown due to space limit. The

AptRank-1 uses 12-core parallel computing for matrix multiplication.

Table 1. Summary of the six methods

Method Name Method Type Functional

Hierarchy

Bi-relational

Graph

Negative

Samples

Random

Walk

Stationary

PageRank

Reference

GeneMANIA-SW kernel integration

& classification

� � � Mostafavi et al. (2008) and

Mostafavi and Morris (2010)

TMC diffusion � � � Yu et al. (2013)

ProteinRank regression � � Freschi (2007)

DCA-clusDCA diffusion &

decomposition

� � � � Cho et al. (2015) and Wang et al. (2015)

BirgRank diffusion � � � � This study

AptRank diffusion � � � This study

Table 2. Statistics of datasets

Dataset No. of

proteins

No. of

direct GO

No. of

all GO

No. of

kernels

Yeast 3904 1188 1695 44

Human-2010 13281 1952 2919 8

Fly 13562 2195 2919 38

Human-2015 14515 11519 27106 1
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We start with 10% split for training and increase by increments

of 10% up to 80% (Fig. 3). Generally, the resulting AUROCs and

MAPs of the six methods show that both BirgRank and AptRank

outperform the other four previous methods in all 8 groups of ex-

periments with different amounts of training data. In the 10% group

of human-2010 and fly datasets, clusDCA slightly outperforms our

methods in AUROC, but its MAP is lower than those of our meth-

ods (Fig. 3(C) and (E)). When more data are given for training, our

methods outperform the other four methods in terms of MAP with

approximately 2- to 3-fold improvement.

To investigate the effect of the GO functional hierarchy in pre-

diction, we compare the performance of non-hierarchy-integrated

methods (GeneMANIA-SW, TMC and ProteinRank) with

hierarchy-integrated methods (clusDCA, BirgRank and AptRank).

We find that the integration of the functional hierarchy clearly im-

proves the prediction accuracy (Fig. 3). Furthermore, our methods,

for the most part, perform better than clusDCA, which suggests that

using a bi-relational graph framework (Fig. 1) to integrate the hier-

archy is better than seeking for projection between the protein net-

work and the functional hierarchy. The significance of the GO

hierarchical structure was demonstrated by replacing it into a ran-

dom graph, a hierarchy with shuffled labels, and an identity matrix,

respectively (see Supplementary Fig. S2).

Comparing the performances of BirgRank and AptRank, we find

that the performance of the algorithms differs as the network spars-

ity varies (Fig. 3 (B), (D), (F) vs. (H)). The three benchmark datasets

are smaller and denser than Human-2015 dataset due to the integra-

tion of multiple kernels (Table 2). We can see that AptRank with a

two-way diffusion performs better on the dense network, while

BirgRank is better on the sparse network. This could be because a

dense network restricts network diffusion within a local region of

the source node, and two-way diffusion forms a feedback loop that

enhances the contributions of the annotations within local regions.

However, the two-way diffusion spreads out of this local region in a

sparse network and provides irrelevant feedback to the source node.

In addition, we find that GeneMANIA-SW and ProteinRank

achieve similar performance in both AUROC and MAP. The key dif-

ference between these two models is that GeneMANIA-SW requires

negative samples in its classification framework. This demonstrates

that negative samples have a very limited contribution to the per-

formance of GeneMANIA-SW on these datasets. This could be in

part because it can be difficult to confirm that a protein does not

have a function.

Lastly, we find that BirgRank outperforms TMC. Theoretically,

the models of TMC and BirgRank are quite similar, differing mainly

in how the two methods direct the diffusion between the two net-

work layers, G and H. BirgRank diffuses information from G to H,

while TMC does the reverse. Our results support the idea that diffu-

sion from proteins to functional terms is the more useful direction in

the context of protein function prediction.

3.2.2 De novo function prediction

To investigate whether the six methods can accurately predict the

functions of one protein without any annotation for training, we de-

sign a de novo circular cross validation as follows. Uniformly parti-

tion a certain percentage, denoted as c, of proteins into b groups at

random. Letting ½v� denote the nearest-integer operation we can

calculate

b ¼
½1=c� if 0 < c 	 0:5

½1=ð1� cÞ� if 0:5 < c 	 1
:

(

In practice, we set c as 20%, 50% and 80% as shown in the x-axis

of Figure 4. When c ¼ 80%, it is equivalent to a conventional five-

fold cross validation with 80% of proteins as the training set and

the complementary 20% as the evaluation set. On the contrary,

c ¼ 20% means we only use 20% of proteins for training and evalu-

ate the prediction performance by the complementary 80%. Lastly,

c ¼ 50% is equivalent to a two-fold cross validation. Normally,

three-fold cross validation (c ¼ 66:7%) is used in the four reference

methods. Here, our cross validation design is aimed to explore the

potential predictive power of all of the methods with a more strin-

gent criterion.

As shown in Figure 4, our methods generally perform no worse

than the four reference methods. Interestingly, GeneMANIA has

nearly the same performance as ProteinRank in both AUROC and

MAP metrics, which occurs in our missing function prediction experi-

ment as well (Fig. 3). Furthermore, they both perform better than the

other two reference methods, TMC and clusDCA. Our methods per-

form slightly better than GeneMANIA and ProteinRank in AUROC,

but do slightly worse in MAP. This leads us to conclude that (1) a

classification model that includes negative samples (GeneMANIA) is

little different from a diffusion model (ProteinRank) in de novo func-

tion prediction; and (2) integrating the GO hierarchy (BirgRank and

AptRank) cannot significantly improve the accuracy in function
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Fig. 3. Missing function prediction. The x-axis represents the percentages of

data used in training. The error mark on top of each bar indicates the stand-

ard deviation of AUROCs or MAPs over 5 repetitions of each experiment
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data used in training. The error mark on top of each bar indicates the stand-
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prediction for newly found proteins without known functional

information.

3.2.3 Guided function prediction

To examine the extent to which our methods benefit from limited

known annotations of tested proteins, we devise a validation strategy

called guided function prediction which is a hybrid of the missing func-

tion prediction (Section 3.2.1) and the de novo prediction (Section

3.2.2) strategies. In this validation, the strategy of partitioning training

and evaluation sets is identical to that used in de novo prediction except

that it gives one functional annotation as guidance for each evaluated

protein that has more than one annotation. The proteins in the evalu-

ation set with only one or no annotation are not taken into account.

We can see in Figure 5 that in the evaluations using the three

benchmark datasets with dense network data, our methods, espe-

cially AptRank-2, can take full advantages of the single given anno-

tation to improve prediction performance by approximately 2-fold

in AUROC and 3-fold in MAP, compared to the other four methods.

In the sparse network data (Human-2015), we find that the given

annotations worsen the performances of all the methods (Fig. 4(G,

H) vs. Fig. 5(G, H)). We conclude that sparse network datasets may

cause underfitting of our model training, and reducing the model

complexity can alleviate this problem, e.g. setting a small a in

BirgRank or a small K in AptRank. On the contrary, we also find

that in some experiments, the more data we provide for training, the

worse the testing accuracy is (e.g. AptRank-2 in Fig. 4(F)). In these

cases, Verleyen et al. (2015) proposed using sampling of the training

data to overcome this overfitting.

3.2.4 Newly discovered function prediction

In addition to separate evaluations of prediction using human-2010

and human-2015 datasets, we performed prediction using the

human-2010 data as the training set and the human-2015 data as

the testing set. Denote the three input matrices of human-2010 as

Gð0Þ; Rð0Þ and Hð0Þ, and those of human-2015 as Gð5Þ; Rð5Þ and Hð5Þ.

In this task, we input Gð5Þ; Rð0Þ and Hð5Þ into each method, and then

evaluated their predictions using Rð5Þ as the testing set. In Figure 6,

we show that BirgRank and AptRank-1 achieve higher AUROCs

than the previous methods in this task, which demonstrates the abil-

ity of our methods to successfully predict new protein functions in

human discovered from 2010 to 2015.

3.3 Analysis of adaptive coefficients
The adaptive coefficients of AptRank (c) are the unique feature that

differs from traditional PageRank. To investigate their behaviors in

prediction, we list the medians of c over the different shuffles in the

prediction of yeast and human-2015 datasets in Table 4. We can see

that there are three main features of c’s behaviors,

1. cð1Þ is always zero, since the information diffusing within G,

from proteins at the first step, has not yet reached the hierarchy;

2. as shown in the yeast dataset, the distribution of c is not uni-

form, but concentrates on specific terms of Markov chains,

which demonstrates that AptRank can adaptively select the most

predictive terms rather than weighting all terms with power-

decays like traditional PageRank; and

3. in comparison of c in yeast and human-2015 datasets, we find

that AptRank mostly selects the 2nd term in the human-2015

dataset, but a few more terms in the yeast dataset, which is due

to the different network densities of the two datasets. The yeast

dataset is smaller but denser, since it integrates 44 different ker-

nels into G; the human-2015 dataset is larger but sparser, and

all the entries in the raw human-2015 dataset are binary. This

implies that for a sparse dataset, our AptRank might be equiva-

lent to neighbor-voting methods.

3.4 Comparison of runtimes
The average computational time of the six methods compared in this

study are shown in Figure 4. In this comparison, the computational

time is recorded for the prediction using the largest dataset, human-

2015. We can clearly see AptRank requires the third longest computa-

tional time, likely because it involves many dense matrix operations.
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data used in training. The error mark on top of each bar indicates the stand-

ard deviation of AUROCs or MAPs over 3 repetitions of each experiment
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Table 4. Medians of c in prediction of yeast and human-2015

datasets

Dataset Training

(%)

Markov chain iteration

1st 2nd 3rd 4th 5th 6th 7th 8th

Yeast 10% 0 0 0 0 0 0 0.08 0.92

20% 0 0.11 0 0 0 0 0.23 0.66

30% 0 0.34 0 0.08 0 0 0.58 0

40% 0 0 0 0 0 0 1 0

50% 0 0 0 0 0.84 0 0.16 0

60% 0 0 0 0 1 0 0 0

70% 0 0 0.09 0 0.91 0 0 0

80% 0 0 0.64 0 0.36 0 0 0

Human

2015

10% 0 0.20 0 0 0 0 0.31 0.49

20% 0 0.65 0 0 0 0 0.11 0.24

30% 0 1 0 0 0 0 0 0

40% 0 1 0 0 0 0 0 0

50% 0 1 0 0 0 0 0 0

60% 0 1 0 0 0 0 0 0

70% 0 1 0 0 0 0 0 0

80% 0 1 0 0 0 0 0 0

AptRank 7



The SVD computations required in clusDCA are likely responsible for

clusDCA having the longest running time. Without a parallel imple-

mentation of SVD, clusDCA might be impractical unless we sacrifice

prediction accuracy by using a small d value. GeneMANIA-SW is the

second most computationally expansive method, since it computes

the prediction scores function by function. This is extremely expensive

when the number of functions is large, even though we only used dir-

ect GO terms in GeneMANIA-SW. BirgRank and TMC both use bi-

relational graphs, and take only several minutes to solve the

PageRank linear system. ProteinRank has the most simple model, and

it takes the shortest time, since it needs only to solve a PageRank lin-

ear system with approximately half the dimension of the systems

involved in BirgRank and TMC.

4 Conclusion

In this paper we present two network-diffusion-based methods for

protein function prediction. Our first method, BirgRank, uses

PageRank on a bi-relational graph model that incorporates protein–

protein and function–function networks. Our second method,

AptRank, introduces an adaptive mechanism to the PageRank

framework that computes an optimal set of weights for the first sev-

eral steps of diffusion so as to maximize recovery of a subset of

known function annotations. We show that both methods outper-

form the four existing state-of-the-art methods in almost all cases,

and in particular, outperform those methods that do not incorporate

information about the functional hierarchy. Our results also suggest

that diffusion-based methods are still among the most competitive in

network-based protein function predictions, compared to

classification-based and decomposition-based methods.
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