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ABSTRACT
The communities of a social network are sets of vertices with
more connections inside the set than outside. We theoreti-
cally demonstrate that two commonly observed properties of
social networks, heavy-tailed degree distributions and large
clustering coefficients, imply the existence of vertex neigh-
borhoods (also known as egonets) that are themselves good
communities. We evaluate these neighborhood communities
on a range of graphs. What we find is that the neighbor-
hood communities can exhibit conductance scores that are
as good as the Fiedler cut. Also, the conductance of neigh-
borhood communities shows similar behavior as the network
community profile computed with a personalized PageRank
community detection method. Neighborhood communities
give us a simple and powerful heuristic for speeding up lo-
cal partitioning methods. Since finding good seeds for the
PageRank clustering method is difficult, most approaches in-
volve an expensive sweep over a great many starting vertices.
We show how to use neighborhood communities to quickly
generate a small set of seeds.

Categories and Subject Descriptors
I.5.3 [Pattern Recognition]: Clustering—Algorithms
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1. INTRODUCTION
Community detection, loosely speaking, is any process

that takes a graph or network and picks out sets of related
nodes. An incredibly variety of techniques exist for this
single task, which has a variety of names as well: community
detection, graph clustering, and graph partitioning. Thus,
we use community and cluster interchangeably. For more
information about approaches for this problem, see the recent
survey by Schaeffer [33]. In many techniques, a community
is a set with a good score under a quality measure that
reflects the connectivity between the set and the rest of the
network. Common measures are based on density of local
edges, deviance from a random null model, the behavior of
random walks, or graph cuts. Mostly, these measures are
NP-hard to optimize.

To keep this manuscript simple, we shall evaluate com-
munities using their conductance score. Schaeffer identified
this measure as one of the most important cut-based mea-
sures and it has been studied extensively in a variety of
disciplines [11,17,35]. Work by Leskovec et al. has recently
demonstrated that, although different quality measures pro-
duce differences in terms of specific communities, strong
communities persist under a variety of measures [26].

A vertex neighborhood of a
vertex v is the set of vertices
directly connected to v via an
edge and v itself. For example,
see the green and black ver-
tices at right. What we show
here is that the presence of
two commonly observed prop-
erties of modern information
networks – a large global clus-
tering coefficient [38] and a
heavy tailed degree distribution [5] – implies the existence of
vertex neighborhoods with good conductance scores. We make
this statement precise in Theorem 4.6, and the discussion
surrounding it in Section 4. These results can be seen as
an extension of the simple observation that, in the extreme
case when the global clustering coefficient of a network is
1, the network must be a union of cliques. Neighborhoods
define ideal communities in this case. We mathematically
show that this argument can be extended to the case when
the graph has a heavy tailed degree distribution and a large
clustering coefficient. The significance of this finding is that
robust community detection need not employ complicated
algorithms. Instead, a straightforward approach that just
involves counting triangles – a function that is easy to im-
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plement in MapReduce [12] and easy to approximate [21],
suffices to identify communities. It is intriguing that ar-
guably the two most important measurable quantities of
social networks imply that communities are very easy to find.
This may lead to more mathematical work explaining the
success of community detection algorithms, given that the
problem is in general NP-hard. We note that unfortunately,
our theoretical bounds reflect a worst case behavior and are
weaker than required for practical use. Consequently, in
the remainder of the paper we explore the utility of neigh-
borhood communities empirically on 15 public real-world
networks including collaboration networks, social networks,
technological networks, and web networks – see Section 5 for
a discussion.

Our empirical investigation of neighborhood clusters be-
gins in Section 6. We first exhibit the conductance scores
for the set of neighborhood communities for a few graphs
(e.g. Figure 2). We find that neighborhood communities
reflect the shape of the network community plot observed
by Leskovec et al. [24, 25] at small size scales. We next com-
pare the best neighborhood communities to those discovered
by four other procedures: the Fiedler community, the best
personalized PageRank community (§2.3), the best network
whisker (§2.3), and the best clusters from metis [18]. In one
third of the cases, a neighborhood community is as good as
the best of any of the other algorithms.

Motivated by the success of the neighborhood communities
at small size scales, we explore using the best vertex neigh-
borhoods as seeds for the Andersen-Chung-Lang algorithm in
Section 7. Here, we find that these procedures, when seeded
with an easy-to-identify set of neighborhood communities,
produce larger clusters that decay as expected by the results
in Leskovec et al. [24, 25]

The technical discussion of the manuscript begins next by
introducing our notation and precisely defines the quantities
we examine, such as clustering coefficients, due to variabil-
ity in the definitions of these measures. We also discuss
the Andersen-Chung-Lang personalized PageRank cluster-
ing scheme [2] and the network whiskers from Leskovec et
al. [24, 25]. We utilize the latter two algorithms as reference
points for the success of our community detection.

We make all of our algorithm and experimental code, the
majority of the data for the experiments, and many extra
figures that did not fit into the paper available:

www.cs.purdue.edu/homes/dgleich/codes/neighborhoods

These codes are easy to use. Given the adjacency matrix of
a network A, the single Matlab command

>> ncpneighs(A)

will produce a figure like those in this paper.

Summary of contributions.
• We theoretically motivate the study of neighborhood

communities by showing they often have a low conduc-
tance in graphs with a heavy tailed degree distribution
and large clustering coefficients.
• We empirically evaluate these neighborhood communi-

ties and find them comparable to those communities
found by other algorithms at small size scales.
• We find a small set of neighborhood communities that

can be grown into larger communities using a PageRank
based community detection algorithm. The results
match those communities found with a more expensive
sweep over all communities.

Table 1: A summary of the notation.

n = |V | the number of vertices
m = |E| the number of edges

dv the degree of vertex v
fd the number of vertices of degree d
W the set of wedges in a graph
Wv the set of wedges centered at vertex v
κ the global clustering coefficient
C̄ the mean local clustering coefficient
Cv the local clustering coefficient for vertex v

Nr(v) the set of vertices within distance r or v
E(S, T ) the set of edges between S and T
cut(S) the size of the cut around vertex set S
vol(S) the sum of degrees (volume) of vertices in S

edges(S) twice the number of edges among vertices in S
φ(S) the conductance of vertex set S

2. FORMAL SETTING AND NOTATION
All of the key notation is summarized in Table 1, and

we briefly review it here. Let G = (V,E) be a loop-less,
undirected, unweighted graph. We denote the number of
vertices by n = |V | and the number of edges by m = |E|.
In terms of the adjacency matrix, m is half the number of
non-zeros entries. For a vertex v, let dv be the degree of v.
For any positive integer d, let fd be the number of vertices of
degree d, that is, the frequency of d in the degree distribution.
The maximum degree is denoted by dmax. Let Dr(v) to be
the distance r-neighborhood of v. This is the set of vertices
whose shortest path distance from v is exactly r. Then, we
define the ball of distance r around v, denoted by Nr(v), as
the set

⋃
i≤rDr(v).

2.1 Clustering coefficients
A wedge is an unordered pair of edges that share an end-

point. The center of the wedge is the common vertex between
the edges. A wedge {(s, t), (s, u)} is closed if the edge (t, u)
exists, and is open otherwise. We use W to denote the set
of wedges in G, and Wv for the set of wedges centered at V .
Note that |Wv| =

(
dv
2

)
. We set pv = |Wv|/|W |.

Social networks often have large clustering coefficients [38].
Because of the varying definitions of this term that are used,
we will denote by κ the global clustering coefficient. This
quantity is a normalized count of triangles that we interpret
as the probability that a uniform random wedge w is closed:

κ = Pr
w∼W

[w is closed] =
number of closed wedges

|W |

In terms of triangles, κ = 3 · number of triangles/|W |. For
any vertex v, Cv is the local clustering coefficient of v, or
the probability that a uniform random wedge w from Wv is
closed. Formally,

Cv = Pr
w∼Wv

[w is closed] =
number of closed wedges in Wv

|Wv|

2.2 Cuts and Conductance
Given a set of vertices S, the set S̄ is the complement set,

S̄ = V \S. For disjoint sets of vertices S, T , E(S, T ) denotes
the edges between S and T . For convenience, we denote the
size of the cut induced by a set |E(S, S)| by cut(S).

The conductance of a cluster (a set of vertices) measures
the probability that a one-step random walk starting in that
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cluster leaves that cluster. Let vol(S) denotes the sum of
degrees of vertices in S and edges(S) denotes twice the
number of edges among vertices in S so that

edges(S) = vol(S)− cut(S).

Then the conductance of set S, denoted φ(S), is

φ(S) =
cut(S)

min
(
vol(S), vol(S̄)

) .
Conductance is measured with respect to the set S or S̄ with
smaller volume, and is the probability of picking an edge
from the smaller set that crosses the cut. Because of this
property, conductance is preserved on taking complements:
φ(S) = φ(S̄). For this reason, when we refer to the number of
vertices in a set of conductance φ, we always use the smaller
set min(|S|, |S̄|). Figure 1 shows a few communities and their
associated cuts and conductance scores from our methods
and two points of comparison.

2.3 Finding good conductance communities
We briefly review three ways of identifying a community

with a good conductance score.
Fiedler set. The well-known Cheeger inequality defines

a bound between the second smallest eigenvalue of the nor-
malized Laplacian matrix and the set of smallest conductance
in a graph [11]. Formally,

(1/2)λ2 ≤ min
S⊂V

φ(S) ≤
√

2λ2

where λ2 is the second smallest eigenvalue of the normalized
Laplacian. The proof is constructive. It identifies a set of
vertices that obeys the upper-bound using a sweep cut. This
is the smallest conductance cut among all cuts induced by
ordering vertices by increasing values of

√
dvxv, where xv is

the component of the eigenvector associated with λ2. This
is the same idea used in normalized cut procedures [35]. We
refer to the set identified by this procedure as the Cheeger
community or Fiedler community. The latter term is based
on Fiedler’s work in using the second smallest eigenvalue of
the combinatorial Laplacian matrix [14]. Figure 1b shows
the Fiedler community for the Les Misérables network.

Personalized PageRank communities. Another suc-
cessful scheme for community detection based on conductance
uses personalized PageRank vectors. A personalized Page-
Rank vector is the stationary distribution of a random walk
that follows an edge of the graph with probability α and
“teleports” back to a fixed seed vertex with probability 1−α.
We use α = 0.99 in all experiments. The essence of the in-
duced community is that an inexact personalized PageRank
vector, computed via an algorithm that “pushes” rank round
the graph, will identify good bottlenecks nearby a seed ver-
tex. These bottlenecks can be formalized in a Cheeger-like
bound [2]. The procedure to find a personalized PageRank
community is: i) specify a value of α, a seed vertex v, and a
desired cluster size σ; ii) solve the personalized PageRank
problem using the algorithm from [2] until a degree-weighted
tolerance of τ = 1/(10σ); and iii) sweep over all cuts induced
by the ordering of the personalized PageRank vector (normal-
ized by degrees) and choose the best. Personalized PageRank
communities (ppr communities, for short) were used to iden-
tify an interesting empirical property of communities in large
networks [24, 25]. To generate these plots, those authors
examined a range of values of σ for a large number of vertices

of the graph and summarized the best communities found at
any size scale in a network community plot. Figure 1c shows
the best personalized PageRank community for the network
of character interactions in Les Misérables.

Whisker communities. Perhaps the best point of com-
parison with our approach are the whisker communities de-
fined by Leskovec et al. [24,25]. These communities are small
dense subgraphs connected by a single edge. They can be
found by looking at any subgraph connected to the largest
biconnected component by a single edge. Note that the
largest biconnected component is not necessarily a 2-core of
the graph. (Here, a graph k-core is a subset of vertices where
all nodes have degree at least k [34].) Leskovec et al. ob-
served that many of these subgraphs are rather dense. Each
subgraph has a cut of exactly one, and consequently, a pro-
ductive means of finding sets with low conductance is to sort
these subgraphs by their volume. The best whisker cut is
the single subgraph with largest volume.

3. RELATED WORK
Egonets, homophily, and structural holes. In the

context of social networks, vertex neighborhoods are often
called egonets because they reflect the the state of the network
as perceived by a single vertex. Their analysis is a key
component in the study of social networks [37], especially
in terms of data collection. Studies of these networks often
focus on the theory of structural holes, which is the notion
that an individual can derive an advantage from serving as a
bridge between disparate groups [9]. These bridge roles are
interesting because they contradict homophily in social ties.
Homophily, or the principle that similar individuals form ties,
is the mechanism that is expected to produce networks with
large local clustering coefficients [28]. These social theories
have prompted the development of new methods to tease
apart some of these effects in real-world networks [22], and
to develop network models that capture structural holes [19].

Clustering and communities. Vertex neighborhoods
often play a role in other techniques to find community or clus-
tering structure in a network. Overlap in the neighborhood
sets of vertices is a common vertex similarity metric used to
guide graph clustering algorithms [33]. Other schemes utilize
vertex neighborhoods as good seed sets for local techniques
to grow communities [16,32]. We explore using a carefully
chosen set of neighborhoods for this purpose in our final
empirical discussion (§7). Perhaps the most closely related
work is a recent idea to utilize the connected components
of egonets, after their ego vertex is removed, to produce a
good set of overlapping communities [31]. Our theoretical
results establish that these ideas are highly likely to succeed
in networks with local clustering and heavy tailed degree
distributions.

Graph properties. Much of the modern work on net-
works rests on surprising empirical observations about the
structure of real world connections. For instance, information
networks were found to have a heavy tailed in the degree
distribution [5, 13]. These same networks were also found to
have considerable local structure in the form of large clus-
tering coefficients [38], but retained a small global diameter.
Our theory shows that a third potential observation – the
existence of vertex neighborhood with low conductance – is in
fact implied by these other two properties. We formally show
that heavy tailed degree distributions and high clustering
coefficients imply the existence of large dense cores.
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(a) Best neighborhood
size=8, cut=10, φ=0.15

(b) Fiedler community
size=36, cut=29, φ=0.13

(c) Best ppr community
size=28, cut=31, φ=0.12

(d) Best seeded community
size=28, cut=31, φ=0.12

Figure 1: A series of vertex sets and their associated sizes and conductance score on the graph of characters
from Les Misérables [20]. The best neighborhood and best seeded community are discussed further in §6 and
§7, respectively. See §2.3 for more on the Fiedler and PPR communities. Finding (d) is faster than (c).

Anomaly detection. Predictable behavior in the struc-
ture of egonets makes them a useful tool for detecting anoma-
lous patterns in the structure of the network. For instance,
Akoglu et al. [1] compute a small collection of measures on
each egonet, such as the average degree and largest eigen-
values. Outliers in this space of vertices are often rather
anomalous vertices. Our work is, in contrast, a precise state-
ment about the regularity of the egonets, and says that we
always expect a large egonet to be a good community.

Summary. Although we are not the first to study neigh-
borhood based communities, the relationship between the
local clustering, heavy tailed degree distributions, and large
neighborhoods with small conductance does not appear to
have been noticed before.

4. THEORETICAL JUSTIFICATION FOR
NEIGHBORHOOD COMMUNITIES

The aim of this section is to provide some mathematical
justification for the success of neighborhood cuts. Our aim
is to show that heavy tailed degree distributions and large
clustering coefficients imply the existence of neighborhood
cuts with low conductance and large dense cores. We stress
that the exact bounds obtained are weak and only hold when
the clustering coefficient is extremely large. Nonetheless,
the proofs give significant intuition into why neighborhoods
are good communities. The theory is truly tested with the
experimental work in the next sections.

We begin with the extreme case when the value of κ is 1,
when every wedge is closed, for the following simple claim.

Claim 4.1. Suppose the global clustering coefficient of G
is 1. Then G is the union of disjoint cliques.

Proof. Consider two vertices u and v that are connected.
Suppose the shortest path distance between them is ` >
1. Then the shortest path has at least 3 distinct vertices
(including u and v). Take the last three vertices on this path,
v1, v2, v. This forms a wedge at v2, and must be closed (since
the clustering coefficient is 1). Hence, the edge (v1, v) exists
and there exists a path between u and v of length less than
`, contradicting the assumption. Hence, any two connected
vertices have a shortest path distance of 1, i.e., are connected
by an edge and the graph is a disjoint union of cliques.

Note that the neighborhood of any vertex in the above
claim forms a clique disconnected from the rest of G. There-
fore, all neighborhoods form perfect communities, in this
extremely degenerate case. We prove this for more general
settings.

Define pv = |Wv|/|W |, and observe that it forms a dis-
tribution over the set of vertices. We show a simple claim
about these values. We remind the reader that κ is the global
clustering coefficient of G.

Claim 4.2.
∑
v pvCv = κ

Proof.∑
v

pvCv =
∑
v

|Wv|
|W | ·

number of closed wedges in Wv

|Wv|

=

∑
v (# closed wedges in Wv)

|W | = κ.

We come to an important lemma. This argues that, on
average, neighborhood cuts must have low conductance.

Lemma 4.3.∑
v

(
pv

cut(N1(v))

|Wv|

)
= 2(1− κ)

Proof. We express the sum of cut(N1(v)) as a double
summation, and perform some algebraic manipulations.∑
v

cut(N1(v)) =
∑
v

∑
u∈N1(v)

|N1(u) \ (N1(v) ∪ {v})|

=
∑
u

∑
v∈N1(u)

|N1(u) \ (N1(v) ∪ {v})|

=
∑
u

∑
v∈N1(u)

(# open wedges centered

at u involving edge (u, v))

= 2
∑
u

(# open wedges centered at u)

= 2(1− κ)|W |

We complete the proof with the following simple observation:∑
v

(
pv

cut(N1(v))

|Wv|

)
=

∑
v cut(N1(v))

|W | .
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So far, the discussion and proofs hold for any graph with
clustering coefficient κ. We now bring in the heavy-tailed
degree distribution of G. Since we are performing an asymp-
totic analysis, we will use o(1) to denote any quantity that
becomes negligible as the graph size increases. We will choose
β to be a constant less than 1. The asymptotics hold for
any β, but from a practical standpoint, we think of β as a
constant such that most edges are incident to a vertex of
degree at least dβmax, 2/3 is usually a reasonable value.

Let us formalize the notion that the degree distribution is
heavy tailed. This is sometimes expressed as a power law,
but that is a fairly contested assertion. Power laws often do
not fit real-world degree distributions, but they nonetheless
give a rough guide. So we will assume that there is a power
law that approximately bounds the degree distribution. We
formalize this as Condition (*).

Condition (*) (i) For all d, fd ∈ [α1n/d
γ , α2n/d

γ ], for
some α1, α2, and γ < 3. (ii) The global clustering coefficient
of G is κ.

Claim 4.4. Suppose G satisfies Condition (*). Let S
be the set of vertices with degrees more than dβmax. Then,∑
v∈S pv = 1− o(1).

Proof. We can set pv = (2|Wv|)/(2|W |). We have 2|W | =∑dmax
d>1 d(d−1)fd and 2|WS | :=

∑
v∈S 2|Wv| =

∑dmax

d=d
β
max

d2fd.

Note that
∑
v∈S pv = 2|WS |/2|W |. It suffices to show that

2|W | − 2|WS | = o(|W |). By the heavy tail condition,

2|W | =
∑
v

2|Wv| =
dmax∑
d>1

d(d− 1)fd

≥ (α1n/2)

dmax∑
d>1

d2−γ ≥ (α1n/2
4−γ)d3−γmax

2(|W |−|WS |) =

dβmax∑
d>1

d(d− 1)fd≤α2n

dβmax∑
d>1

d2−γ≤α2nd
β(3−γ)
max

Note that 3−γ > 0 and β < 1. So the latter is asymptotically
smaller than the former, i.e. 2|W | − 2|WS | = o(|W |).

We next state a cute result that can be derived from our
calculations. It is not applied anywhere later, but shows that
graphs with heavy tails and large clustering coefficients have
large cores. See the online version for the proof.

Theorem 4.5. Consider a graph G satisfying Condition
(*). There exists a k-core in G for k ≥ κdβmax/2.

We come to our main theorem that proves the existence
of a neighborhood cut with low conductance. When κ = 1,
we get back the statement of Claim 4.1, since we have a set
of conductance 0. But this theorem also gives non-trivial
bounds for (very) large values of κ. As we mentioned earlier,
when κ becomes small, this bound is not useful any longer.
Again, it is the intuition of this theorem that is important,
not the exact constant that it provides.

Theorem 4.6. Consider a graph G satisfying Condition
(*). There exists a neighborhood cut with conductance at
most 4(1− κ)/(3− 2κ).

Proof. The proof uses the probabilistic method, given
the bounds of Lemma 4.3 and Claim 4.2. Suppose we choose
a vertex v according to the probability distribution given

Table 2: Datasets for our experiments. The five
types are: collaboration networks, social networks,
technological networks, and web graphs.

Graph Verts Edges Avg.

Deg.

Max

Deg.

κ C̄

ca-AstroPh 17903 196972 22.0 504 0.318 0.633

email-Enron 33696 180811 10.7 1383 0.085 0.509

cond-mat-2005 36458 171735 9.4 278 0.243 0.657

arxiv 86376 517563 12.0 1253 0.560 0.678

dblp 226413 716460 6.3 238 0.383 0.635

hollywood-2009 1069126 56306653 105.3 11467 0.310 0.766

fb-Penn94 41536 1362220 65.6 4410 0.098 0.212

fb-A-oneyear 1138557 4404989 7.7 695 0.038 0.060

fb-A 3097165 23667394 15.3 4915 0.048 0.097

soc-LiveJournal1 4843953 42845684 17.7 20333 0.118 0.274

oregon2-010526 11461 32730 5.7 2432 0.037 0.352

p2p-Gnutella25 22663 54693 4.8 66 0.005 0.005

as-22july06 22963 48436 4.2 2390 0.011 0.230

itdk0304 190914 607610 6.4 1071 0.061 0.158

web-Google 855802 4291352 10.0 6332 0.055 0.519

by pv. Let X denote the random variable cut(N1(v))/|Wv|,
so E[X] = 2(1− κ) (Lemma 4.3). By Markov’s inequality,
Pr[X > 4(1− κ)] ≤ 1/2.

Set ξ = 2κ − 1, and set Pr[Cv < ξ] = p. Let Sξ denote
the set {v|Cv < ξ}. (So

∑
v∈Sξ

pv = p.) Now, starting with

Claim 4.2,

κ =
∑
v

pvCv =
∑
v∈Sξ

pvCv +
∑
v/∈Sξ

pvCv

< ξ
∑
v∈Sξ

pv +
∑
v/∈Sξ

pv = pξ + (1− p)

=⇒p < (1− κ)/(1− ξ) = 1/2

By the union bound, the probability that cut(N1(v))/|Wv| >
4(1− κ) or Cv < ξ is less than 1. Hence, there exists some
vertex v such that cut(N1(v)) ≤ 4(1− κ)|Wv| and Cv ≥ ξ
(we can also show that dv ≥ nβ). Let E be the set of edges in
the subgraph induced on N1(v). Since Cv ≥ ξ, |E| ≥ ξ|Wv|.
We can bound the conductance of N1(v),

cut(N1(v))

|E|+ cut(N1(v))
≤ 4(1− κ)|Wv|
ξ|Wv|+ 4(1− κ)|Wv|

=
4− 4κ

3− 2κ
.

5. DATA
Data for our empirical investigation comes from a variety

of sources. See Table 2 for a summary of the networks and
their basic statistics. All networks are undirected and were
symmetrized if the original data were directed. Also, any
self-loops in the networks were discarded. We only look
at the largest connected component of the network. There
are four types of networks here. We investigate forest-fire
models [23] in the online figures.

Collaboration networks. In these networks, the nodes
represent people. The edges represent collaborations, ei-
ther via a scientific publication (ca-AstroPh [23], cond-mat-
2005 [30], arxiv [8], dblp [6, 7]), an email (email-Enron [25]),
or a movie (hollywood-2009 [6, 7]). These networks have
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large global clustering coefficients and large mean clustering
coefficients.

Social networks. The nodes are people again, and the
edges are either explicit “friend” relationships (fb-Penn94 [36],
fb-A [39], soc-LiveJournal [4]) or observed network activity
over edges in a one-year span (fb-A-oneyear [39]).

Technological networks. The nodes act in a commu-
nication network either as agents (p2p-Gnutella25 [27]) or as
routers (oregon2 [23], as-22july06 [29], itdk0304 [10]). The
edges are observed communications between the nodes.

Web graphs. The nodes are web-pages, and the edges
are symmetrized links between the pages [25].

6. EMPIRICAL NEIGHBORHOOD
COMMUNITIES

6.1 Computation
We first show that we can adapt any procedure to compute

all local clustering coefficients to compute the conductance
scores for each neighborhood in the graph. Most of the work
to compute a local clustering coefficient is performed when
finding the number of triangles at the vertex. We can express
the number of triangles with v as:

edges(N1(v) \ {v})/2

because each edge among v’s neighbors produces a triangle
(recall that the edges function double-counts). Note also
that edges(N1(v) \ {v})/2 = edges(N1(v))/2 − dv. Then
cut(N1(v)) = vol(N1(v)) − edges(N1(v)). And so, given
the number of triangles, we can compute the cut given the
volume of the neighborhood as well. This is easy to do with
any graph structure that explicitly stores the degrees.

6.2 Quality of neighborhood communities
We use Leskovec et al.’s [24] network community plot to

show the information on all neighborhood communities si-
multaneously. These plots will help us understand if the
neighborhood communities are high quality (low conduc-
tance), and how they compare to other community detection
methods. Given the conductance scores from all the neigh-
borhood communities and their size in terms of number of
vertices, we first identify the best community at each size.
The network community plot shows the relationship between
best community conductance and community size on a log-
log scale. In Leskovec et al., they found that these plots had
a characteristic shape for modern information networks: an
initial sharp decrease until the community size is between
100 and 1000, then a considerable rise in the conductance
scores for larger communities. In our case, neighborhood
communities cannot be any larger than the maximum degree
plus one, and so we mark this point on the figures. We always
look at the smaller side of the cut, so no community can
be larger than half the vertices of the graph. We also mark
this location on the plots. Each subsequent figure in this
paper utilizes this size-vs-conductance plot, and we will con-
tinually layer information from new methods above results
from old methods. The result are information-dense plots
that need slightly more study than would be ideal, however,
we point out the salient features in each plot in the text.
Note also that we deliberately attempt to preserve the axes
limits across figures to promote comparisons. However, some
figures have different axis limits to exhibit the range of data.
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Figure 2: The best neighborhood community con-
ductance at each size (black) and the Fiedler com-
munity (red). (Note the axis limits on ca-AstroPh).

First, we show these network community plots for six of
the networks in Figure 2. These figures are representative of
the best and worst of our results. Plots for other graphs are
available on the website given in the introduction.

The three graphs on the left show cases where a neighbor-
hood community is or is nearby the best Fiedler community
(the red circle). The three graphs on the right highlight
instances where the Fiedler community is much better than
any neighborhood community. We find it mildly surprising
that these neighborhood communities can be as good as
the Fiedler community. The structure of the plot for both
fb-A-oneyear and soc-LiveJournal1 is instructive. Neighbor-
hoods of the highest degree vertices are not community-like
– suggesting that these nodes are somehow exceptional. In
fact, by inspection of these communities, many of them are
nearly a star graph. However, a few of the large degree nodes
define strikingly good communities (these are sets with a few
hundred vertices with conductance scores of around 10−2).
This evidence concurs with the intuition from Theorem 4.6.

6.3 Comparison to PPR communities
Note that these plots show the same shape as observed

by Leskovec et al. [24]. Consequently, in the next set of
figures, and in the remainder of the empirical investigation,
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Figure 3: A comparison of neighborhood commu-
nities (black) personalized PageRank communities
(blue), and whiskers (green).

we compare our neighborhood communities against those
computed via the personalized PageRank community scheme
employed in that work and described in Section 2.3. Figure 3
compares the neighborhood communities to those computed
by running the local personalized PageRank algorithm for
all vertices as described by Leskovec et al. [24]. We also
show the behavior of the whisker communities in this plot
as well. The plot adopts the same style of figure. The
PageRank communities are in a deep blue color, and the
whisker communities are show in a shade of green. Here,
we see that the neighborhood communities show similar
behavior at small size scales (less than 20 vertices), but
the personalized PageRank algorithm is able to find larger
communities of smaller, or similar conductance. In these four
cases (which are representative of the others), a personalized
PageRank community was also the Fiedler community.

6.4 The best community found
Based on this observation, we wanted to understand how

the best community identified by a range of algorithms com-
pares to the neighborhood communities. The results are
shown in Table 3. We computed a set of communities with
metis by repeatedly calling the algorithm, asking it to use
more partitions each time, and saved the best. See our on-
line codes for the precise details of which partitions were
used. The seeded community results are described in the
next section.

By-and-large, all methods, except neighborhoods, tend to
identify similar communities as the best. The Penn94 graph
shows a large difference where the Fiedler community is much
larger than the best PageRank community and it has better
conductance. When a neighborhood has conductance that’s
as good as the rest, then it is always a whisker as well. In the
following full section, we explore using these neighborhood
communities as seeds for the PageRank algorithms. These
seeded communities are just as good as the other methods.
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Figure 4: The conductance of locally minimal com-
munities in the itdk0304 graph (red). Note that
these capture most of the local minima (downward
spikes) in the profile.

7. SEEDED COMMUNITIES
Many of the theorems about extracting local communities

from seed sets [2,3] require that the seed set itself be a good
community. This is precisely what our theoretical results
justify for neighborhood communities. Consequently, in this
section, we look at growing the neighborhood communities
using the local personalized PageRank community algorithm
from a set of carefully chosen seeds.

One of the key problems with using the personalized Page-
Rank community algorithms is that finding a good set of
seeds is not easy. Leskovec et al. [25] used exhaustive enu-
meration over all seeds, and [15] describes a way to do this
using the most popular videos on YouTube. Such a meaning-
ful heuristic is not always available. We begin this section
by empirically showing that there is an easy-to-identify set
of neighborhood communities that are local extrema in the
network community plot of the neighborhood communities.

First, some quick terminology: we say a neighborhood
community is a local minima, or locally minimal, if the con-
ductance of the neighborhood of a vertex is smaller than the
conductance of any of the adjacency neighborhood commu-
nities. Formally,

φ(N1(v)) ≤ φ(N1(w))

for all w adjacent to v

is true for any locally minimal communities. These can be
found by looking at each edge in the graph once. We find
there are only a small set of locally minimal communities with
more than 6 vertices. Shown in Figure 4 are the conductance
and sizes of the roughly 7000 communities identified by this
measure for the itdk0304 graph. Indeed, among all of the
graphs with at least 85, 000 vertices, this heuristic picks out
about 3% of the vertices as local minima. In the worst case,
it picked out 100, 000 seeds for soc-LiveJournal1. Increasing
the minimum size to 10 vertices reduces this down to 50, 000
seeds. We then use these locally minimal neighborhoods as
seed sets for the personalized PageRank community detection
procedure. Each locally minimal neighborhoods is grown by
up to 50-times its volume by solving for communities using
values of σ up to 50. In some experiments motivated by
Theorem 4.5, we also found interesting results by looking at
graph k-cores, and so we also explore growing the k-cores of
a graph by up to 5 times their volume.

Figure 5 shows the results. In these figures, we leave
the baseline neighborhood communities in for comparison.
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Table 3: The best community detected by the six methods explored. The first (§6) and last (§7) are ours.

Graph Neighborhood Fiedler PageRank Whisker Metis Seeded
Cond. Size Cond. Size Cond. Size Cond. Size Cond. Size Cond. Size

ca-AstroPh 0.0455 7 0.0101 23 0.0101 23 0.0101 23 0.0101 23 0.0101 23
email-Enron 0.0154 10 0.0045 28 0.0045 28 0.0045 28 0.0080 16 0.0045 28
cond-mat-2005 0.0064 13 0.0064 13 0.0064 13 0.0064 13 0.0154 11 0.0064 13
arxiv 0.0021 27 0.0008 303 0.0014 304 0.0021 27 0.0021 27 0.0019 306
dblp 0.0038 24 0.0038 25 0.0034 83 0.0038 25 0.0041 17 0.0034 83
hollywood-2009 0.0018 24 0.0018 24 0.0018 24 0.0018 24 0.0018 24 0.0018 24

Penn94 0.3333 2 0.1898 7191 0.1966 41 0.3333 2 0.1986 6923 0.2009 39
fb-A-oneyear 0.0031 164 0.0031 164 0.0031 164 0.0031 164 0.0090 56 0.0031 164
fb-A 0.0345 8 0.0084 647 0.0084 647 0.0133 38 0.0130 77 0.0084 647
soc-LiveJournal1 0.0001 115 0.0001 115 0.0001 115 0.0001 115 0.0001 115 0.0001 115

oregon2-010526 0.1368 12 0.0467 316 0.0438 318 0.1429 4 0.0553 3820 0.0443 319
p2p-Gnutella25 0.1429 10 0.0417 24 0.0417 24 0.0588 9 0.0417 24 0.0417 24
as-22july06 0.0909 4 0.0289 661 0.0286 654 0.0667 8 0.0296 657 0.0285 656
itdk0304 0.0162 213 0.0001 1306 0.0002 1188 0.0001 1306 0.0046 152 0.0002 1188

web-Google 0.0006 59 0.0008 234 0.0006 59 0.0006 59 0.0006 59 0.0006 59

This leaves the figures rather noisy, but the key insight is
that the dark black line (neighborhood seeded communities)
closely tracks the the outline of the pure-PageRank based
community profile (light blue). That profile was computed
by using every vertex in the graph as a seed (although, some
vertices were skipped after 10 other clusters had already
visited that vertex). This effect is most clearly illustrated
by the email-Enron dataset. The dark black line identifies
almost all of the local minima from the full PageRank sweep
(there are a few it misses). A weakness of these minimal
seeds for PageRank is that they may not capture the largest
communities. However, we found that growing communities
from a k-core instead (red line with circles) of a vertex
neighborhood do seem to capture this region of the profile
(e.g. arxiv), although ca-AstroPh is an exception.

8. CONCLUDING DISCUSSIONS
We recap. Community detection is the problem of finding

cohesive collections of nodes in a network. We formalize
this as finding vertex sets with small conductance. Mod-
ern information networks have many distinctive properties,
including a large clustering coefficient and a heavy-tailed de-
gree distribution. We derive a set of theoretical results that
show these properties imply that such networks will have
vertex neighborhoods that are themselves sets of small con-
ductance. Although our theoretical bounds are weak, they
suggest measuring the conductance of vertex neighborhoods.

Algorithms to compute all such conductance scores are
easy to implement by modifying a routine for computing local
clustering coefficients. We evaluate these communities on a
set of real-world networks. In summary, our results support
the idea that there are many neighborhood communities
which are good communities in a conductance sense. They
may be smaller than desired, however.

We next investigate finding a set of locally minimal com-
munities. These communities represent the best of the neigh-
borhood. We find that these locally minimal communities,
of which there are many fewer than vertices in the graph
(usually around 3%), capture the local minimal in the net-
work community profile plot. More importantly, they can

ca-AstroPh email-Enron
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Figure 5: Network community plots with neighbor-
hood communities (gray), PageRank communities
(light blue), whiskers (green), k-cores (purple), lo-
cally minimal seed PageRank communities (black),
and k-core seeded PageRank communities (red).

be enlarged using a local personalized PageRank community
detection procedure. Afterwards, the profile of these “grown”
neighborhoods is strikingly close to the profile of the Page-
Rank communities when seeded with all vertices individually.
While we do not discuss timing due to the variability in
the quality of implementations, this later procedure is much
faster in our experiments.

These findings have implications for future studies in com-
munity detection. One explanation for the results with the
PageRank seeds is that vertex neighborhoods form the base
of any good community in the network. This idea may guide
future research into social network communities.
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