
0018-9219 © 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

256  Proceedings of the IEEE | Vol. 105, No. 2, February 2017

Manuscript received February 29, 2016; revised October 19, 2016; accepted  
November 29, 2016. Date of current version January 18, 2017. 
K. Fountoulakis and M. W. Mahoney are with the International Computer Science 
Institute and the Department of Statistics, University of California Berkeley, Berkeley, 
CA, USA.
D. F. Gleich is with the Department of Computer Science, Purdue University, 

West Lafayette, IN 47907 USA (e-mail: dgleich@purdue.edu).

Digital Object Identifier: 10.1109/JPROC.2016.2637349

An Optimization Approach to 
Locally-Biased Graph Algorithms
This paper investigates a class of locally-biased graph algorithms for finding local 
or small-scale structures in large graphs.

By Kimon Fou n tou l a k is, Dav id F. Gl eich, a nd Mich a el W. Ma hone y

ABSTRACT  |  Locally-biased graph algorithms are algorithms 

that attempt to find local or small-scale structure in a large 

data graph. In some cases, this can be accomplished by adding 

some sort of locality constraint and calling a traditional graph 

algorithm; but more interesting are locally-biased graph 

algorithms that compute answers by running a procedure that 

does not even look at most of the input graph. This corresponds 

more closely to what practitioners from various data science 

domains do, but it does not correspond well with the way 

that algorithmic and statistical theory is typically formulated. 

Recent work from several research communities has focused 

on developing locally-biased graph algorithms that come with 

strong complementary algorithmic and statistical theory and that 

are useful in practice in downstream data science applications. 

We provide a review and overview of this work, highlighting 

commonalities between seemingly different approaches, and 

highlighting promising directions for future work.

KEYWORDS  |  Clustering; graph algorithms; local algorithms; 

network flow; partitioning; semi-supervised learning; spectral 

graph theory

I . IN TRODUCTION

Graphs, long popular in computer science and discrete  
mathematics, have received renewed interest recently in 
statistics, machine learning, data analysis, and related areas 
because they provide a useful way to model many types of rela-
tional data. In this way, graphs can be used to extract insight 
from data arising in many application domains. In biology,  
e.g., graphs are routinely used to generate hypotheses for 

experimental validation [1]; and in neuroscience, they are 
used to study the networks and circuits in the brain [2], [3].

Given their ubiquity, graphs and graph-based data have 
been approached from several different perspectives. In 
computer science, it is common to develop algorithms,  
e.g., for connected component, minimum spanning tree, 
and maximum flow problems, to run on data that are mod-
eled as a precisely specified input graph. These algorithms 
are then characterized by the number of operations they 
use for the worst possible input at any size. In statistics and 
machine learning, on the other hand, it is common to use 
graphs as models to perform inference about unseen data. 
In this case, one often hypothesizes an unseen graph with 
a particular structure, such as block structure, hierarchical 
structure, low-rank structure in the adjacency matrix, etc. 
Then, one runs algorithms on the observed data in order to 
impute entries in the unobserved hypothesized graph. These 
methods may be characterized in terms of running time, but 
they are also characterized in terms of the amount of data 
needed to recover the hidden hypothesized structure.

In many application areas where the end goal is to obtain 
some sort of domain-specific insight, e.g., such as in social 
network analysis, neuroscience, medical imaging, etc., one 
constructs graphs from primary data, and then one runs a 
computational procedure that does not come with either of 
these traditional types of theoretical guarantees. As an exam-
ple, consider the GeneRank method [4], where we have a set 
of genes related to an experimental condition in a microar-
ray study. This set of genes is “refined” via a locally-biased 
graph algorithm closely related to those we will discuss. 
Importantly, this operational refinement procedure does 
not come with the sort of theory traditional in statistics, 
machine learning, or computer science. As another example, 
e.g., in social network applications, one might run a random 
walk process for a few steps from a starting node of interest, 
and if the walk “gets stuck” then one might interpret this as 
evidence that that region of the graph is meaningful in the 
application domain [5]. These are examples of the types of 
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heuristics commonly used in applications. By heuristic, we 
mean an algorithm in the sense that it performs a sequence of  
well-defined steps, but one where precise theory is lacking 
(although usually heuristics come with strong intuitive 
motivation and are justified in terms of some downstream 
application). In particular, typically heuristics do not explic-
itly optimize a well-defined objective function and typically 
they do not come with well-defined inferential guarantees.

Note that, in both of these examples, the goal is to find 
“local” or “small-scale” structure in the data graph. Both 
examples also correspond to what practitioners interested in 
downstream applications actually do. Existing algorithmic 
and statistical theory, however, has challenges with these 
local or small-scale structures. For instance, a very “good” 
algorithmic runtime on a graph is traditionally one that is 
linear in the number of vertices and edges. If the output of 
interest is only a vanishingly small fraction of a large graph, 
however, then this theory may not provide strong qualita-
tive guidance on how these locally-biased methods behave 
in practice. Likewise, inferential methods often assume that 
the structures inferred constitute a substantial fraction of 
the graph, and many statistical techniques have challenges 
differentiating very small structure from random noise.

In this overview, we describe a class of graph algorithms 
that has proven to be very useful for identifying and inter-
preting small-scale local structure in large-scale data. For 
this class of algorithms, however, strong algorithmic and sta-
tistical theory has been developed. In particular, these graph 
algorithms are locally biased in one of several precisely 
quantified senses. We will describe what we mean by this 
in more detail below, but, informally, this means that the 
algorithms are most interested in only a small part of a large 
graph. As opposed to heuristic operational procedures, how-
ever, many of these algorithms do come with strong worst 
case algorithmic guarantees, and many of these algorithms 
also do come with statistical guarantees that prove they have 
implicit regularization properties. This complementary 
algorithmic-statistical theory helps explain their improved 
performance in many practical applications.

While the approach of locally-biased graph algorithms is 
very general, it has been developed most extensively for the 
fundamental problem of finding locally-biased graph parti-
tions, i.e., clusters or communities, and so we will focus on 
locally-biased approaches for the graph clustering problem. Of 
course, this partitioning question is of interest in many more 
application-driven areas, where one is interested in finding 
useful or meaningful clusters as part of a data analysis pipeline.

A. The Rationale for Local Analysis in Real-World Data

As a quick example of why local graph analysis is fre-
quently used in data and data science applications, we pre-
sent in Figure 1 the results of finding the best partition of 
both a random geometric graph and a more typical data 
graph. Standard graph partitioning algorithms must operate 
on, or “touch”, each vertex and edge of the graph to identify 

these partitions. The best partition of the geometric graph 
is around half the data, where it is reasonable to run an  
algorithm that touches all the data. On the other hand, the best 
partition of the data graph is very small, and in this case touch-
ing the entire graph to find it can be too costly in terms of com-
putation time. The local graph clustering techniques discussed 
in this paper can find this cluster when given a small set of nodes 
inside and touching only edges and nodes that scale in the size of 
the output cluster, greatly reducing the computation time.

Far from being a pathology or a peculiarity, the finding 
that optimal partitions of real-world networks are often 
extremely imbalanced, thus leading to very small optimal 
clusters, is endemic to many of the graphs arising in large-
scale data analysis [6]–[9].1

Fig. 1. At left, a geometric graph has a pleasing and intuitive layout 
in the 2-D plane. At right, a more typical data graph has a classic 
hairball layout that shows little high level structure. Due to the 
evident lack of global structure in the data graph, locally-biased 
graph algorithms are often used in these contexts. The solution 
of the minimum-conductance problem in the geometric graph is 
a large set of nodes, and it has conductance value 0.00464. The 
solution of the minimum-conductance problem in the more typical 
data graph is a small set of nodes, and it has conductance value 
0.00589. The inset figure shows that this small graph is very dense 
and has only three edges leaving the set. (a) A random geometric 
graph. (b) A typical data graph. (c) The optimal conductance 
solution for the geometric graph bisects the graph into two large 
well-balanced pieces. (d) The optimal conductance solution for a 
typical data graph. (Inset. A zoomed view of the subgraph where 
the two unfilled notes are the border with the rest of the graph.)

1An important applied question has to do with the meaningfulness, 
usefulness, etc., of such small clusters. We do not consider those ques-
tions here, and instead we refer the interested reader to prior work [6]–[9]. 
Here, we instead focus on the algorithmic and statistical properties of 
these locally-biased algorithms.
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Let us now explain in more detail Fig. 1. Fig. 1(a) shows 
a graph with 3000 nodes that is typical of many graphs that 
possess a strong underlying geometry, e.g., those used in com-
puter graphics, computer vision, logistics planning, road net-
work analysis, and so on. This particular graph is produced by 
generating 3000 random points in the plane and connecting 
all points within a small radius, such that the final graph is con-
nected. The geometric graph can be nearly bisected by opti-
mizing a measure known as conductance (we will define this 
shortly), which is designed to balance partition size and qual-
ity. In Fig. 1(b), we show a more typical data graph of around 
10 680 nodes [10], where this particular data graph is based on 
the trust relationships in a pretty good privacy (PGP) key chain. 
Optimizing the same conductance objective function results in 
a tiny set [Fig. 1(d)] and not the near-bisection as in the geo-
metric case [ Fig. 1(c)]. (We were able to use integer optimiza-
tion techniques to directly solve the NP-hard problems at the 
cost of months of computation.) Many other examples of this 
general phenomenon can be found in prior work [6]–[9].

B. Partitioning as a Model Problem

The problem of finding good partitions or clusters is 
ubiquitous. Representative examples include biomedi-
cal applications [11], [12], internet and world wide web  
[13]–[15], social graphs [6], [16]–[18], human communica-
tion graphs [19], human mobility graphs [20], voting graphs 
in political science [21]–[25], protein interaction graphs 
[26], material science [27], [28], neuroscience [29]–[31], 
and collaboration graphs [32].

All of the features of locally-biased computations are pre-
sent in this model partitioning problem. For example, while 
some of these algorithms read the entire graph as input but 
are engineered to return answers that are biased toward and 
meaningful for a smaller part of the input graph [33]–[36], 
other algorithms can take as input a “small seed” set of nodes 
as well as an oracle with which to access neighbors of a node, 
and they return meaningful answers without even touching 
the entire graph [37]–[40]. Similarly, while these algorithms 
are often formulated in the language of theoretical computer 
science as approximation algorithms, i.e., they come with 
running time guarantees and can be shown to approximate 
to within some quality-of-approximation factor some objec-
tive function of interest, e.g., conductance, in other cases 
one can prove statistical results such as that they exactly 
solve a regularized version of that objective [37], [41]–[43].

Importantly, this statistical regularization is implicit 
rather than explicit. Typically, regularization is explicitly 
used in statistics, when fitting models with a large number 
of parameters, in order to avoid overfitting to the given data. 
It is also used to select answers biased towards specific sets—
for example, sparse solution sets by using the Lasso [44]. In 
the case of locally-biased graph algorithms, one simply runs 
a faster algorithm for a problem. In some cases, the nature 
of the approximation that this fast algorithm makes can be 
related back to a regularized variant of the objective function.

C. Overview

In this paper, we will consider partitioning from the per-
spective of conductance, and we will survey a recent class 
of results about a common localizing construction. These 
methods will let us find the optimal sets in Fig. 1 without 
resorting to integer optimization (but also losing the proof 
of optimality). Depending on the exact construction, they 
will also come with a variety of helpful statistical properties. 
We will conclude with a variety of different perspectives on 
these problems and some open questions.

In Section II, we describe assumptions, notation, and 
preliminary results which we will use in this paper. In Sec-
tion III, we discuss two global graph partitioning problems 
and their spectral relaxation. In Section IV, we describe 
the local graph clustering application. In Section V,  
we provide empirical evaluations for the global and local 
graph clustering algorithms which are described in this 
paper. Finally, in Section VI, we give our conclusions.

II .   PR ELIMINA R IES A ND NOTATION

Graph assumptions: We use the letter ​​ to denote a given 
connected graph. We assume that ​​ is undirected with no 
self-loops. Many of the constructions we will use operate on 
weighted graphs and so we assume that each edge may have 
a positive capacity. Graphs that are unweighted should have 
all of their capacities set to 1.
Nodes, edges, and cuts: Let ​ = { ​v​

1
​​ , ​v​

2
​​…, ​v​

n
​​ }​ be a given 

set of ​||​ nodes of graph ​​. We denote with ​​e​
ij
​​​ an edge in the 

graph between nodes ​​v​
i
​​​  and ​​v​

j
​​​. Let ​ℰ​ be a given set of  ​|ε |​ edges 

of graph ​​. A subset ​S ⊂ ​ of nodes can be used to define a 
partitioning of ​​ into​ S​ and ​​S​​ c​ : = \S​. We define a cut as 
subset ​E ⊂ ℰ​ which partitions the graph ​​ into two sets. Given 
a partition ​S ⊂ ​ and ​​S​​ c​​, then ​E(S, ​S​​ c​) = { ​e​

ij
​​ ∈ ℰ  |  ​v​

i
​​ ∈ S  and   

​v​
j
​​ ∈ ​S​​ c​ }​ is the set of edges with one side in ​S​ and the other 

side in ​​S​​ c​​. If the partition is clear from the context we write 
the cut set as ​E​ instead of ​E(S, ​S​​ c​)​. Let ​​c​

ij
​​​ be a weight of the 

edge ​​e​
ij
​​​, then we define the cut ​S​ as 

​cut(S)  :  = cut(E(S, ​S​​ c​))  :  = ​  ∑ 
​e​

ij
​​∈E(S,​S​​ c​)

​​​c​
ij
​​​ .​	 (1)

The volume of a set S is 

		  ​vol(S)  :  = ​ ∑ 
​v​i​​∈S 

​​​ ∑ 
​e​ij​​∈ε

​​​c​ij​​​​ .	​ (2)

Matrix notation: We denote with ​A ∈ ​R​​ 
||×||

​​ the adja-
cency matrix for a given graph, where ​​A​

ij
​​ = ​c​

ij
​​  ∀ ​e​

ij
​​ ∈ ℰ​ 

and zero elsewhere. Let ​​d​
i
​​​ be the degree of node ​​v​

i
​​ ∈ ​,  

​D ∈ ​ℝ​​ ||×||​​ be the degree diagonal matrix ​​D​
ii
​​ = ​d​

i
​​​, ​L = D − A​ 

be the graph Laplacian, and ​ℒ = ​D​​ −1/2​ L ​D​​ −1/2​​ be the symmetric 
normalized graph Laplacian. Note that the volume of a subset 

S is ​vol(S)  = ​ ∑ 
​v​

i
​​∈S

​​​d​
i
​​​​. We denote with ​B ∈ ​ℝ​​ |ℰ|×||​​ the incidence 

matrix of the given graph G. Every row of the incidence 
matrix corresponds to an edge ​​e​

ij
​​ ∈ ℰ​ in G. Assuming arbitrary 

ordering of the edges of the graph, in this paper we define 

the rows of the incidence matrix as ​​B​
​e​

ij
​​
​​ = ​e​

i
​​ − ​e​

j
​​  ∀ ​e​

ij
​​ ∈ ℰ​,  
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where ​​e​
i
​​ ∈ ​ℝ​​ ||​​ is equal to one at the ​i​th position and zero 

elsewhere. Finally, ​C ∈ ​ℝ​​ |ℰ|×|ℰ|​​ is a diagonal matrix of the 
weights of each edge, i.e., ​​C​

ij
​​ = ​c​

ij
​​  ∀ i, j​. In this notation, the 

Laplacian matrix ​L = ​B​​ T​ CB​.

Norms: For all ​x ∈ ​ℝ​​ |ℰ|​​, we define the weighted ​​
​

1
​​​ and ​​ℓ​2​​​ norms ​||x||​ ​1,C​​ : =​ ∑ 

​e​
ij
​​∈E

​​​c​
ij
​​​ | ​x​

ij
​​ |​ and ​||x|| ​‖​ 2,C​ 2 ​  : =​ ∑ 

​e​
ij
​​∈E

​​​c​
ij
​​​  

| ​x​
ij
​​ ​|​​ 2​​, respectively. The order of elements of the vector  x 

is identical to the order of edges in the incidence matrix. 
Given a partition ​S, ​S​​ c​​ and a vector ​x ∈ ​{ 0, 1}​​ ||​​ such 
that ​​x​

i
​​ = 1​ if ​​v​i​​  ∈S​ and ​​x​

i
​​ = 0​ if ​​v​i​​    ∈ ​S​​ c​​, then ​cut(S) = ​

||Bx|| ​‖​
1,C

​​​. Moreover, notice that ​cut(S) = ||Bx ​||‖​ 2,C​ 2 ​  = ​x​​ T​ ​B​​ T​ CBx = ​
​x​​ T​ Lx​.
Miscellaneous: We use ​[ x; y; z ]​ to denote a single column 
vector where the individual vectors ​x, y, z​ are stacked in this 
order. Finally, the vectors ​​0​||​​​ and ​​1​||​​​ are the all zeros and 

ones vectors of length ​||​, respectively.

III.  SPARSEST CUT, MINIMUM 
CONDUCTANCE, AND SPECTRAL 
RELAXATIONS

In this section, we present two ubiquitous combinatorial 
optimization problems: sparsest cut and minimum conduct-
ance. These problems are NP-hard [45], [46], but they can 
be relaxed to tractable convex optimization problems [47]. 
We discuss one of the commonly used relaxation techniques 
which will motivate part of our discussion for local graph 
clustering algorithms. Both sparsest cut and minimum con-
ductance give different ways of balancing the size of a parti-
tion with its quality.

Sparsest cut finds the partition that minimizes the ratio 
of the fraction of edges that are removed divided by the 
scaled product of volumes of the two disjoint sets of nodes 
defined by removing those edges. In particular, if we have 
a partition ​(S, ​S​​ c​)​, where ​​S​​ c​​ is defined in Section II, then ​
cut(S)​ is the number of edges that are removed, and the 
scaled product of volumes ​vol(S) vol( ​S​​ c​) / vol()​ is the vol-
ume of the disjoint sets of nodes. Putting all together in an 
optimization problem, we obtain 

​​
​ϕ ̃ ​()  :  =

​ 
minimize ​ϕ  ̃ ​(S)  :  = ​ 

cut(S)
 _______________  

​  1 _____ vol() ​  vol(S) vol( ​S​​ c​)
 ​  
​    

​

​ 

subject to S ⊂ .

 ​ ​	 (3)

We will use the term “expansion of a set” to refer to the ratio ​​
ϕ ̃ ​(S)​, and the term “expansion of the graph” to refer to ​​ϕ ̃ ​()​,  
in which case this problem is known as the sparsest cut 
problem.

Another way of balancing the partition is 

​​
ϕ(G)  :  =

​ 
minimize ϕ(S)  :  = ​ 

cut(S)
 ________________  

min (vol(S) , vol( ​S​​ c​))
 ​  
​    

​
​ 

subject to S ⊂ .
 ​ ​	 (4)

In this case, we divide by the minimum of ​vol(S)​ and ​vol( ​S​​ c​)​,  
rather than their product. We will use the term “conduct-
ance of a set” to refer to the ratio of cut to volume ​ϕ(S)​, 
and the term “conductance of the graph” to refer to ​ϕ()​, in 
which case this problem is known as the minimum conduct-
ance problem.

The difference between the two problems (3) and (4) is 
that the former regularizes based on the number of connec-
tions lost among pairs of nodes, while the latter regularizes 
based on the size of the small side of the partition. Optimal 
solutions to these problems differ by a factor of 2

​​ 1 __ 
2

 ​​ϕ ̃ ​(S)  ≤ ϕ(S)  ≤ ​ϕ ̃ ​(S)​ 	 (5)

leading to the two objectives ​​ϕ ̃ ​(S)​ and ​ϕ(S)​ being almost 
substitutable from a theoretical computer science per-
spective [47]. However, this does not mean that the actual 
obtained solutions by solving (3) and (4) are similar; in gen-
eral, they are not.

There are three major relaxation techniques for the 
NP-hard problems (3) and (4): spectral relaxation, all pairs 
multicommodity flow or linear programming (LP) relaxa-
tion, and semidefinite programming (SDP) relaxation. For 
detailed descriptions about the LP and SDP relaxations we 
refer the reader to [46] and [47], respectively. We focus here 
on spectral relaxation since similar relaxations are widely 
used for the development of local clustering methods, which 
we discuss in subsequent sections.

A. Spectral Relaxation

Spectral graph partitioning is one of the best known 
relaxations of the sparsest cut (3) and minimum conduct-
ance (4). The relaxation is the same for both problems, 
although the diversity of derivations of spectral partitioning 
does not always make this connection clear. For a partition ​
(S, ​S​​ c​)​, let us associate a vector ​x ∈ ​{ ​c​

1
​​ , ​c​

2
​​ }​​ ||​​ such that ​​x​

i
​​ = ​c​

1
​​​ 

if ​​v​
i
​​ ∈ S​ and ​​x​

i
​​ = ​c​

2
​​​ if ​​v​

i
​​ ∈ ​S​​ c​​. (For simplicity, think of ​​c​

1
​​ = 1​ and ​​

c​
2
​​ = 0​, so ​x​ is the set indicator vector.) The spectral cluster-

ing relaxation uses a continuous relaxation of the set indicator 
vector in problems (3) and (4) to produce an eigenvector. The 
relaxed problem is 

​​

​λ​ 2​​ :  =

​ 

minimize  ​ 
||Bx ​||​ 2,C​ 2 ​

 ______ 
2||x|| ​‖​ 2,D​ 2 ​

 ​  

​  
​
​ 

subject to  ​1​ | |​ 
T ​  Dx

 
=
 
0

​   

​

​ 

  x

 

∈

 

​ℝ​​ ||​ − { ​0​||​​ }.

 ​​  	 (6)

(The denominator ​||x|| ​‖​ 
2,D

​ 2 ​  = ​∑ 
i
​ ​ |​ ​x​

i
​​ ​|​​ 2​ ​d​

i
​​​.) To see why (6) is 

a continuous relaxation of (3) we make two observations.
First, notice that for all ​x​ in ​​ℝ​​ ||​ − { ​0​||​​}​  

such that ​​1​ 
||

​ T ​ Dx = 0​ the denominator in (6) satisfies 

​2vol() ||x ​||​ 2,D​ 2 ​  = ​∑ 
i=1

​ 
||

 ​​∑ 
j=1

​ 
||

 ​​d​
i
​​​​ ​d​

j
​​ | ​x​

i
​​ − ​x​

j
​​ ​|​​ 2​​. Therefore, ​​λ​

2
​​​ in (6) is 

equivalent to 
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​​

​λ​ 2​​ =

​ 

minimize  ​ 
‖||Bx ||​‖​ 2,C​ 2 ​

  __________________  
​  1 _____ vol( ) ​ ​ ∑ 

i=1
​ 

||
 ​​ ∑ 
j=1

​ 
||

 ​​d​i​​​​ ​d​j​​ | ​x​i​​ − ​x​j​​ ​|​​ 
2​

 ​  

​   
​
​ 

subject to  ​1​ ||​ 
T ​  Dx = 0

​   

​

​ 

  x ∈ ​ℝ​​ ||​ − { ​0​||​​ }.

 ​​	  (7)

The optimal value of the right-hand side in (7) is equivalent to 
the optimal value of right-hand side in the following expression:

​​

​λ​ 2​​ =

​ 

minimize   ​ 
‖||Bx|| ​‖​ 2,C​ 2 ​

  __________________  
​  1 _____ vol() ​ ​ ∑ 

i=1
​ 

||
 ​​ ∑ 
j=1

​ 
||

 ​​d​i​​​​ ​d​j​​ | ​x​i​​ − ​x​j​​ ​|​​ 
2​

 ​  

​    

​

​ 

subject to x ∈ ​ℝ​​ ||​ − { ​0​||​​ , ​1​||​​ }.

 ​​  	 (8)

To prove this notice that the objective function of the right-
hand side in (8) is invariant to constant shifts of ​x​, i.e., ​ 
x​ and ​x + c ​1​

||
​​​ have the same objective function, where ​c​ 

is a constant. Therefore, if ​​x ̃ ​​ is an optimal solution of the  

right-hand side in (8), then ​​x ̂ ​ = ​x ̃ ​ − ​ 
​1​ ​||​​ 

T ​  D​x ̃ ​
 _____ 

vol​()​
 ​ ​1​​||​​​​ has the

same optimal objective value and also ​​1​ 
||

​ T ​ D​x ̂ ​ = 0​.

Second, by restricting the solution in (8) in ​​{ 0, 1}​​ ||​​  

instead of ​​ℝ​​ ||​​ we get that ​cut(S)  = ||Bx|| ​‖​ 
2,C

​ 2 ​​  and

​​∑ 
i=1

​ 
||

 ​​∑ 
j=1

​ 
||

 ​​d​
i
​​​​ ​d​

j
​​  | ​x​

i
​​ − ​x​

j
​​ ​|​​ 2​ = vol(S) vol( ​S​​ c​)​.

Using these two observations, it is easy to see that (6) is a 
continuous relaxation of (3). Using (5), it is easy to see that 
(6) is a relaxation for (4) as well.

The quality of approximation of relaxation (6) to spars-
est cut (3) is given by Cheeger’s inequality [48], [49] 

​ ​λ​
2
​​ / vol()  ≤ ​ϕ ̃ ​()  ≤ ​(8 ​λ​

2
​​)​​ 1/2​ / vol()​ 

while the approximation guarantee for the minimum con-
ductance problem (4) is 

​​λ​
2
​​ / 2 ≤ ϕ()  ≤ ​(2 ​λ​

2
​​)​​ 1/2​​ 

which can be found in [50]. (A generalization of these 
bounds holds for arbitrary vectors [51].) Both of these 
approximation ratios can be realized by rounding proce-
dures described below.

Another form of relaxation is the combinatorial model 
relaxation, which is formulated as problem (6) by ignoring the 
orthogonality constraint and restricting ​x ∈ ​{ 0, 1}​​ ||​​ instead of ​
x ∈ ​ℝ​​ ||​​. An extensive study of the spectral and the combina-
torial model relaxation can be found in [52], while empirical 
comparisons between these relaxations are discussed in [53].

B. Rounding

In practice, the solution obtained by the spectral relaxation 
is unlikely to lie in ​​{ 0, 1}​​ ||​​, i.e., it is unlikely to be the indicator 

vector of a set. Therefore, it is necessary to have an efficient 
postprocessing procedure where the solution is rounded to 
a set. At the same time it is important to guarantee that the 
rounded solution has good worst case guarantees in terms of 
the conductance or sparsest cut objective.

One of the most efficient and theoretically justified 
rounding procedures for spectral relaxation is the sweep 
cut. The sweep cut procedure is summarized in the follow-
ing steps.

1)  Input: the solution ​x ∈ ​ℝ​​ ||​​ of (6).
2) � Sort the indices of ​x​ in decreasing order with respect 

to the values of the components of ​x​. Let ​​i​
1
​​ , ​i​

2
​​ , …, ​i​

||
​​​ 

be the sorted indices.
3) � Using the sorted indices generate a collection of sets ​​

S​j​​ :  = { ​i​
1
​​ , ​i​

2
​​ , …, ​i​

j
​​ }​ for each ​j ∈ { 1, 2, …,  |  | }​.

4) � Compute the conductance or sparsest cut objective 
for each set ​​S​

j
​​​ and return the minimum.

Notice that sweep cut can be used to obtain approximate solu-
tions for both sparsest cut and minimum conductance. In fact, 
the proof for the upper inequalities of the approximation guaran-
tees of spectral relaxation to sparsest cut and minimum conduct-
ance are obtained by using the sweep cut procedure [48], [49].

I V.   LOC A LLY-BI A SED GR A PH 
PA RTITIONING METHODS

All of the algorithms described in Section III are “global,” in 
that they touch all of the nodes of the input graph at least 
once, and thus they have a running time that is at least lin-
ear in the size of the input graph. Informally, locally-biased 
graph clustering algorithms find clusters near a specified 
seed set of vertices, in many cases without even touching the 
entire input graph. In this section, we will describe several 
local graph clustering algorithms, each of which has some-
what different properties.

To understand the seemingly-quite-different algorithms 
we will discuss, we will distinguish local graph clustering 
algorithms based on three major features.

1) � Weakly or strongly local algorithms: Weakly local 
algorithms are those that are biased toward a local 
part of the graph but may “touch” the entire input 
graph during the computation, i.e., they formally 
have running times that scale with the size of the 
graph. Strongly local graph algorithms are those that 
only access a small portion of the entire input graph 
in order to perform their computation, i.e., they for-
mally have running times that are linear in the size 
of the output or input set of nodes but independent 
of the size of the input graph. We show that the dif-
ference between weakly and strongly local algorithms 
often translates to whether we penalize the solution by 
adding an ​​​

1
​​​-norm penalty implicitly to the objective 

function and/or by restricting the feasible region of 
the problem by adding implicitly a locality constraint. 
Both ways result in strongly local algorithms.
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2) � Localizing bias: Current local graph clustering 
algorithms are supervised, i.e., one has to give a 
reference set of seed nodes. We discuss two major 
ways that this information is incorporated in the 
problem. First, the bias to the input is incorporated 
in the objective function of the problem through a 
localizing construction we will call the reference 
cut graph. Second, the bias to the input is incorpo-
rated to the problem as a constraint.

3) � ​​​
1
​​​ and ​​​

2
​​​ metrics: The final major feature that dis-

tinguishes locally-biased algorithms is how the cut 
measure is treated. Via the cut metric [54], this can 
be viewed as embedding the vertices of ​​ and evalu-
ating their distance in the embedding. Two distances 
are explicitly or implicitly used in locally-biased algo-
rithms: the ​​​

1
​​​and the ​​​

2
​​​ metric spaces. The former 

results in local flow algorithms, and the latter results 
in local spectral algorithms. The distinction between 
these two is very important in practice, as we show by 
empirical evaluation in subsequent sections.

The local graph clustering algorithms that we consider 
in the following sections and their basic properties with 
respect to the above three features are given in Table 1.

A. General Localizing Construction

We describe these locally-biased graph methods in terms 
of an augmented graph we call the “reference cut graph.” 
We should emphasize that this is a conceptual construction 
to highlight the similarities and differences between locally-
biased algorithms in Table I; in particular, these algorithms 
do  not  explicitly construct the reference cut graph.

Let  ​h, g ∈ ​ℝ​​ ||​​, ​h, g ≥ 0​, and ​g − h ≥ 0​, and let ​α​, ​β​, and ​γ​ 
be parameters specified below. Then, the reference cut graph is 
constructed from a simple, undirected graph  as follows.

1)  Add a source and sink node ​s​ and ​t​.
2)  Add edges from ​s​ to each node in .
3)  Add edges from each node in  to ​t​.
4)  Weight each original edge by ​γ​. 
5)  Weight the edges from ​s​ to  by ​αh​, where ​α ≥ 0​.
6)  Weight the edges from ​t​  to  by ​β(g − h)​, ​β ≥ 0​

Let ​H  : = diag(h)​, ​G  : = diag(g)​, and ​Z = G − H​.  
Then, we can also view the augmented graph through its 
incidence matrix and edge weight matrix

​​B ̃ ​ = ​
[

​
​1​||​​

​ 
− ​I​||​​

​ 
0

​  0​  B​  0​  
0

​ 
​I​||​​

​ 
− ​1​||​​

​
]

​,   ​C ̃ ​ = ​
[

​
αH

​ 
0

​ 
0

​ 0​  γ C​  0​ 
0

​ 
0

​ 
βZ

​
]

​​ 

respectively. The above construction might look overly com-
plicated. However, we will see in the following subsections 
that it simplifies for local spectral and flow graph clustering 
algorithms with specific settings for ​h, g​, and ​γ​.

B. Weakly Local and Strongly Local Flow Methods

Although finding the set of minimum conductance is  
NP-hard in general, there are a number of cases and vari-
ations that admit polynomial time algorithms and can be 
solved via max-flow/min-cut or a parametric max-flow 
method. These algorithms begin with a reference set ​R​ of 
nodes, and they return a smaller (or not much larger) set 
of nodes that is a better partition in terms of the conduct-
ance ratio ​ϕ​. Typically, the returned value is optimal for a 
variation on the minimum conductance and/or the sparsest 
cut objective. The methods themselves are highly flexible 
and apply to other variations of minimum conductance and 
sparsest cut. For the sake of simplicity, we will describe them 
for conductance.

All of the following procedures adopt the following meta-
algorithm starting with working set ​W​ initialized to an input 
reference set of nodes ​R​, values ​​α​

1
​​ , ​β​

1
​​ , ​γ​

1
​​​ and vectors ​h = ​d​

R
​​​, ​

g = d​, where ​​d​
R
​​​ is a vector of length ​||​ with components equal 

to ​​d​
i
​​​’s for nodes ​​v​

i
​​ ∈ R​ and zeros for nodes ​​v​

i
​​ ∈ ​R​​ c​​. Fig. 2 illus-

trates the construction of an augmented graph based on the 
previous setting of ​α, β, γ​ and ​h, g​.
The Local-Flow Meta-Algorithm

1) � Initialize ​​W​
1
​​ = R​, ​k = 1​, ​h = ​d​

R
​​​, ​g = d​ and ​​α​

1
​​ , ​β​

1
​​ , ​γ​

1
​​​ 

based on ​R​.
2) � Create the reference cut graph ​​​B ̃ ​​

k
​​ , ​​C ̃ ​​

k
​​​ based on ​R​ and ​​

α​
k
​​ , ​β​

k
​​ , ​γ​

k
​​​.

3) � Solve the ​s, t​-min-cut problem associated with ​​​B ̃ ​​
k
​​ , ​​C ̃ ​​

k
​​​.

4)  Set ​​W​
k+1

​​​ to be the ​s​-side of the cut.

TABLE 1  State-of-the-Art Local Graph Clustering Methods and Their 

Properties With Respect to the Three Features That Are Discussed in 

Section IV

Fig. 2.  The construction of the reference cut graph begins by adding 
a source node s connected to the reference set R and a sink node 
t connected to the rest of the graph. Then, we add weights to the 
network based on the degrees and three parameters , , and . 
Each edge to the source node is weighted by   degree, each edge 
to the sink node is weighted by   degree, and each internal edge is 
weighted by . Note that one of the choices of , ,  or  will be 1, but 
various papers adopt different choices, and so we leave it general. 
(a) A simple graph. (b) Adding the source s and sink t.  
(c) The reference cut graph, with weights indicated.
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5) � Check if ​​W​
k+1

​​​ has smaller conductance (or some 
variant of it, as we will make specific in the text 
below) than before and stop if not and return ​​W​

k
​​​.

6)  Update ​​α​
k+1

​​ , ​β​
k+1

​​ , ​γ​
k+1

​​​ based on ​​W​
k+1

​​​ and ​R​.
7)  Set ​k → k + 1​.
8)  Repeat starting from state 2.
Next, we describe several procedures that are instantia-

tions of this basic Local-Flow Meta-Algorithm.
1)  MQI:  The first algorithm we consider is the 

MQI procedure due to Lang and Rao [57]. This method is 
designed to take the reference set ​R​  with ​vol(R)  ≤ vol(G) / 2​  
and identify a subset of it ​S ⊆ R​. The method instantiates the  
Local-Flow Meta-Algorithm using ​​α​

k
​​ = cut( ​W​

k
​​), ​γ​

k
​​ = vol( ​W​

k
​​),  

​β​
k
​​ = ∞​  and ​h = ​d​

R
​​​, ​g = d​. The idea with this method is 

that the reference cut graph will have an ​s, t​ -min-cut value 
strictly less than ​​α​

k
​​ ​γ​

k
​​​  if and only if there is a strict subset ​

S ⊂ ​W​
k
​​​  that has conductances less than ​​α​

k
​​ / ​γ​

k
​​​. (See [57] 

for the proof.) If there is such a set, then the result ​vol(R)  
≤ vol(G)  / 2​ will be a set with conductance less than ​​α​

k
​​ / ​γ​

k
​​​. 

Since ​​α​
k
​​ ​ and ​​γ​

k
​​​  are picked based on the current working set ​​

W​
k
​​​, at each step the algorithm monotonically improves the 

conductance. Also, each step minimizes the objective 

​minimize‖||​B ̃ ​x|| ​‖​
1,​​C ̃ ​​

k
​​
​​ 

subject to  ​x​
i
​​ = 0  ∀ ​v​

i
​​ ∈ ​R​​ c​ , ​x​

s
​​ = 1, ​x​

t
​​ = 0.​

In fact, when the algorithm terminates, that means that 
there is no subset of R with conductance less than ​​α​

k
​​ / ​γ​

k
​​​. 

Hence, we have solved the following variation on the con-
ductance problem 

​minimize ϕ(S)  = ​ 
cut(S)

 _____ vol(S) ​

 subject to S ⊆ R.​ 

The key difference from the standard conductance prob-
lem is that we have restricted ourselves to a subset of the refer-
ence set R. Procedurally, this is guaranteed because the edges 
connecting ​​R​​ c​​ to ​t​ have weight infinity, so they will never 
be cut. Thus, operationally, MQI is always a strongly local 
algorithm since it only operates within the input seed set 
R. Nodes connected to ​t​ with weight infinity can be agglom-
erated or merged into a mega-sink node ​T​. The resulting 
graph has the same size as R along with the source and sink. 
(This is how the MQI construction is described in the original 
paper.) The MQI problem can be solved using the max-flow 
method on the resulting graph a logarithmic number of times 
[57]. Therefore, the running time for solving MQI depends 
on the max-flow algorithm that is used. Details about running 
times of max-flow algorithms can be found in [59].

2)  FlowImprove:  The FlowImprove method due to 
Andersen and Lang [55] was inspired by MQI and designed to 
address the weakness that the algorithm will always find an out-
put set within the reference set R, i.e., that is a subset of R. (As 
an illustration, see Figure 3.) Again, FlowImprove takes as input 

a reference set R with volume less than half the graph. The idea 
behind FlowImprove is that we want to find a set with conduct-
ance at least as good as R   and that also is highly correlated with 
R. To do this, consider the following variant of conductance: 

​​ϕ​ R​​ (S)  = ​ 
cut(S)

  __________________  
vol(S ∩ R)  − θ vol(S ∩ ​R​​ c​)

 ​​ 

where ​θ = vol(R)  / vol( ​R​​ c​)​, and where the value is ​∞​  if 
the denominator is negative. For any set ​S​, ​​ϕ​

R
​​ (S)  ≥ ϕ(S)​.  

Thus, this modified conductance score is an upper bound 
on the true conductance. Again, we are able to show that 
the Local-Flow Meta-Algorithm can solve for the exact value 
of ​​ϕ​

R
​​ (S)​  in polynomial time. To do so, instantiate that algo-

rithm with ​​α​
k
​​ = ​ϕ​ R​​ ( ​W​

k
​​)​, ​​β​

k
​​ = θ ​ϕ​

R
​​ ( ​W​

k
​​)​, ​​γ​

k
​​ = 1​  and ​h = ​d​R​​​, ​ 

g = d​. The value of a cut on set ​S​  in the resulting graph is 

​cut(S)  + ​α​
k
​​ vol(R)  − ​α​

k
​​ [ vol(S ∩ R)  − θ vol(S ∩ ​R​​ c​) ] . ​ 

(See [60] for the justification.) Andersen and Lang show that 
the algorithm monotonically reduces ​​ϕ​

R
​​ ( ​W​

k
​​)​ at each iteration 

as well. Each iteration now solves the ​s​,​ t​-min-cut problem 

​		  minimize ||​B ̃ ​x|| ​‖​
1,​​C ̃ ​​

k
​​
​​  	 (9)

subject to  ​x​
s
​​ = 1, ​x​

t
​​ = 0.​

In order to match precisely their FlowImprove procedure, 
we would need to modify our meta-algorithm to check the 

value of ​​φ​R​​ (​W​k​​)​, instead of conductance (at Step 5 of the 
Local-Flow Meta-Algorithm above), for monotonic decrease. 
The authors also show that this procedure terminates in a 
finite number of iterations.

At termination, the FlowImprove algorithm has exactly 
solved ​minimize ​ ϕ​

R
​​ (S) , S ⊆ V​. This can be considered a 

locally-biased variation of the conductance objective, where we  
penalize departure from the reference set R. Consequently, the 
solutions will tend to identify small conductance sets nearby R.

FlowImprove is a very useful algorithm, but it has 
two small weaknesses. The first is that it is a weakly local 
algorithm. At each step, we have to solve a min-cut prob-
lem that is the size of the original graph. The second is 
that the min-cut problems do not have integer weights.  

Fig. 3.  The results of running MQI and FlowImprove on the 
reference set produced by a spectral partitioning method on the 
geometric graph (i.e., run global spectral §III-A; then round with a 
sweep-cut §III-B  ; and then refine using MQI and FlowImprove). The 
FlowImprove method identifies the optimal set from Fig. 1 in this 
case, whereas MQI cannot because it searches only within the  
given set R. (a) MQI. (b) FlowImprove. (c) The difference.
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(Note that ​θ​  will almost never be an integer.) Most fast 
max-flow/min-cut procedures and implementations assume 
integer weights. For instance, many implementations of the 
push-relabel method (hipr [61]) only allows integer weights. 
Boykov and Kolmogorov’s solver is a notable exception [62]. 
Similarly to MQI, the running time of solving the max-flow/
min-cut problem depends on the particular solver that is 
used. A summary of max-flow/min-cut methods can be  
found in [59].

3)  Local FlowImprove  The Local FlowImprove algo-
rithm due to Orecchia and Zhu [56] sought to address the 
weak locality of the FlowImprove method and create a 
strongly local flow based method. This involved two key 
innovations: a modification to the construction and objec-
tive that enables strong locality; and an algorithm to realize 
that strong locality. This Local FlowImprove method essen-
tially interpolates between MQI and FlowImprove. In one 
limit, it is strictly local to the reference graph and exactly 
reproduces the MQI output. In the other limit, it is exactly 
FlowImprove. To do this, Orecchia and Zhu alter the objec-
tive function used for FlowImprove to place an additional 
penalty on deviating from the set R. They describe this as 
increasing the weight of connections ​​β​k​​​  in the reference 
cut graph by scaling these by a value ​κ ≥ 1​. If ​κ = 1​, then 
their construction is exactly that of FlowImprove. If ​κ = ∞​,  
then this construction is equivalent to that of MQI. The 
effect of ​κ​  is illustrated in Fig. 4.

In terms of the optimization framework, their modifica-
tion corresponds to using 

​​​ϕ ′ ​​R​​ (S; κ )  = ​ 
cut(S )

  ___________________  
vol(S ∩ R )  − θκ vol(S ∩ ​R​​ c​ )

 ​ ​  

where ​κ ≥ 1​ and ​θ = vol(R )  / vol( ​R​​ c​ )​ as in FlowImprove, 
and again the value is ​∞​ if the denominator is negative. This 
result corresponds to instantiating the Local-Flow Meta-

Algorithm using ​​α​
k
​​ = ​​ϕ ′ ​​R​​ (W; κ )​, ​​β​

k
​​ = ​​ϕ ′ ​​R​​ (W; κ ) θκ​ and 

​h = ​d​
R
​​​, ​g = d​.

The second innovation is that they describe an algorithm 
to solve the min-cut problem on the reference cut graph 
that does not need to explore the entire graph. This second 
piece used a novel modification of Dinic’s procedure [63] 
to compute a max-flow/min-cut that exploited the locality. 
We refer interested readers back to Orecchia and Zhu for 
details of this second somewhat complicated construction. 
In our recent work [42], however, we describe a simplified 
framework for the local FlowImprove method that shows 
that the strong locality in their modification results from 
implicitly regularizing the FlowImprove objective with an 
1-norm regularizer. (This will mirror strongly local spec-
tral results in the forthcoming spectral section.) In fact, our 
recent work [42] shows that each iteration exactly solves 

​	 minimize ||​B ̃ ​x||​‖​
1,​​C ̃ ​​

​k ′ ​
​​
​​ + ε ||Dx|| ​‖​

1
​​	 (10)

subject to  ​x​
s
​​ = 1, ​x​

t
​​ = 0​

where ​​​C ̃ ​​
​k ′ ​​​​ is a small perturbation on the above defini-

tion and ​ε​ is a locality parameter. The volume of the out-
put cluster ​S​ of the method in [42] is bounded ​vol(S )  ≤ 
vol(R ) (1 + 2 / ε)  + E(R, ​R​​ c​ )​, where ​ε  :=  vol(R )  / vol( ​R​​ c​ )  
+ δ​ and ​δ ≥ 0​ is a constant.

That work also describes a simple procedure to real-
ize the strong locality that leverages any max-flow/min-cut 
solver on a sequence of subproblems whose size is bounded 
independent of the graph.

C. Weakly and Strongly Local Spectral Methods

There are spectral analogs for each of the three flow-
based constructions on the augmented graph. The devel-
opment of these ideas occurred in parallel, largely inde-
pendently, and it was not obvious until recently that the 
ideas were very related. Here, we make these connections 
explicit. Of the three flow constructions, the simplest is the 
MQI objective. We begin with it.

1)  SpectralMQI:  The method we call SpectralMQI 
was proposed as the Dirichlet partitioning problem in [58]. 
Given a graph   and a subset of vertices, consider finding the 
set ​S​  of minimal local conductance ​​ϕ ′ ​(S )  = cut(S )  / vol(S )​  

such that ​S ⊆ R​, where, again, R  is a reference set specified 
in the input. Note that the only difference from conduct-
ance is that we do not have the minimum in the denomina-
tor. A spectral algorithm to find an approximate minimizer 
of this is to solve the generalized eigenvector problem 

​​λ​
R
​​ = minimize  ​ 

||Bx||​‖​ 2,C​ 2 ​
 ______ 

‖||x|| ​‖​ 2,D​ 2 ​
 ​ 

subject to  ​x​
i
​​ = 0  ∀ ​v​

i
​​ ∈ ​R​​ c​ .​ 

The solution vector ​x​ and value ​​λ​R​​​ are related to the small-
est eigenvalue of the submatrix of the normalized Laplacian 

Fig. 4.  The results of running FlowImprove compared with local 
FlowImprove with a reference set R. The FlowImprove result 
returns a fairly large set whereas the Local FlowImprove results 
produce successively smaller sets as the penalty ​κ​ increases.  
When ​κ 5​ e5 then the result simply fills in the hole in the  
reference set. (a) Reference set R. (b) The FlowImprove result.  
(c) Local FlowImprove ​κ​ ​5​ e3. (d) Local FlowImprove ​κ​ ​5​ e5.
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corresponding to the nodes in R. (Note that we take the 
submatrix of the normalized Laplacian, rather than the  
normalized Laplacian on the subgraph induced by R.) A 

sweep cut over the eigenvector ​x​  produces a set ​S​  that sat-
isfies a Cheeger inequality with respect to the best possible 
solution [58]. This definition of local conductance is also 

called ​NCu​t ′ ​​ by Hochbaum [64], who gave a polynomial 
time algorithm to compute it that is closely related to the 
MQI procedure. In this case, if R  has volume less than half 
the graph, then this is exactly the spectral analogue of the 
MQI procedure and the result is a Cheeger-like bound on 
the overall conductance.

2)  MOV:  The Mahoney–Orecchia–Vishnoi (MOV) 
objective [33] is a spectral analog of the FlowImprove 
method, with a few subtle differences. The goal is to find a 
small Rayleigh quotient, as in (6), that is highly correlated 
with an input vector ​z ∈ ​R​​ ​|V|​​​, where ​z​ represents the seed or 
local-bias. Given this, the MOV objective is

minimize ​​ 
​​‖Bx‖​​ 2,C​ 2 ​

 ______ 
​​‖x‖​​ 2,D​ 2 ​

 ​​

subject to ​​1​ 
​|v|​

​ T ​ Dx = 0​

	​ ​( ​z​​ T​ Dx )​​ 2​ ≥ k​       ​x ∈​R​​ v​.​
The solution of this problem represents an embedding 

of the nodes in ​v​ which is locally biased, i.e., large values for 
components/nodes that are considered important and small 
or zero values for the rest. 

According to [33], there is a constant ​ρ​, i.e., the opti-
mal dual variable for the locally-biased constraint, such 
that the solution to the MOV problem satisfies ​(L + ρD ) x 
= ρDz​. The null space of ​L​ is the vector ​​1​

||
​​​, and assuming 

that ​​1​ 
​|v|​

​ T ​ Dz = 0​, then the solution to the previous system is 
unique. One final detail is that the MOV construction fixes ​
||x|| ​‖​

2
​​ = 1​. Consequently, the MOV solution is 

​x = c ​(L + ρD )​​ †​ Dz  c = (|| ​(L + ρD ​)​​ †​ Dz|| ​‖​2​​ )​​ 
−1

​.​ � (11)

In the MOV paper [33], they show that ​ρ​ can be chosen such 
that ​​x​​ T​ Dz = κ​, the desired correlation strength with the 
input vector ​z​, through a simple bisection procedure. Solv-
ing the linear system (11) results in a weakly local method 
that satisfies another Cheeger-like inequality. Recent exten-
sions show that it is possible to get multiple locally-biased 
vectors that are akin to eigenvectors from this setup [65], 
[66]. The methodology is able to leverage the large number 
of Laplacian system solvers [67] that can find an approxi-
mate solution to (11) in nearly linear time.

The pseudoinverse allows us to “pass through” ​ρ = 0​ and 
approach  ​ρ = − ​λ​

2
​​​. (This system is singular at ​ρ = 0​ and ​ρ = ​λ​

2
​​​.) 

What is interesting is that taking the limit ​ρ → − ​λ​
2
​​​ directly 

maps to the spectral relaxation (6). Thus, the ​ρ​ parameter 
interpolates between the global spectral relaxation (6) and 
a spectral version of the min-cut problem in each step of  
FlowImprove.

Based on the reference cut graph, the MOV objective is ​
minimize ||​B ̃ ​​x ̃ ​||​‖​ 

2,​C ̃ ​
​ 2 ​​ , where ​​x ̃ ​: = [ 1; x; 0 ]​. The reference graph 

cut setting is ​γ = 1​, ​g = d​, ​h = Dz​ and ​α = β = ρ ≥ 0​ con-
trols the desired strength of the correlation to the input vec-
tor ​z​. Notice that the MOV problem is a spectral, i.e., ​​​

2
​​​,  

version of the ​s, t​-min-cut problem. This observation was 
made first in [41], [68]. If ​ρ​ is extremely large, the solution 
to the above problem would have perfect correlation with 
the input vector ​h​. As ​ρ → 0​, we decrease the effective cor-
relation with the input vector ​h​. (These arguments are for-
mal in [33].)

3)  ​​​
1
​​​-Regularized PageRank:  The ​​​

1
​​​-regularized  

PageRank problem was initially studied in [41] and then 
further refined in [37]. In the latter work, the problem is 
defined as 

​	 minimize  ​ 1 __ 
2

 ​ ||​B ̃ ​​x ̃ ​|| ​‖​ 
​C ̃ ​,2

​ 2 ​  + ε ||Dx ​||​1​​​ 	 (12)

where ​​x ̃ ​: = [ 1; x; 0 ]​. The reference cut graph setting for (12) 
is ​g = d​ and ​h ≥ 0​ is a vector that satisfies ​||h ​||​1​​ = 1​ and  
​||h ​||​∞​​ ≥ ε​. The latter condition is to guarantee that the solu-
tion to (12) is not the zero vector. Moreover, ​α = β​ and  
​γ = (1 − α )  / 2​. Similarly to ​z​ for MOV, the vector ​h​ controls 
the input seed set and the weights of nodes in that set. The 
larger the weights the more the solution will be correlated 
with the corresponding nodes in the input seed set. The 
solution vector to problem (12) is component-wise non-
negative and the parameter ​α​ controls how much energy is 
concentrated close to the input seed set. Formally, based on 
theoretical guarantees in [38] the vector ​h​ should be an indi-
cator vector for a single seed node, around which there is a 
target cluster of nodes ​C​. The algorithm is not guaranteed to 
find the exact target cluster ​C​, but if ​C​ has conductance less 
than ​α / 10​ then it is guaranteed to return a cluster with con-
ductance of ​( ​√ 

___________
  α log (vol(C )  ) ​ )​. We refer the reader to [38] 

for a detailed description of the theoretical graph clustering 
guarantees.

The idea of ​​​
1
​​​-regularized PageRank graph clustering 

initially appeared in [38] in the form of implicit regulari-
zation. In particular, the authors in [38] suggest solving a 
personalized PageRank linear system approximately. In [37] 
and [41], the authors noticed that the termination criteria 
in [38] are related to the first-order optimality conditions of 
the above ​​​

1
​​​-regularized PageRank problem, and they draw 

the connection to explicit  ​​​
1
​​​- regularization. It is shown in 

[37] that solving the ​​​
1
​​​-regularized PageRank problem has 

the same Cheeger-like worst case approximation guarantees 
to the minimum conductance problem as the original proce-
dure in [38]. However, there is an important technical differ-
ence: one advantage of solving the​​ ​

1
​​​-regularized problem is 

that the locality of the solution is a property of the optimiza-
tion problem as opposed to a property of an algorithm. In 
particular, by solving the​​ ​

1
​​​-regularized problem it is guaran-

teed to obtain the same solution regardless of the algorithm 
used. In comparison, applying the procedure in [38], where 
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V.  EMPIR IC A L E VA LUATION

In this section, we illustrate differences among global, 
weakly local, and strongly local solutions to the problems 
discussed in Section IV. Additionally, we discuss differences 
between spectral and flow methods (which is equivalently ​​ℓ​

2
​​​ 

versus ​​ℓ​
1
​​​ metrics for node distances).

To do so, we make use of the following real-world undi-
rected and unweighted networks.

•	� US-Senate. Each node in this network is a Senator 
that served in a single term (two years) of Con-
gress. Our data cover the period from year 1789 
to 2008. Senators appear as multiple nodes if they 
served in multiple terms. Edges are based on the  2 http://snap.stanford.edu/data

Fig. 5.  US-Senate. This figure shows the solutions of (a) spectral relaxation; (b) MOV with global bias; (c) MOV with local bias; and 
(d) strongly local ​​ℓ​1​​​-regularized PageRank. We use a heat map to represent the weights of the nodes. For spectral relaxation and MOV 
bright yellow means large positive and bright red means large negative. For ​​ℓ​1​​​-regularized PageRank bright yellow means large positive 
and bright red means small positive. The blue halo around a node in (c) and (d) means that this node is included in the seed set. The size of 
the nodes shows the weights of the solution in absolute value. If a weight is nearly zero then the corresponding node is barely visible.  
(a) Global spectral relaxation. (b) MOV with global seed. (c) MOV with local seed. (d) ACL ​​ℓ​1​​​-regularized PageRank.

the output depends on the setting of the procedure, i.e., the 
strategy for choosing nodes to be updated at every iteration, 
leads to somewhat different solutions, depending on the 
specific settings chosen.

Let ​​x​​ *​​ be the optimal solution of (12) and ​​S​​ *​​ be the set 
of nodes where ​​x​​ *​​ is nonzero. In [37], it is shown that many 
standard optimization algorithms such as iterative soft 
thresholding or block iterative soft thresholding solve (12) 
with running time ​(vol( ​S​​ *​ ) / α )​, which can be independ-
ent of the volume of the whole graph ​vol( )​. This opens up 
the possibility of the use of these algorithms more generally. 
For details about the algorithms, we refer the reader to [37].

similarity of voting records between Senators and 
thresholded at the maximum similarity such that 
the graph remains connected. Edge weights are dis-
carded. For a detailed discussion of this data set we 
refer the reader to [22]. This graph has 8974 nodes 
and 153 804 edges. This graph has two large clus-
ters with small conductance ratio, i.e., downward-
slopping network community profile; see [9, Fig. 6] 
for details. The first cluster consists of all the nodes 
before the year 1913 and the second cluster consists 
of nodes after that year.

•	� CA-GrQc. The data for this graph are a general rela-
tivity and quantum cosmology collaboration net-
work. Details can be found in the Stanford Network 
Analysis Project.2 This graph has 4158 nodes and 
13 422 edges. This graph has many clusters of small 
size with small conductance ratio, while large clus-
ters have large conductance ratio, i.e., upward-slop-
ping network community profile; see [9, Fig. 6] for 
details.

•	� FB-Johns55. This graph is a Facebook anonymized 
data set on a particular day in September 2005 
for a student social network at John Hopkins Uni-
versity. The graph is unweighted and it represents 
“friendship” ties. The data form a subset of the  
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Facebook100 data set from [24] and [69]. This 
graph has 5157 nodes and 186 572 edges. This is 
an expander-like graph, all small and large clusters 
have about the same conductance ratio, i.e., flat net-
work community profile; see [9, Fig. 6] for details.

•	� US-Roads. The data for this graph is from the 
National Highway Planning Network [6]. Each node 
in this network is an intersection between two high-
ways and the edges represent segments of the high-
ways themselves.

Note that the small-scale versus large-scale clustering 
properties of the first three networks have been char-
acterized previously [9]. In addition, it is known that 
US-Roads has a downward-sloping network community 
profile. 3https://graph-tool.skewed.de

Fig. 6.  CA-GrQc. This figure shows the solutions of spectral 
relaxation, MOV with global input, MOV with local input, and  
​​ℓ​1​​​-regularized PageRank. The meaning of the colors of the nodes 
and its sizes is the same as in Fig. 5. (a) Spectral relaxation.  
(b) MOV global. (c) MOV local, seed 1. (d) MOV local, seed 2.  
(e) ​​ℓ​1​​​-regularized PageRank, Seed 1. (f) ​​ℓ​1​​​-regularized PageRank, 
Seed 2.

A. Global, Weakly Local, and Strongly Local 
Solutions

We first demonstrate differences among global, weakly 
local, and strongly local algorithms. Let us start with a com-
parison among spectral algorithms. By comparing algorithms 
that use that same metric, i.e., ​​ℓ​2​​​, to measure distances 
among nodes we minimize factors that can affect the solu-
tion, and we focus on weak versus strong locality. In all fig-
ures we show the solution obtained by an algorithm without 
applying any rounding procedure. We illustrate the impor-
tance of the nodes by coloring and size; details are explained 
in the captions of the figures and in the text. The layout for 
all graphs has been obtained using the force-directed algo-
rithm [70], which is available from the graph-tool project.3

For US-Senate, the comparison is shown in Fig. 5. Fig. 5(a) 
and (b) shows the solutions of global algorithms, spectral 
relaxation, and MOV global (​z = ​1​||​​​ and then we orthogonal-
ize ​z​ with respect to ​D ​1​||​​​), respectively. As expected, the US-
Senate graph has two large clusters, i.e., before the year 1913 
and after that year, that partition along the 1-D time axis. This 
global structure is nicely captured by spectral relaxation and 
MOV global in Fig. 5(a) and (b), respectively. 

Given an input seed set, Fig. 5(c) and (d) illustrates the 
weakly and strongly local solutions by MOV and ​​ℓ​1​​​-regular-
ized PageRank, respectively. For MOV in Fig. 5(c) we set 
​​z​i​​ = 1​ for all ​i​ in the input seed set and ​​z​i​​ = 0​ for all ​i​ outside 
the input seed set. Then, we orthogonalize ​z​ with respect to ​
D ⋅ ​1​||​​​. For ​​ℓ​1​​​-regularized PageRank, we only give a single 
node as an input seed set, i.e., ​​h​i​​ = 1​ where ​i​ is the input node 
and ​​h​i​​ = 0​ for all other nodes. Moreover, we set the locality 
parameter ​ε​ large enough such that the solution is very sparse, 
i.e., strongly local. In Fig. 5(c) and (d), we demonstrate the 
input seed sets by nodes with a blue halo around them. In  
Fig. 5(c), the cluster which is found by MOV consists of the 
nodes which have large mass concentration around the input 
seed set, i.e., the nodes around the input seed set that have 
large size and are colored with a bright red shade. MOV recov-
ers this cluster by examining the whole graph; each node 
has a weight assigned to it in Fig. 5(c). On the other hand, 
a similar cluster is found in Fig. 5(d) by using ​​ℓ​1​​​-regularized 
PageRank without examining the whole graph. This is pos-
sible because nodes of the graph have zero weight assigned 
and need not be considered. This speed and data advantage, 
along with the sparsity-based implicit regularization [41], are 
some of the reasons that strongly local algorithms, such as  
​​ℓ​1​​​-regularize PageRank, are used so often in practice [7], [9].

In Fig. 6, we present global, weakly local, and strongly 
local solutions for the less well-partitionable and thus less 
easily-visualizable CA-GrQc graph. As already mentioned in 
the description of this data set, this graph has many small 
clusters with small conductance ratio and large clusters 
have large ratio. This is also justified in our experiment  
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Fig. 7.  FB-Johns55. This figure shows the solutions of spectral 
relaxation, MOV with global input, MOV with local input, and ​​ 
ℓ​1​​​-regularized PageRank. The meaning of the colors of the 
nodes and its sizes is the same as in Fig. 5. (a) Spectral relaxation. 
(b) MOV global. (c) MOV local. (d) MOV local, seed 2. (e) ​​ℓ​1​​​-regularized 
PageRank. (f) ​​ℓ​1​​​-regularized PageRank, Seed 2.

Fig. 8.  US-Senate. This figure shows the solutions of FlowImprove and Local FlowImprove for various input seed sets. Red nodes are only 
FlowImprove or Local FlowImprove, depending on the experiment; yellow nodes are only seed set; and orange nodes are both part of the 
flow algorithm and the seed set. (a) Local FlowImprove, seed: Spectral relaxation + sweep cut. (b) FlowImprove, local seed set. (c) Local 
FlowImprove, local seed set.

we demonstrate in Fig. 6(c) and (d) that MOV success-
fully finds other clusters than the ones obtained by the 
global methods. The same is shown in Fig. 6(e) and (f) 
for ​​ℓ​1​​​-regularized PageRank. Notice that MOV assigns 
weights (perhaps small) to all the nodes of the graph; on 
the other hand, ​​ℓ​1​​​-regularized PageRank, as a strongly 
local procedure, assigns weights only to a small number of 
nodes, without examining all of the graph.

We now use the FB-Johns55 graph which has an 
expander-like behavior at all size scales, i.e., all small and 
large clusters have large conductance ratio. See [9, Fig. 6] for 
details. We present the results of this experiment in Fig. 7. 
Notice that in Fig. 7(a) and (b) the global methods identify 
three main clusters, one small (red nodes), one medium 
size (orange nodes), and one large (yellow nodes). All these  
clusters have similar conductance ratio. In Fig. 7(c) and (d), 
we show that MOV can recover the medium or small size clus-
ters, respectively, by giving a localized seed set. In Fig. 7(e) 
and (f), we illustrate that using ​​ℓ​1​​​-regularized PageRank one 
can find very similar clusters while exploiting the strongly 
local running time of the method.

Let us now present the performance of flow-based 
algorithms on the same graphs. We begin with US-Senate 
in Fig. 8. In this figure, the red nodes are part of the solu-
tion of FlowImprove or Local FlowImprove, depend-
ing on the experiment; the yellow nodes are part of the 
seed set only; and the orange nodes are in both the solu-
tion of the flow algorithm and the input seed set. In  
Fig. 8(a), we used as an input seed set to FlowImprove 
the cluster obtained by applying sweep cut with respect to 
the conductance ratio on the spectral relaxation solution.  
Fig. 8(b) and (c) presents a clear distinction between 
FlowImprove and Local FlowImprove, weakly and strongly 
local algorithms, respectively. For both figures, the input seed 
set is located at about the middle of the graph. FlowImprove 
as a weakly local algorithm examines the whole graph and 
returns a cluster which includes the period before 1913. Also, 
it includes big part of the input seed set in the cluster due 

by the fact that global methods, such as the spectral 
relaxation and MOV global in Fig. 6(a) and (b), respec-
tively, recover small clusters. The two global procedures 
find small clusters which are presented in Fig. 6(a) and 
(b) with red, orange, and yellow colors. However, since 
there are many small clusters of small conductance ratio, 
one might want to find different clusters than the ones 
obtained by spectral relaxation and MOV global. This is 
possible using localized procedures such as MOV and 
​​ℓ​1​​​-regularized PageRank. Given two different seed sets 
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to the overlapping regularization term in the denominator 
of its objective function. See the definition of the objective 
function ​​f​ R​​​ for FlowImprove in Section IV. On the other 
hand, in Fig. 8(c) Local FlowImprove as a strongly local  
algorithm does not examine the whole graph  
and its solution is concentrated only around the input 
seed set.

The distinction that we discussed in the previous 
paragraph between FlowImprove and Local FlowImprove is 
easy to visualize in the relatively well-structured US-Senate, 
but it is not so clear in all graphs. For example, in Fig. 9, 
we present the performance of these two algorithms for 
the CA-GrQc graph. Since this graph has only small clus-
ters of small conductance ratio, FlowImprove and Local 
FlowImprove find the same clusters. This is clearly shown by  
comparing Fig. 9(a) and (b) and Fig. 9(c) and (d). A simi-
lar performance is observed for the FB-Johns55 graph in 
Fig. 10, except that the solutions of FlowImprove and Local 
FlowImprove are not exactly the same but only very similar.

B. Flow Versus Spectral or ​​ℓ​1​​​ Versus ​​ℓ​2​​​

Spectral algorithms measure distances of the nodes based 
on the ​​ℓ​2​​​-norm. Generally this means that the nodes of the 
graph are embedded on the real line. On the other hand, 
flow algorithms measure distances of the nodes based on the  
​​ℓ​1​​​-norm. The solution to flow-based algorithms that we discussed 

is binary, either a node is added in the solution with weight 
1 or it is not and it has weight 0. In this case, the objective 
function ​​‖B ​x​ ​​‖​1,C​ of the flow algorithms is a locally-biased 
variation on ​cut(S )​, where ​S​  is constructed based on the 
binary ​x​. Therefore, the flow algorithms aim to find a balance 
between finding good cuts and identifying the input seed set. 
This implies that the flow algorithms try to minimize the 
absolute number of edges that cross the partition, but at the 
same time they try to take into account the volume regulari-
zation effect of the denominator in the objective function.

In this section, we will try to isolate the effect of ​​ℓ​1​​​ and ​​
ℓ​2​​​ metrics in the output solution. We do this by employing 
MQI and spectral MQI, which are flow (i.e., ​​ℓ​1​​​) and spectral  
(i.e., ​​ℓ​2​​​) problems, respectively. The first set of results is shown 
in  Fig. 11. Notice in Fig. 11(a) and (b) that MQI and spectral 
MQI + sweep cut recover the large clusters, i.e., before and 
after the year 1913. There are only minor differences between 
the two solutions. Moreover, observe that spectral MQI returns 
a solution which is not binary. This is illustrated in Fig. 11(c), 
where the weights of the nodes are real numbers. Then sweep 
cut is applied on the solution of spectral MQI to obtain a 
binary solution with small conductance ratio, i.e., Fig. 11(b).

The previous example did not reveal any difference 
between MQI and spectral MQI other than the fact that 
spectral MQI has to be combined with the sweep cut round-
ing procedure to obtain a binary solution. In Fig. 12, we pre-
sent a result showing where the solutions have substantial 
differences. The graph that we used for this is the US-Roads, 
and the input seed set consists of nodes near Minneapolis 
together with some suburban areas around the city. Notice 
in Fig. 12(a) that MQI, i.e., ​​ℓ​1​​​ metric, shrinks the bounda-
ries of the input seed set. However, MQI does not accurately 
recover Minneapolis. The reason is the volume regularization 

Fig. 9.  CA-GrQc. This figure shows the solutions of FlowImprove 
and Local FlowImprove for various input seed sets. Red nodes 
are only FlowImprove or Local FlowImprove, depending on the 
experiment; yellow nodes are only seed set; and orange nodes are 
both part of the flow algorithm and the seed set. (a) FlowImprove, 
seed 1. (b) Local FlowImprove, seed 1. (c) FlowImprove, local seed 2. 
(d) Local FlowImprove, seed 2.

Fig. 10.  FB-Johns55. This figure shows the solutions of 
FlowImprove and Local FlowImprove for various input seed sets. 
Red nodes are only FlowImprove or Local FlowImprove, depending 
on the experiment; yellow nodes are only seed set; and orange 
nodes are both part of the flow algorithm and the seed set.  
(a) FlowImprove, seed 1. (b) Local FlowImprove, seed 1. 
(c) FlowImprove, seed 2. (d) Local FlowImprove, seed 2.
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Fig. 11.  US-Senate. This figure shows the solutions of MQI, spectral MQI, spectral MQI + sweep cut given the solution of spectral relaxation 
+ sweep cut as an input seed set. For (a) and (b) the red nodes are only MQI or spectral MQI + sweep cut depending on the experiment; 
yellow nodes are only seed set; and orange nodes are both part of the flow or spectral algorithm and the seed set. (c) shows the solution 
of spectral MQI without sweep cut. For (c), we use a heat map to represent the weights of the nodes. Bright yellow means large positive 
and bright red means small positive. The size of the nodes shows the weights of the solution in absolute value. (a) MQI, seed: Spectral 
relaxation + sweep cut. (b) Spectral MQI + sweep cut, seed: Spectral relaxation + sweep cut. (c) Spectral MQI, seed: Spectral relaxation + 
sweep cut.

Fig. 12.  US-Roads. This figure shows the solutions of MQI, spectral MQI, spectral MQI + sweep cut given Minneapolis and its suburban 
areas as an input seed set. The meaning of the colors of the nodes and its sizes is the same as in Fig. 11. (a) MQI, seed: Minneapolis 
and suburban areas. (b) Spectral MQI + sweep cut, seed: Minneapolis and suburban areas. (c) Spectral MQI, seed: Minneapolis and 
suburban areas.

which is imposed by the denominator of the objective func-
tion of MQI. This regularization forces the solution to have 
large volume. On the other hand, spectral MQI + sweep cut 
in Fig. 12(b) recovers Minneapolis. The reason is that for 
spectral MQI the regularization effect of the denominator 
is unimportant since the objective function is invariant to 
scalar multiplications of the solution vector. It is the solu-
tion of spectral MQI, i.e., the eigenvector of smallest eigen-
value, which is presented in Fig. 12(c), that is concentrated 
closely around Minneapolis. Due to this concentration of 
the eigenvector around Minneapolis, the sweep is success-
ful. Briefly, spectral MQI, which is a continuous relaxation 
of MQI, implicitly offers an additional level of volume regu-
larization, which turns out to be useful in this example.

Finally, we present another set of results using the  
FB-Johns55 graph in Fig. 13. As we saw before, notice that 
for this less well-structured graph the solutions of MQI and 
spectral MQI + sweep cut are nearly the same. This happens 
because the regularization effect of the denominator of MQI 
and the regularization imposed by spectral MQI have nearly 
the same effect on this graph. This is also justified by the fact 
that MQI in Fig. 13(a) and spectral MQI without sweep cut 
in Fig. 13(c) recover nearly the same cluster.

V I.   DISCUSSION A ND CONCLUSION

Although the optimization approach we have adopted is 
designed to highlight similarities between different vari-
ants of locally-biased graph algorithms, it is also worth 
emphasizing that there are a number of quite different and 
complementary perspectives people in different research  
communities have adopted thus far on these methods. Here 
are the examples.

1)	� Theoretical and empirical. The theoretical 
implications of these locally-biased algorithms 
are often used to improve the performance of 
long-standing problems in theoretical computer  
science by improving runtimes, improving approx-
imation constants, and handling special cases. 
Empirically, these algorithms are used to study 
real-world data and to accelerate and improve 
performance on discovery and prediction tasks. 
Due to the strong locality, the fast runtimes for 
theory often manifest as extremely fast algorithms 
in practice. Well-implemented strongly-local algo-
rithms often have runtimes in milliseconds even 
on billion-edge graphs [37], [39].
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2)	� Algorithmic and statistical. Some of the work is 
motivated by having better algorithmic results, e.g., 
being fast and/or being a rigorous approximation 
algorithm, i.e., worst case guarantees in terms of 
approximating the optimal solution of a combina-
torial problem, while other work has provided an 
interpretation in terms of statistical properties, e.g., 
explicitly optimizing a regularized objective [71] or 
implicitly having output that are nice in some sense, 
i.e., well-connected output cluster [72]. Often, 
locally-biased algorithms alone suffice as the result 
is an improvement to some downstream activity 
that will necessarily look at all the data anyway.

3)	� Optimization and operational. The locally-biased 
methods tend to result from stating an optimization 

problem and solving it with some sort of black box 
or white box. Strongly local algorithms often arise by 
studying a specific procedure on a graph and show-
ing that it satisfies some condition, e.g., that it ter-
minates so quickly that it cannot explore the entire 
graph, that it leads to a solution with certain quality-
of-approximation guarantees, etc. See, for instance, 
the spectral algorithms [38]–[40], [60], [73]–[75] 
and the flow-based algorithms [56], [76], [77].

In light of these complementary approaches as well 
as the ubiquity with which graphs are used to model 
data, we expect that locally-biased graph algorithms and 
our optimization perspective on locally-biased graph 
algorithms will find increasing usefulness in many  
application areas.� 

Fig. 13.  FB-Johns55. This figure shows the solutions of MQI, spectral MQI, spectral MQI + sweep cut for a given input seed set. The meaning 
of the colors of the nodes and its sizes is the same as in Fig. 11. (a) MQI. (b) Spectral MQI + sweep cut. (c) Spectral MQI.
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