
0018-9219 © 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

256  Proceedings of the IEEE | Vol. 105, No. 2, February 2017

Manuscript received February 29, 2016; revised October 19, 2016; accepted
November 29, 2016. Date of current version January 18, 2017.
K. Fountoulakis and M. W. Mahoney are with the International Computer Science
Institute and the Department of Statistics, University of California Berkeley, Berkeley,
CA, USA.
D. F. Gleich is with the Department of Computer Science, Purdue University,

West Lafayette, IN 47907 USA (e-mail: dgleich@purdue.edu).

Digital Object Identifier: 10.1109/JPROC.2016.2637349

An Optimization Approach to
Locally-Biased Graph Algorithms
This paper investigates a class of locally-biased graph algorithms for finding local
or small-scale structures in large graphs.

By Kimon Fou n tou l a k is, Dav id F. Gl eich, a nd Mich a el W. Ma hone y

ABSTRACT  |  Locally-biased graph algorithms are algorithms

that attempt to find local or small-scale structure in a large

data graph. In some cases, this can be accomplished by adding

some sort of locality constraint and calling a traditional graph

algorithm; but more interesting are locally-biased graph

algorithms that compute answers by running a procedure that

does not even look at most of the input graph. This corresponds

more closely to what practitioners from various data science

domains do, but it does not correspond well with the way

that algorithmic and statistical theory is typically formulated.

Recent work from several research communities has focused

on developing locally-biased graph algorithms that come with

strong complementary algorithmic and statistical theory and that

are useful in practice in downstream data science applications.

We provide a review and overview of this work, highlighting

commonalities between seemingly different approaches, and

highlighting promising directions for future work.

KEYWORDS  |  Clustering; graph algorithms; local algorithms;

network flow; partitioning; semi-supervised learning; spectral

graph theory

I . IN TRODUCTION

Graphs, long popular in computer science and discrete
mathematics, have received renewed interest recently in
statistics, machine learning, data analysis, and related areas
because they provide a useful way to model many types of rela-
tional data. In this way, graphs can be used to extract insight
from data arising in many application domains. In biology,
e.g., graphs are routinely used to generate hypotheses for

experimental validation [1]; and in neuroscience, they are
used to study the networks and circuits in the brain [2], [3].

Given their ubiquity, graphs and graph-based data have
been approached from several different perspectives. In
computer science, it is common to develop algorithms,
e.g., for connected component, minimum spanning tree,
and maximum flow problems, to run on data that are mod-
eled as a precisely specified input graph. These algorithms
are then characterized by the number of operations they
use for the worst possible input at any size. In statistics and
machine learning, on the other hand, it is common to use
graphs as models to perform inference about unseen data.
In this case, one often hypothesizes an unseen graph with
a particular structure, such as block structure, hierarchical
structure, low-rank structure in the adjacency matrix, etc.
Then, one runs algorithms on the observed data in order to
impute entries in the unobserved hypothesized graph. These
methods may be characterized in terms of running time, but
they are also characterized in terms of the amount of data
needed to recover the hidden hypothesized structure.

In many application areas where the end goal is to obtain
some sort of domain-specific insight, e.g., such as in social
network analysis, neuroscience, medical imaging, etc., one
constructs graphs from primary data, and then one runs a
computational procedure that does not come with either of
these traditional types of theoretical guarantees. As an exam-
ple, consider the GeneRank method [4], where we have a set
of genes related to an experimental condition in a microar-
ray study. This set of genes is “refined” via a locally-biased
graph algorithm closely related to those we will discuss.
Importantly, this operational refinement procedure does
not come with the sort of theory traditional in statistics,
machine learning, or computer science. As another example,
e.g., in social network applications, one might run a random
walk process for a few steps from a starting node of interest,
and if the walk “gets stuck” then one might interpret this as
evidence that that region of the graph is meaningful in the
application domain [5]. These are examples of the types of

Fountoulakis et al . : Optimization Approach to Locally-Biased Graph Algorithms

Vol. 105, No. 2, February 2017 | Proceedings of the IEEE  257

heuristics commonly used in applications. By heuristic, we
mean an algorithm in the sense that it performs a sequence of
well-defined steps, but one where precise theory is lacking
(although usually heuristics come with strong intuitive
motivation and are justified in terms of some downstream
application). In particular, typically heuristics do not explic-
itly optimize a well-defined objective function and typically
they do not come with well-defined inferential guarantees.

Note that, in both of these examples, the goal is to find
“local” or “small-scale” structure in the data graph. Both
examples also correspond to what practitioners interested in
downstream applications actually do. Existing algorithmic
and statistical theory, however, has challenges with these
local or small-scale structures. For instance, a very “good”
algorithmic runtime on a graph is traditionally one that is
linear in the number of vertices and edges. If the output of
interest is only a vanishingly small fraction of a large graph,
however, then this theory may not provide strong qualita-
tive guidance on how these locally-biased methods behave
in practice. Likewise, inferential methods often assume that
the structures inferred constitute a substantial fraction of
the graph, and many statistical techniques have challenges
differentiating very small structure from random noise.

In this overview, we describe a class of graph algorithms
that has proven to be very useful for identifying and inter-
preting small-scale local structure in large-scale data. For
this class of algorithms, however, strong algorithmic and sta-
tistical theory has been developed. In particular, these graph
algorithms are locally biased in one of several precisely
quantified senses. We will describe what we mean by this
in more detail below, but, informally, this means that the
algorithms are most interested in only a small part of a large
graph. As opposed to heuristic operational procedures, how-
ever, many of these algorithms do come with strong worst
case algorithmic guarantees, and many of these algorithms
also do come with statistical guarantees that prove they have
implicit regularization properties. This complementary
algorithmic-statistical theory helps explain their improved
performance in many practical applications.

While the approach of locally-biased graph algorithms is
very general, it has been developed most extensively for the
fundamental problem of finding locally-biased graph parti-
tions, i.e., clusters or communities, and so we will focus on
locally-biased approaches for the graph clustering problem. Of
course, this partitioning question is of interest in many more
application-driven areas, where one is interested in finding
useful or meaningful clusters as part of a data analysis pipeline.

A. The Rationale for Local Analysis in Real-World Data

As a quick example of why local graph analysis is fre-
quently used in data and data science applications, we pre-
sent in Figure 1 the results of finding the best partition of
both a random geometric graph and a more typical data
graph. Standard graph partitioning algorithms must operate
on, or “touch”, each vertex and edge of the graph to identify

these partitions. The best partition of the geometric graph
is around half the data, where it is reasonable to run an
algorithm that touches all the data. On the other hand, the best
partition of the data graph is very small, and in this case touch-
ing the entire graph to find it can be too costly in terms of com-
putation time. The local graph clustering techniques discussed
in this paper can find this cluster when given a small set of nodes
inside and touching only edges and nodes that scale in the size of
the output cluster, greatly reducing the computation time.

Far from being a pathology or a peculiarity, the finding
that optimal partitions of real-world networks are often
extremely imbalanced, thus leading to very small optimal
clusters, is endemic to many of the graphs arising in large-
scale data analysis [6]–[9].1

Fig. 1. At left, a geometric graph has a pleasing and intuitive layout
in the 2-D plane. At right, a more typical data graph has a classic
hairball layout that shows little high level structure. Due to the
evident lack of global structure in the data graph, locally-biased
graph algorithms are often used in these contexts. The solution
of the minimum-conductance problem in the geometric graph is
a large set of nodes, and it has conductance value 0.00464. The
solution of the minimum-conductance problem in the more typical
data graph is a small set of nodes, and it has conductance value
0.00589. The inset figure shows that this small graph is very dense
and has only three edges leaving the set. (a) A random geometric
graph. (b) A typical data graph. (c) The optimal conductance
solution for the geometric graph bisects the graph into two large
well-balanced pieces. (d) The optimal conductance solution for a
typical data graph. (Inset. A zoomed view of the subgraph where
the two unfilled notes are the border with the rest of the graph.)

1An important applied question has to do with the meaningfulness,
usefulness, etc., of such small clusters. We do not consider those ques-
tions here, and instead we refer the interested reader to prior work [6]–[9].
Here, we instead focus on the algorithmic and statistical properties of
these locally-biased algorithms.

Fountoulakis et al . : Optimization Approach to Locally-Biased Graph Algorithms

258  Proceedings of the IEEE | Vol. 105, No. 2, February 2017

Let us now explain in more detail Fig. 1. Fig. 1(a) shows
a graph with 3000 nodes that is typical of many graphs that
possess a strong underlying geometry, e.g., those used in com-
puter graphics, computer vision, logistics planning, road net-
work analysis, and so on. This particular graph is produced by
generating 3000 random points in the plane and connecting
all points within a small radius, such that the final graph is con-
nected. The geometric graph can be nearly bisected by opti-
mizing a measure known as conductance (we will define this
shortly), which is designed to balance partition size and qual-
ity. In Fig. 1(b), we show a more typical data graph of around
10 680 nodes [10], where this particular data graph is based on
the trust relationships in a pretty good privacy (PGP) key chain.
Optimizing the same conductance objective function results in
a tiny set [Fig. 1(d)] and not the near-bisection as in the geo-
metric case [Fig. 1(c)]. (We were able to use integer optimiza-
tion techniques to directly solve the NP-hard problems at the
cost of months of computation.) Many other examples of this
general phenomenon can be found in prior work [6]–[9].

B. Partitioning as a Model Problem

The problem of finding good partitions or clusters is
ubiquitous. Representative examples include biomedi-
cal applications [11], [12], internet and world wide web
[13]–[15], social graphs [6], [16]–[18], human communica-
tion graphs [19], human mobility graphs [20], voting graphs
in political science [21]–[25], protein interaction graphs
[26], material science [27], [28], neuroscience [29]–[31],
and collaboration graphs [32].

All of the features of locally-biased computations are pre-
sent in this model partitioning problem. For example, while
some of these algorithms read the entire graph as input but
are engineered to return answers that are biased toward and
meaningful for a smaller part of the input graph [33]–[36],
other algorithms can take as input a “small seed” set of nodes
as well as an oracle with which to access neighbors of a node,
and they return meaningful answers without even touching
the entire graph [37]–[40]. Similarly, while these algorithms
are often formulated in the language of theoretical computer
science as approximation algorithms, i.e., they come with
running time guarantees and can be shown to approximate
to within some quality-of-approximation factor some objec-
tive function of interest, e.g., conductance, in other cases
one can prove statistical results such as that they exactly
solve a regularized version of that objective [37], [41]–[43].

Importantly, this statistical regularization is implicit
rather than explicit. Typically, regularization is explicitly
used in statistics, when fitting models with a large number
of parameters, in order to avoid overfitting to the given data.
It is also used to select answers biased towards specific sets—
for example, sparse solution sets by using the Lasso [44]. In
the case of locally-biased graph algorithms, one simply runs
a faster algorithm for a problem. In some cases, the nature
of the approximation that this fast algorithm makes can be
related back to a regularized variant of the objective function.

C. Overview

In this paper, we will consider partitioning from the per-
spective of conductance, and we will survey a recent class
of results about a common localizing construction. These
methods will let us find the optimal sets in Fig. 1 without
resorting to integer optimization (but also losing the proof
of optimality). Depending on the exact construction, they
will also come with a variety of helpful statistical properties.
We will conclude with a variety of different perspectives on
these problems and some open questions.

In Section II, we describe assumptions, notation, and
preliminary results which we will use in this paper. In Sec-
tion III, we discuss two global graph partitioning problems
and their spectral relaxation. In Section IV, we describe
the local graph clustering application. In Section V,
we provide empirical evaluations for the global and local
graph clustering algorithms which are described in this
paper. Finally, in Section VI, we give our conclusions.

II .   PR ELIMINA R IES A ND NOTATION

Graph assumptions: We use the letter ​​ to denote a given
connected graph. We assume that ​​ is undirected with no
self-loops. Many of the constructions we will use operate on
weighted graphs and so we assume that each edge may have
a positive capacity. Graphs that are unweighted should have
all of their capacities set to 1.
Nodes, edges, and cuts: Let ​ = { ​v​

1
​​ , ​v​

2
​​…, ​v​

n
​​ }​ be a given

set of ​||​ nodes of graph ​​. We denote with ​​e​
ij
​​​ an edge in the

graph between nodes ​​v​
i
​​​ and ​​v​

j
​​​. Let ​ℰ​ be a given set of ​|ε |​ edges

of graph ​​. A subset ​S ⊂ ​ of nodes can be used to define a
partitioning of ​​ into​ S​ and ​​S​​ c​ : = \S​. We define a cut as
subset ​E ⊂ ℰ​ which partitions the graph ​​ into two sets. Given
a partition ​S ⊂ ​ and ​​S​​ c​​, then ​E(S, ​S​​ c​) = { ​e​

ij
​​ ∈ ℰ  |  ​v​

i
​​ ∈ S  and  

​v​
j
​​ ∈ ​S​​ c​ }​ is the set of edges with one side in ​S​ and the other

side in ​​S​​ c​​. If the partition is clear from the context we write
the cut set as ​E​ instead of ​E(S, ​S​​ c​)​. Let ​​c​

ij
​​​ be a weight of the

edge ​​e​
ij
​​​, then we define the cut ​S​ as

​cut(S)  :  = cut(E(S, ​S​​ c​))  :  = ​  ∑ 
​e​

ij
​​∈E(S,​S​​ c​)

​​​c​
ij
​​​ .​	 (1)

The volume of a set S is

		 ​vol(S)  :  = ​ ∑ 
​v​i​​∈S 

​​​ ∑ 
​e​ij​​∈ε

​​​c​ij​​​​ .	​ (2)

Matrix notation: We denote with ​A ∈ ​R​​ 
||×||

​​ the adja-
cency matrix for a given graph, where ​​A​

ij
​​ = ​c​

ij
​​  ∀ ​e​

ij
​​ ∈ ℰ​

and zero elsewhere. Let ​​d​
i
​​​ be the degree of node ​​v​

i
​​ ∈ ​,

​D ∈ ​ℝ​​ ||×||​​ be the degree diagonal matrix ​​D​
ii
​​ = ​d​

i
​​​, ​L = D − A​

be the graph Laplacian, and ​ℒ = ​D​​ −1/2​ L ​D​​ −1/2​​ be the symmetric
normalized graph Laplacian. Note that the volume of a subset

S is ​vol(S)  = ​ ∑ 
​v​

i
​​∈S

​​​d​
i
​​​​. We denote with ​B ∈ ​ℝ​​ |ℰ|×||​​ the incidence

matrix of the given graph G. Every row of the incidence
matrix corresponds to an edge ​​e​

ij
​​ ∈ ℰ​ in G. Assuming arbitrary

ordering of the edges of the graph, in this paper we define

the rows of the incidence matrix as ​​B​
​e​

ij
​​
​​ = ​e​

i
​​ − ​e​

j
​​  ∀ ​e​

ij
​​ ∈ ℰ​,

Fountoulakis et al . : Optimization Approach to Locally-Biased Graph Algorithms

Vol. 105, No. 2, February 2017 | Proceedings of the IEEE  259

where ​​e​
i
​​ ∈ ​ℝ​​ ||​​ is equal to one at the ​i​th position and zero

elsewhere. Finally, ​C ∈ ​ℝ​​ |ℰ|×|ℰ|​​ is a diagonal matrix of the
weights of each edge, i.e., ​​C​

ij
​​ = ​c​

ij
​​  ∀ i, j​. In this notation, the

Laplacian matrix ​L = ​B​​ T​ CB​.

Norms: For all ​x ∈ ​ℝ​​ |ℰ|​​, we define the weighted ​​
​

1
​​​ and ​​ℓ​2​​​ norms ​||x||​ ​1,C​​ : =​ ∑ 

​e​
ij
​​∈E

​​​c​
ij
​​​ | ​x​

ij
​​ |​ and ​||x|| ​‖​ 2,C​ 2 ​  : =​ ∑ 

​e​
ij
​​∈E

​​​c​
ij
​​​ 

| ​x​
ij
​​ ​|​​ 2​​, respectively. The order of elements of the vector x

is identical to the order of edges in the incidence matrix.
Given a partition ​S, ​S​​ c​​ and a vector ​x ∈ ​{ 0, 1}​​ ||​​ such
that ​​x​

i
​​ = 1​ if ​​v​i​​  ∈S​ and ​​x​

i
​​ = 0​ if ​​v​i​​    ∈ ​S​​ c​​, then ​cut(S) = ​

||Bx|| ​‖​
1,C

​​​. Moreover, notice that ​cut(S) = ||Bx ​||‖​ 2,C​ 2 ​ = ​x​​ T​ ​B​​ T​ CBx = ​
​x​​ T​ Lx​.
Miscellaneous: We use ​[ x; y; z ]​ to denote a single column
vector where the individual vectors ​x, y, z​ are stacked in this
order. Finally, the vectors ​​0​||​​​ and ​​1​||​​​ are the all zeros and

ones vectors of length ​||​, respectively.

III.  SPARSEST CUT, MINIMUM
CONDUCTANCE, AND SPECTRAL
RELAXATIONS

In this section, we present two ubiquitous combinatorial
optimization problems: sparsest cut and minimum conduct-
ance. These problems are NP-hard [45], [46], but they can
be relaxed to tractable convex optimization problems [47].
We discuss one of the commonly used relaxation techniques
which will motivate part of our discussion for local graph
clustering algorithms. Both sparsest cut and minimum con-
ductance give different ways of balancing the size of a parti-
tion with its quality.

Sparsest cut finds the partition that minimizes the ratio
of the fraction of edges that are removed divided by the
scaled product of volumes of the two disjoint sets of nodes
defined by removing those edges. In particular, if we have
a partition ​(S, ​S​​ c​)​, where ​​S​​ c​​ is defined in Section II, then ​
cut(S)​ is the number of edges that are removed, and the
scaled product of volumes ​vol(S) vol( ​S​​ c​) / vol()​ is the vol-
ume of the disjoint sets of nodes. Putting all together in an
optimization problem, we obtain

​​
​ϕ ̃ ​()  :  =

​ 
minimize ​ϕ  ̃ ​(S)  :  = ​ 

cut(S)

​  1 _____ vol() ​  vol(S) vol( ​S​​ c​)
 ​ 
​    

​

​ 

subject to S ⊂ .

 ​ ​	 (3)

We will use the term “expansion of a set” to refer to the ratio ​​
ϕ ̃ ​(S)​, and the term “expansion of the graph” to refer to ​​ϕ ̃ ​()​,
in which case this problem is known as the sparsest cut
problem.

Another way of balancing the partition is

​​
ϕ(G)  :  =

​ 
minimize ϕ(S)  :  = ​ 

cut(S)

min (vol(S) , vol( ​S​​ c​))
 ​ 
​    

​
​ 

subject to S ⊂ .
 ​ ​	 (4)

In this case, we divide by the minimum of ​vol(S)​ and ​vol( ​S​​ c​)​,
rather than their product. We will use the term “conduct-
ance of a set” to refer to the ratio of cut to volume ​ϕ(S)​,
and the term “conductance of the graph” to refer to ​ϕ()​, in
which case this problem is known as the minimum conduct-
ance problem.

The difference between the two problems (3) and (4) is
that the former regularizes based on the number of connec-
tions lost among pairs of nodes, while the latter regularizes
based on the size of the small side of the partition. Optimal
solutions to these problems differ by a factor of 2

​​ 1 __ 
2

 ​​ϕ ̃ ​(S)  ≤ ϕ(S)  ≤ ​ϕ ̃ ​(S)​ 	 (5)

leading to the two objectives ​​ϕ ̃ ​(S)​ and ​ϕ(S)​ being almost
substitutable from a theoretical computer science per-
spective [47]. However, this does not mean that the actual
obtained solutions by solving (3) and (4) are similar; in gen-
eral, they are not.

There are three major relaxation techniques for the
NP-hard problems (3) and (4): spectral relaxation, all pairs
multicommodity flow or linear programming (LP) relaxa-
tion, and semidefinite programming (SDP) relaxation. For
detailed descriptions about the LP and SDP relaxations we
refer the reader to [46] and [47], respectively. We focus here
on spectral relaxation since similar relaxations are widely
used for the development of local clustering methods, which
we discuss in subsequent sections.

A. Spectral Relaxation

Spectral graph partitioning is one of the best known
relaxations of the sparsest cut (3) and minimum conduct-
ance (4). The relaxation is the same for both problems,
although the diversity of derivations of spectral partitioning
does not always make this connection clear. For a partition ​
(S, ​S​​ c​)​, let us associate a vector ​x ∈ ​{ ​c​

1
​​ , ​c​

2
​​ }​​ ||​​ such that ​​x​

i
​​ = ​c​

1
​​​

if ​​v​
i
​​ ∈ S​ and ​​x​

i
​​ = ​c​

2
​​​ if ​​v​

i
​​ ∈ ​S​​ c​​. (For simplicity, think of ​​c​

1
​​ = 1​ and ​​

c​
2
​​ = 0​, so ​x​ is the set indicator vector.) The spectral cluster-

ing relaxation uses a continuous relaxation of the set indicator
vector in problems (3) and (4) to produce an eigenvector. The
relaxed problem is

​​

​λ​ 2​​ :  =

​ 

minimize  ​ 
||Bx ​||​ 2,C​ 2 ​

2||x|| ​‖​ 2,D​ 2 ​

 ​ 

​  
​
​ 

subject to  ​1​ | |​ 
T ​  Dx

=

0

​   

​

​ 

  x

∈

​ℝ​​ ||​ − { ​0​||​​ }.

 ​​ 	 (6)

(The denominator ​||x|| ​‖​ 
2,D

​ 2 ​ = ​∑ 
i
​ ​ |​ ​x​

i
​​ ​|​​ 2​ ​d​

i
​​​.) To see why (6) is

a continuous relaxation of (3) we make two observations.
First, notice that for all ​x​ in ​​ℝ​​ ||​ − { ​0​||​​}​

such that ​​1​ 
||

​ T ​ Dx = 0​ the denominator in (6) satisfies

​2vol() ||x ​||​ 2,D​ 2 ​ = ​∑ 
i=1

​ 
||

 ​​∑ 
j=1

​ 
||

 ​​d​
i
​​​​ ​d​

j
​​ | ​x​

i
​​ − ​x​

j
​​ ​|​​ 2​​. Therefore, ​​λ​

2
​​​ in (6) is

equivalent to

Fountoulakis et al . : Optimization Approach to Locally-Biased Graph Algorithms

260  Proceedings of the IEEE | Vol. 105, No. 2, February 2017

​​

​λ​ 2​​ =

​ 

minimize  ​ 
‖||Bx ||​‖​ 2,C​ 2 ​

​  1 _____ vol() ​ ​ ∑ 

i=1
​ 

||
 ​​ ∑ 
j=1

​ 
||

 ​​d​i​​​​ ​d​j​​ | ​x​i​​ − ​x​j​​ ​|​​ 
2​

 ​ 

​   
​
​ 

subject to  ​1​ ||​ 
T ​  Dx = 0

​   

​

​ 

  x ∈ ​ℝ​​ ||​ − { ​0​||​​ }.

 ​​	 (7)

The optimal value of the right-hand side in (7) is equivalent to
the optimal value of right-hand side in the following expression:

​​

​λ​ 2​​ =

​ 

minimize   ​ 
‖||Bx|| ​‖​ 2,C​ 2 ​

​  1 _____ vol() ​ ​ ∑ 

i=1
​ 

||
 ​​ ∑ 
j=1

​ 
||

 ​​d​i​​​​ ​d​j​​ | ​x​i​​ − ​x​j​​ ​|​​ 
2​

 ​ 

​    

​

​ 

subject to x ∈ ​ℝ​​ ||​ − { ​0​||​​ , ​1​||​​ }.

 ​​ 	 (8)

To prove this notice that the objective function of the right-
hand side in (8) is invariant to constant shifts of ​x​, i.e., ​
x​ and ​x + c ​1​

||
​​​ have the same objective function, where ​c​

is a constant. Therefore, if ​​x ̃ ​​ is an optimal solution of the

right-hand side in (8), then ​​x ̂ ​ = ​x ̃ ​ − ​ 
​1​ ​||​​ 

T ​  D​x ̃ ​

vol​()​
 ​ ​1​​||​​​​ has the

same optimal objective value and also ​​1​ 
||

​ T ​ D​x ̂ ​ = 0​.

Second, by restricting the solution in (8) in ​​{ 0, 1}​​ ||​​

instead of ​​ℝ​​ ||​​ we get that ​cut(S)  = ||Bx|| ​‖​ 
2,C

​ 2 ​​ and

​​∑ 
i=1

​ 
||

 ​​∑ 
j=1

​ 
||

 ​​d​
i
​​​​ ​d​

j
​​  | ​x​

i
​​ − ​x​

j
​​ ​|​​ 2​ = vol(S) vol( ​S​​ c​)​.

Using these two observations, it is easy to see that (6) is a
continuous relaxation of (3). Using (5), it is easy to see that
(6) is a relaxation for (4) as well.

The quality of approximation of relaxation (6) to spars-
est cut (3) is given by Cheeger’s inequality [48], [49]

​ ​λ​
2
​​ / vol()  ≤ ​ϕ ̃ ​()  ≤ ​(8 ​λ​

2
​​)​​ 1/2​ / vol()​

while the approximation guarantee for the minimum con-
ductance problem (4) is

​​λ​
2
​​ / 2 ≤ ϕ()  ≤ ​(2 ​λ​

2
​​)​​ 1/2​​

which can be found in [50]. (A generalization of these
bounds holds for arbitrary vectors [51].) Both of these
approximation ratios can be realized by rounding proce-
dures described below.

Another form of relaxation is the combinatorial model
relaxation, which is formulated as problem (6) by ignoring the
orthogonality constraint and restricting ​x ∈ ​{ 0, 1}​​ ||​​ instead of ​
x ∈ ​ℝ​​ ||​​. An extensive study of the spectral and the combina-
torial model relaxation can be found in [52], while empirical
comparisons between these relaxations are discussed in [53].

B. Rounding

In practice, the solution obtained by the spectral relaxation
is unlikely to lie in ​​{ 0, 1}​​ ||​​, i.e., it is unlikely to be the indicator

vector of a set. Therefore, it is necessary to have an efficient
postprocessing procedure where the solution is rounded to
a set. At the same time it is important to guarantee that the
rounded solution has good worst case guarantees in terms of
the conductance or sparsest cut objective.

One of the most efficient and theoretically justified
rounding procedures for spectral relaxation is the sweep
cut. The sweep cut procedure is summarized in the follow-
ing steps.

1)  Input: the solution ​x ∈ ​ℝ​​ ||​​ of (6).
2) � Sort the indices of ​x​ in decreasing order with respect

to the values of the components of ​x​. Let ​​i​
1
​​ , ​i​

2
​​ , …, ​i​

||
​​​

be the sorted indices.
3) � Using the sorted indices generate a collection of sets ​​

S​j​​ :  = { ​i​
1
​​ , ​i​

2
​​ , …, ​i​

j
​​ }​ for each ​j ∈ { 1, 2, …,  |  | }​.

4) � Compute the conductance or sparsest cut objective
for each set ​​S​

j
​​​ and return the minimum.

Notice that sweep cut can be used to obtain approximate solu-
tions for both sparsest cut and minimum conductance. In fact,
the proof for the upper inequalities of the approximation guaran-
tees of spectral relaxation to sparsest cut and minimum conduct-
ance are obtained by using the sweep cut procedure [48], [49].

I V.   LOC A LLY-BI A SED GR A PH
PA RTITIONING METHODS

All of the algorithms described in Section III are “global,” in
that they touch all of the nodes of the input graph at least
once, and thus they have a running time that is at least lin-
ear in the size of the input graph. Informally, locally-biased
graph clustering algorithms find clusters near a specified
seed set of vertices, in many cases without even touching the
entire input graph. In this section, we will describe several
local graph clustering algorithms, each of which has some-
what different properties.

To understand the seemingly-quite-different algorithms
we will discuss, we will distinguish local graph clustering
algorithms based on three major features.

1) � Weakly or strongly local algorithms: Weakly local
algorithms are those that are biased toward a local
part of the graph but may “touch” the entire input
graph during the computation, i.e., they formally
have running times that scale with the size of the
graph. Strongly local graph algorithms are those that
only access a small portion of the entire input graph
in order to perform their computation, i.e., they for-
mally have running times that are linear in the size
of the output or input set of nodes but independent
of the size of the input graph. We show that the dif-
ference between weakly and strongly local algorithms
often translates to whether we penalize the solution by
adding an ​​​

1
​​​-norm penalty implicitly to the objective

function and/or by restricting the feasible region of
the problem by adding implicitly a locality constraint.
Both ways result in strongly local algorithms.

Fountoulakis et al . : Optimization Approach to Locally-Biased Graph Algorithms

Vol. 105, No. 2, February 2017 | Proceedings of the IEEE  261

2) � Localizing bias: Current local graph clustering
algorithms are supervised, i.e., one has to give a
reference set of seed nodes. We discuss two major
ways that this information is incorporated in the
problem. First, the bias to the input is incorporated
in the objective function of the problem through a
localizing construction we will call the reference
cut graph. Second, the bias to the input is incorpo-
rated to the problem as a constraint.

3) � ​​​
1
​​​ and ​​​

2
​​​ metrics: The final major feature that dis-

tinguishes locally-biased algorithms is how the cut
measure is treated. Via the cut metric [54], this can
be viewed as embedding the vertices of ​​ and evalu-
ating their distance in the embedding. Two distances
are explicitly or implicitly used in locally-biased algo-
rithms: the ​​​

1
​​​and the ​​​

2
​​​ metric spaces. The former

results in local flow algorithms, and the latter results
in local spectral algorithms. The distinction between
these two is very important in practice, as we show by
empirical evaluation in subsequent sections.

The local graph clustering algorithms that we consider
in the following sections and their basic properties with
respect to the above three features are given in Table 1.

A. General Localizing Construction

We describe these locally-biased graph methods in terms
of an augmented graph we call the “reference cut graph.”
We should emphasize that this is a conceptual construction
to highlight the similarities and differences between locally-
biased algorithms in Table I; in particular, these algorithms
do not explicitly construct the reference cut graph.

Let ​h, g ∈ ​ℝ​​ ||​​, ​h, g ≥ 0​, and ​g − h ≥ 0​, and let ​α​, ​β​, and ​γ​
be parameters specified below. Then, the reference cut graph is
constructed from a simple, undirected graph  as follows.

1)  Add a source and sink node ​s​ and ​t​.
2)  Add edges from ​s​ to each node in .
3)  Add edges from each node in  to ​t​.
4)  Weight each original edge by ​γ​.
5)  Weight the edges from ​s​ to  by ​αh​, where ​α ≥ 0​.
6)  Weight the edges from ​t​ to  by ​β(g − h)​, ​β ≥ 0​

Let ​H  : = diag(h)​, ​G  : = diag(g)​, and ​Z = G − H​.
Then, we can also view the augmented graph through its
incidence matrix and edge weight matrix

​​B ̃ ​ = ​
[

​
​1​||​​

​ 
− ​I​||​​

​ 
0

​  0​  B​  0​  
0

​ 
​I​||​​

​ 
− ​1​||​​

​
]

​,  ​C ̃ ​ = ​
[

​
αH

​ 
0

​ 
0

​ 0​  γ C​  0​ 
0

​ 
0

​ 
βZ

​
]

​​

respectively. The above construction might look overly com-
plicated. However, we will see in the following subsections
that it simplifies for local spectral and flow graph clustering
algorithms with specific settings for ​h, g​, and ​γ​.

B. Weakly Local and Strongly Local Flow Methods

Although finding the set of minimum conductance is
NP-hard in general, there are a number of cases and vari-
ations that admit polynomial time algorithms and can be
solved via max-flow/min-cut or a parametric max-flow
method. These algorithms begin with a reference set ​R​ of
nodes, and they return a smaller (or not much larger) set
of nodes that is a better partition in terms of the conduct-
ance ratio ​ϕ​. Typically, the returned value is optimal for a
variation on the minimum conductance and/or the sparsest
cut objective. The methods themselves are highly flexible
and apply to other variations of minimum conductance and
sparsest cut. For the sake of simplicity, we will describe them
for conductance.

All of the following procedures adopt the following meta-
algorithm starting with working set ​W​ initialized to an input
reference set of nodes ​R​, values ​​α​

1
​​ , ​β​

1
​​ , ​γ​

1
​​​ and vectors ​h = ​d​

R
​​​, ​

g = d​, where ​​d​
R
​​​ is a vector of length ​||​ with components equal

to ​​d​
i
​​​’s for nodes ​​v​

i
​​ ∈ R​ and zeros for nodes ​​v​

i
​​ ∈ ​R​​ c​​. Fig. 2 illus-

trates the construction of an augmented graph based on the
previous setting of ​α, β, γ​ and ​h, g​.
The Local-Flow Meta-Algorithm

1) � Initialize ​​W​
1
​​ = R​, ​k = 1​, ​h = ​d​

R
​​​, ​g = d​ and ​​α​

1
​​ , ​β​

1
​​ , ​γ​

1
​​​

based on ​R​.
2) � Create the reference cut graph ​​​B ̃ ​​

k
​​ , ​​C ̃ ​​

k
​​​ based on ​R​ and ​​

α​
k
​​ , ​β​

k
​​ , ​γ​

k
​​​.

3) � Solve the ​s, t​-min-cut problem associated with ​​​B ̃ ​​
k
​​ , ​​C ̃ ​​

k
​​​.

4)  Set ​​W​
k+1

​​​ to be the ​s​-side of the cut.

TABLE 1  State-of-the-Art Local Graph Clustering Methods and Their

Properties With Respect to the Three Features That Are Discussed in

Section IV

Fig. 2.  The construction of the reference cut graph begins by adding
a source node s connected to the reference set R and a sink node
t connected to the rest of the graph. Then, we add weights to the
network based on the degrees and three parameters , , and .
Each edge to the source node is weighted by   degree, each edge
to the sink node is weighted by   degree, and each internal edge is
weighted by . Note that one of the choices of , , or  will be 1, but
various papers adopt different choices, and so we leave it general.
(a) A simple graph. (b) Adding the source s and sink t.
(c) The reference cut graph, with weights indicated.

Fountoulakis et al . : Optimization Approach to Locally-Biased Graph Algorithms

262  Proceedings of the IEEE | Vol. 105, No. 2, February 2017

5) � Check if ​​W​
k+1

​​​ has smaller conductance (or some
variant of it, as we will make specific in the text
below) than before and stop if not and return ​​W​

k
​​​.

6)  Update ​​α​
k+1

​​ , ​β​
k+1

​​ , ​γ​
k+1

​​​ based on ​​W​
k+1

​​​ and ​R​.
7)  Set ​k → k + 1​.
8)  Repeat starting from state 2.
Next, we describe several procedures that are instantia-

tions of this basic Local-Flow Meta-Algorithm.
1)  MQI:  The first algorithm we consider is the

MQI procedure due to Lang and Rao [57]. This method is
designed to take the reference set ​R​ with ​vol(R)  ≤ vol(G) / 2​
and identify a subset of it ​S ⊆ R​. The method instantiates the
Local-Flow Meta-Algorithm using ​​α​

k
​​ = cut( ​W​

k
​​), ​γ​

k
​​ = vol( ​W​

k
​​), 

​β​
k
​​ = ∞​ and ​h = ​d​

R
​​​, ​g = d​. The idea with this method is

that the reference cut graph will have an ​s, t​ -min-cut value
strictly less than ​​α​

k
​​ ​γ​

k
​​​ if and only if there is a strict subset ​

S ⊂ ​W​
k
​​​ that has conductances less than ​​α​

k
​​ / ​γ​

k
​​​. (See [57]

for the proof.) If there is such a set, then the result ​vol(R) 
≤ vol(G)  / 2​ will be a set with conductance less than ​​α​

k
​​ / ​γ​

k
​​​.

Since ​​α​
k
​​ ​ and ​​γ​

k
​​​ are picked based on the current working set ​​

W​
k
​​​, at each step the algorithm monotonically improves the

conductance. Also, each step minimizes the objective

​minimize‖||​B ̃ ​x|| ​‖​
1,​​C ̃ ​​

k
​​
​​ 

subject to  ​x​
i
​​ = 0  ∀ ​v​

i
​​ ∈ ​R​​ c​ , ​x​

s
​​ = 1, ​x​

t
​​ = 0.​

In fact, when the algorithm terminates, that means that
there is no subset of R with conductance less than ​​α​

k
​​ / ​γ​

k
​​​.

Hence, we have solved the following variation on the con-
ductance problem

​minimize ϕ(S)  = ​ 
cut(S)

 _____ vol(S) ​

 subject to S ⊆ R.​

The key difference from the standard conductance prob-
lem is that we have restricted ourselves to a subset of the refer-
ence set R. Procedurally, this is guaranteed because the edges
connecting ​​R​​ c​​ to ​t​ have weight infinity, so they will never
be cut. Thus, operationally, MQI is always a strongly local
algorithm since it only operates within the input seed set
R. Nodes connected to ​t​ with weight infinity can be agglom-
erated or merged into a mega-sink node ​T​. The resulting
graph has the same size as R along with the source and sink.
(This is how the MQI construction is described in the original
paper.) The MQI problem can be solved using the max-flow
method on the resulting graph a logarithmic number of times
[57]. Therefore, the running time for solving MQI depends
on the max-flow algorithm that is used. Details about running
times of max-flow algorithms can be found in [59].

2)  FlowImprove:  The FlowImprove method due to
Andersen and Lang [55] was inspired by MQI and designed to
address the weakness that the algorithm will always find an out-
put set within the reference set R, i.e., that is a subset of R. (As
an illustration, see Figure 3.) Again, FlowImprove takes as input

a reference set R with volume less than half the graph. The idea
behind FlowImprove is that we want to find a set with conduct-
ance at least as good as R and that also is highly correlated with
R. To do this, consider the following variant of conductance:

​​ϕ​ R​​ (S)  = ​ 
cut(S)

vol(S ∩ R)  − θ vol(S ∩ ​R​​ c​)

 ​​

where ​θ = vol(R)  / vol( ​R​​ c​)​, and where the value is ​∞​ if
the denominator is negative. For any set ​S​, ​​ϕ​

R
​​ (S)  ≥ ϕ(S)​.

Thus, this modified conductance score is an upper bound
on the true conductance. Again, we are able to show that
the Local-Flow Meta-Algorithm can solve for the exact value
of ​​ϕ​

R
​​ (S)​ in polynomial time. To do so, instantiate that algo-

rithm with ​​α​
k
​​ = ​ϕ​ R​​ ( ​W​

k
​​)​, ​​β​

k
​​ = θ ​ϕ​

R
​​ ( ​W​

k
​​)​, ​​γ​

k
​​ = 1​ and ​h = ​d​R​​​, ​

g = d​. The value of a cut on set ​S​ in the resulting graph is

​cut(S)  + ​α​
k
​​ vol(R)  − ​α​

k
​​ [ vol(S ∩ R)  − θ vol(S ∩ ​R​​ c​) ] . ​

(See [60] for the justification.) Andersen and Lang show that
the algorithm monotonically reduces ​​ϕ​

R
​​ ( ​W​

k
​​)​ at each iteration

as well. Each iteration now solves the ​s​,​ t​-min-cut problem

​		 minimize ||​B ̃ ​x|| ​‖​
1,​​C ̃ ​​

k
​​
​​  	 (9)

subject to  ​x​
s
​​ = 1, ​x​

t
​​ = 0.​

In order to match precisely their FlowImprove procedure,
we would need to modify our meta-algorithm to check the

value of ​​φ​R​​ (​W​k​​)​, instead of conductance (at Step 5 of the
Local-Flow Meta-Algorithm above), for monotonic decrease.
The authors also show that this procedure terminates in a
finite number of iterations.

At termination, the FlowImprove algorithm has exactly
solved ​minimize ​ ϕ​

R
​​ (S) , S ⊆ V​. This can be considered a

locally-biased variation of the conductance objective, where we
penalize departure from the reference set R. Consequently, the
solutions will tend to identify small conductance sets nearby R.

FlowImprove is a very useful algorithm, but it has
two small weaknesses. The first is that it is a weakly local
algorithm. At each step, we have to solve a min-cut prob-
lem that is the size of the original graph. The second is
that the min-cut problems do not have integer weights.

Fig. 3.  The results of running MQI and FlowImprove on the
reference set produced by a spectral partitioning method on the
geometric graph (i.e., run global spectral §III-A; then round with a
sweep-cut §III-B ; and then refine using MQI and FlowImprove). The
FlowImprove method identifies the optimal set from Fig. 1 in this
case, whereas MQI cannot because it searches only within the
given set R. (a) MQI. (b) FlowImprove. (c) The difference.

Fountoulakis et al . : Optimization Approach to Locally-Biased Graph Algorithms

Vol. 105, No. 2, February 2017 | Proceedings of the IEEE  263

(Note that ​θ​ will almost never be an integer.) Most fast
max-flow/min-cut procedures and implementations assume
integer weights. For instance, many implementations of the
push-relabel method (hipr [61]) only allows integer weights.
Boykov and Kolmogorov’s solver is a notable exception [62].
Similarly to MQI, the running time of solving the max-flow/
min-cut problem depends on the particular solver that is
used. A summary of max-flow/min-cut methods can be
found in [59].

3)  Local FlowImprove  The Local FlowImprove algo-
rithm due to Orecchia and Zhu [56] sought to address the
weak locality of the FlowImprove method and create a
strongly local flow based method. This involved two key
innovations: a modification to the construction and objec-
tive that enables strong locality; and an algorithm to realize
that strong locality. This Local FlowImprove method essen-
tially interpolates between MQI and FlowImprove. In one
limit, it is strictly local to the reference graph and exactly
reproduces the MQI output. In the other limit, it is exactly
FlowImprove. To do this, Orecchia and Zhu alter the objec-
tive function used for FlowImprove to place an additional
penalty on deviating from the set R. They describe this as
increasing the weight of connections ​​β​k​​​ in the reference
cut graph by scaling these by a value ​κ ≥ 1​. If ​κ = 1​, then
their construction is exactly that of FlowImprove. If ​κ = ∞​,
then this construction is equivalent to that of MQI. The
effect of ​κ​ is illustrated in Fig. 4.

In terms of the optimization framework, their modifica-
tion corresponds to using

​​​ϕ ′ ​​R​​ (S; κ )  = ​ 
cut(S )

vol(S ∩ R )  − θκ vol(S ∩ ​R​​ c​ )

 ​ ​

where ​κ ≥ 1​ and ​θ = vol(R )  / vol( ​R​​ c​ )​ as in FlowImprove,
and again the value is ​∞​ if the denominator is negative. This
result corresponds to instantiating the Local-Flow Meta-

Algorithm using ​​α​
k
​​ = ​​ϕ ′ ​​R​​ (W; κ )​, ​​β​

k
​​ = ​​ϕ ′ ​​R​​ (W; κ ) θκ​ and

​h = ​d​
R
​​​, ​g = d​.

The second innovation is that they describe an algorithm
to solve the min-cut problem on the reference cut graph
that does not need to explore the entire graph. This second
piece used a novel modification of Dinic’s procedure [63]
to compute a max-flow/min-cut that exploited the locality.
We refer interested readers back to Orecchia and Zhu for
details of this second somewhat complicated construction.
In our recent work [42], however, we describe a simplified
framework for the local FlowImprove method that shows
that the strong locality in their modification results from
implicitly regularizing the FlowImprove objective with an
1-norm regularizer. (This will mirror strongly local spec-
tral results in the forthcoming spectral section.) In fact, our
recent work [42] shows that each iteration exactly solves

​	 minimize ||​B ̃ ​x||​‖​
1,​​C ̃ ​​

​k ′ ​
​​
​​ + ε ||Dx|| ​‖​

1
​​	 (10)

subject to  ​x​
s
​​ = 1, ​x​

t
​​ = 0​

where ​​​C ̃ ​​
​k ′ ​​​​ is a small perturbation on the above defini-

tion and ​ε​ is a locality parameter. The volume of the out-
put cluster ​S​ of the method in [42] is bounded ​vol(S )  ≤
vol(R ) (1 + 2 / ε)  + E(R, ​R​​ c​ )​, where ​ε  :=  vol(R )  / vol( ​R​​ c​ ) 
+ δ​ and ​δ ≥ 0​ is a constant.

That work also describes a simple procedure to real-
ize the strong locality that leverages any max-flow/min-cut
solver on a sequence of subproblems whose size is bounded
independent of the graph.

C. Weakly and Strongly Local Spectral Methods

There are spectral analogs for each of the three flow-
based constructions on the augmented graph. The devel-
opment of these ideas occurred in parallel, largely inde-
pendently, and it was not obvious until recently that the
ideas were very related. Here, we make these connections
explicit. Of the three flow constructions, the simplest is the
MQI objective. We begin with it.

1)  SpectralMQI:  The method we call SpectralMQI
was proposed as the Dirichlet partitioning problem in [58].
Given a graph  and a subset of vertices, consider finding the
set ​S​ of minimal local conductance ​​ϕ ′ ​(S )  = cut(S )  / vol(S )​

such that ​S ⊆ R​, where, again, R is a reference set specified
in the input. Note that the only difference from conduct-
ance is that we do not have the minimum in the denomina-
tor. A spectral algorithm to find an approximate minimizer
of this is to solve the generalized eigenvector problem

​​λ​
R
​​ = minimize  ​ 

||Bx||​‖​ 2,C​ 2 ​

‖||x|| ​‖​ 2,D​ 2 ​
 ​ 

subject to  ​x​
i
​​ = 0  ∀ ​v​

i
​​ ∈ ​R​​ c​ .​

The solution vector ​x​ and value ​​λ​R​​​ are related to the small-
est eigenvalue of the submatrix of the normalized Laplacian

Fig. 4.  The results of running FlowImprove compared with local
FlowImprove with a reference set R. The FlowImprove result
returns a fairly large set whereas the Local FlowImprove results
produce successively smaller sets as the penalty ​κ​ increases.
When ​κ 5​ e5 then the result simply fills in the hole in the
reference set. (a) Reference set R. (b) The FlowImprove result.
(c) Local FlowImprove ​κ​ ​5​ e3. (d) Local FlowImprove ​κ​ ​5​ e5.

Fountoulakis et al . : Optimization Approach to Locally-Biased Graph Algorithms

264  Proceedings of the IEEE | Vol. 105, No. 2, February 2017

corresponding to the nodes in R. (Note that we take the
submatrix of the normalized Laplacian, rather than the
normalized Laplacian on the subgraph induced by R.) A

sweep cut over the eigenvector ​x​ produces a set ​S​ that sat-
isfies a Cheeger inequality with respect to the best possible
solution [58]. This definition of local conductance is also

called ​NCu​t ′ ​​ by Hochbaum [64], who gave a polynomial
time algorithm to compute it that is closely related to the
MQI procedure. In this case, if R has volume less than half
the graph, then this is exactly the spectral analogue of the
MQI procedure and the result is a Cheeger-like bound on
the overall conductance.

2)  MOV:  The Mahoney–Orecchia–Vishnoi (MOV)
objective [33] is a spectral analog of the FlowImprove
method, with a few subtle differences. The goal is to find a
small Rayleigh quotient, as in (6), that is highly correlated
with an input vector ​z ∈ ​R​​ ​|V|​​​, where ​z​ represents the seed or
local-bias. Given this, the MOV objective is

minimize ​​ 
​​‖Bx‖​​ 2,C​ 2 ​

​​‖x‖​​ 2,D​ 2 ​

 ​​

subject to ​​1​ 
​|v|​

​ T ​ Dx = 0​

	​ ​( ​z​​ T​ Dx )​​ 2​ ≥ k​ ​x ∈​R​​ v​.​
The solution of this problem represents an embedding

of the nodes in ​v​ which is locally biased, i.e., large values for
components/nodes that are considered important and small
or zero values for the rest.

According to [33], there is a constant ​ρ​, i.e., the opti-
mal dual variable for the locally-biased constraint, such
that the solution to the MOV problem satisfies ​(L + ρD ) x
= ρDz​. The null space of ​L​ is the vector ​​1​

||
​​​, and assuming

that ​​1​ 
​|v|​

​ T ​ Dz = 0​, then the solution to the previous system is
unique. One final detail is that the MOV construction fixes ​
||x|| ​‖​

2
​​ = 1​. Consequently, the MOV solution is

​x = c ​(L + ρD )​​ †​ Dz  c = (|| ​(L + ρD ​)​​ †​ Dz|| ​‖​2​​ )​​ 
−1

​.​ � (11)

In the MOV paper [33], they show that ​ρ​ can be chosen such
that ​​x​​ T​ Dz = κ​, the desired correlation strength with the
input vector ​z​, through a simple bisection procedure. Solv-
ing the linear system (11) results in a weakly local method
that satisfies another Cheeger-like inequality. Recent exten-
sions show that it is possible to get multiple locally-biased
vectors that are akin to eigenvectors from this setup [65],
[66]. The methodology is able to leverage the large number
of Laplacian system solvers [67] that can find an approxi-
mate solution to (11) in nearly linear time.

The pseudoinverse allows us to “pass through” ​ρ = 0​ and
approach ​ρ = − ​λ​

2
​​​. (This system is singular at ​ρ = 0​ and ​ρ = ​λ​

2
​​​.)

What is interesting is that taking the limit ​ρ → − ​λ​
2
​​​ directly

maps to the spectral relaxation (6). Thus, the ​ρ​ parameter
interpolates between the global spectral relaxation (6) and
a spectral version of the min-cut problem in each step of
FlowImprove.

Based on the reference cut graph, the MOV objective is ​
minimize ||​B ̃ ​​x ̃ ​||​‖​ 

2,​C ̃ ​
​ 2 ​​ , where ​​x ̃ ​: = [ 1; x; 0 ]​. The reference graph

cut setting is ​γ = 1​, ​g = d​, ​h = Dz​ and ​α = β = ρ ≥ 0​ con-
trols the desired strength of the correlation to the input vec-
tor ​z​. Notice that the MOV problem is a spectral, i.e., ​​​

2
​​​,

version of the ​s, t​-min-cut problem. This observation was
made first in [41], [68]. If ​ρ​ is extremely large, the solution
to the above problem would have perfect correlation with
the input vector ​h​. As ​ρ → 0​, we decrease the effective cor-
relation with the input vector ​h​. (These arguments are for-
mal in [33].)

3)  ​​​
1
​​​-Regularized PageRank:  The ​​​

1
​​​-regularized

PageRank problem was initially studied in [41] and then
further refined in [37]. In the latter work, the problem is
defined as

​	 minimize  ​ 1 __ 
2

 ​ ||​B ̃ ​​x ̃ ​|| ​‖​ 
​C ̃ ​,2

​ 2 ​  + ε ||Dx ​||​1​​​ 	 (12)

where ​​x ̃ ​: = [ 1; x; 0 ]​. The reference cut graph setting for (12)
is ​g = d​ and ​h ≥ 0​ is a vector that satisfies ​||h ​||​1​​ = 1​ and
​||h ​||​∞​​ ≥ ε​. The latter condition is to guarantee that the solu-
tion to (12) is not the zero vector. Moreover, ​α = β​ and
​γ = (1 − α )  / 2​. Similarly to ​z​ for MOV, the vector ​h​ controls
the input seed set and the weights of nodes in that set. The
larger the weights the more the solution will be correlated
with the corresponding nodes in the input seed set. The
solution vector to problem (12) is component-wise non-
negative and the parameter ​α​ controls how much energy is
concentrated close to the input seed set. Formally, based on
theoretical guarantees in [38] the vector ​h​ should be an indi-
cator vector for a single seed node, around which there is a
target cluster of nodes ​C​. The algorithm is not guaranteed to
find the exact target cluster ​C​, but if ​C​ has conductance less
than ​α / 10​ then it is guaranteed to return a cluster with con-
ductance of ​( ​√ 

  α log (vol(C )  ) ​ )​. We refer the reader to [38]

for a detailed description of the theoretical graph clustering
guarantees.

The idea of ​​​
1
​​​-regularized PageRank graph clustering

initially appeared in [38] in the form of implicit regulari-
zation. In particular, the authors in [38] suggest solving a
personalized PageRank linear system approximately. In [37]
and [41], the authors noticed that the termination criteria
in [38] are related to the first-order optimality conditions of
the above ​​​

1
​​​-regularized PageRank problem, and they draw

the connection to explicit ​​​
1
​​​- regularization. It is shown in

[37] that solving the ​​​
1
​​​-regularized PageRank problem has

the same Cheeger-like worst case approximation guarantees
to the minimum conductance problem as the original proce-
dure in [38]. However, there is an important technical differ-
ence: one advantage of solving the​​ ​

1
​​​-regularized problem is

that the locality of the solution is a property of the optimiza-
tion problem as opposed to a property of an algorithm. In
particular, by solving the​​ ​

1
​​​-regularized problem it is guaran-

teed to obtain the same solution regardless of the algorithm
used. In comparison, applying the procedure in [38], where

Fountoulakis et al . : Optimization Approach to Locally-Biased Graph Algorithms

Vol. 105, No. 2, February 2017 | Proceedings of the IEEE  265

V.  EMPIR IC A L E VA LUATION

In this section, we illustrate differences among global,
weakly local, and strongly local solutions to the problems
discussed in Section IV. Additionally, we discuss differences
between spectral and flow methods (which is equivalently ​​ℓ​

2
​​​

versus ​​ℓ​
1
​​​ metrics for node distances).

To do so, we make use of the following real-world undi-
rected and unweighted networks.

•	� US-Senate. Each node in this network is a Senator
that served in a single term (two years) of Con-
gress. Our data cover the period from year 1789
to 2008. Senators appear as multiple nodes if they
served in multiple terms. Edges are based on the 2 http://snap.stanford.edu/data

Fig. 5.  US-Senate. This figure shows the solutions of (a) spectral relaxation; (b) MOV with global bias; (c) MOV with local bias; and
(d) strongly local ​​ℓ​1​​​-regularized PageRank. We use a heat map to represent the weights of the nodes. For spectral relaxation and MOV
bright yellow means large positive and bright red means large negative. For ​​ℓ​1​​​-regularized PageRank bright yellow means large positive
and bright red means small positive. The blue halo around a node in (c) and (d) means that this node is included in the seed set. The size of
the nodes shows the weights of the solution in absolute value. If a weight is nearly zero then the corresponding node is barely visible.
(a) Global spectral relaxation. (b) MOV with global seed. (c) MOV with local seed. (d) ACL ​​ℓ​1​​​-regularized PageRank.

the output depends on the setting of the procedure, i.e., the
strategy for choosing nodes to be updated at every iteration,
leads to somewhat different solutions, depending on the
specific settings chosen.

Let ​​x​​ *​​ be the optimal solution of (12) and ​​S​​ *​​ be the set
of nodes where ​​x​​ *​​ is nonzero. In [37], it is shown that many
standard optimization algorithms such as iterative soft
thresholding or block iterative soft thresholding solve (12)
with running time ​(vol( ​S​​ *​ ) / α )​, which can be independ-
ent of the volume of the whole graph ​vol( )​. This opens up
the possibility of the use of these algorithms more generally.
For details about the algorithms, we refer the reader to [37].

similarity of voting records between Senators and
thresholded at the maximum similarity such that
the graph remains connected. Edge weights are dis-
carded. For a detailed discussion of this data set we
refer the reader to [22]. This graph has 8974 nodes
and 153 804 edges. This graph has two large clus-
ters with small conductance ratio, i.e., downward-
slopping network community profile; see [9, Fig. 6]
for details. The first cluster consists of all the nodes
before the year 1913 and the second cluster consists
of nodes after that year.

•	� CA-GrQc. The data for this graph are a general rela-
tivity and quantum cosmology collaboration net-
work. Details can be found in the Stanford Network
Analysis Project.2 This graph has 4158 nodes and
13 422 edges. This graph has many clusters of small
size with small conductance ratio, while large clus-
ters have large conductance ratio, i.e., upward-slop-
ping network community profile; see [9, Fig. 6] for
details.

•	� FB-Johns55. This graph is a Facebook anonymized
data set on a particular day in September 2005
for a student social network at John Hopkins Uni-
versity. The graph is unweighted and it represents
“friendship” ties. The data form a subset of the

Fountoulakis et al . : Optimization Approach to Locally-Biased Graph Algorithms

266  Proceedings of the IEEE | Vol. 105, No. 2, February 2017

Facebook100 data set from [24] and [69]. This
graph has 5157 nodes and 186 572 edges. This is
an expander-like graph, all small and large clusters
have about the same conductance ratio, i.e., flat net-
work community profile; see [9, Fig. 6] for details.

•	� US-Roads. The data for this graph is from the
National Highway Planning Network [6]. Each node
in this network is an intersection between two high-
ways and the edges represent segments of the high-
ways themselves.

Note that the small-scale versus large-scale clustering
properties of the first three networks have been char-
acterized previously [9]. In addition, it is known that
US-Roads has a downward-sloping network community
profile. 3https://graph-tool.skewed.de

Fig. 6.  CA-GrQc. This figure shows the solutions of spectral
relaxation, MOV with global input, MOV with local input, and
​​ℓ​1​​​-regularized PageRank. The meaning of the colors of the nodes
and its sizes is the same as in Fig. 5. (a) Spectral relaxation.
(b) MOV global. (c) MOV local, seed 1. (d) MOV local, seed 2.
(e) ​​ℓ​1​​​-regularized PageRank, Seed 1. (f) ​​ℓ​1​​​-regularized PageRank,
Seed 2.

A. Global, Weakly Local, and Strongly Local
Solutions

We first demonstrate differences among global, weakly
local, and strongly local algorithms. Let us start with a com-
parison among spectral algorithms. By comparing algorithms
that use that same metric, i.e., ​​ℓ​2​​​, to measure distances
among nodes we minimize factors that can affect the solu-
tion, and we focus on weak versus strong locality. In all fig-
ures we show the solution obtained by an algorithm without
applying any rounding procedure. We illustrate the impor-
tance of the nodes by coloring and size; details are explained
in the captions of the figures and in the text. The layout for
all graphs has been obtained using the force-directed algo-
rithm [70], which is available from the graph-tool project.3

For US-Senate, the comparison is shown in Fig. 5. Fig. 5(a)
and (b) shows the solutions of global algorithms, spectral
relaxation, and MOV global (​z = ​1​||​​​ and then we orthogonal-
ize ​z​ with respect to ​D ​1​||​​​), respectively. As expected, the US-
Senate graph has two large clusters, i.e., before the year 1913
and after that year, that partition along the 1-D time axis. This
global structure is nicely captured by spectral relaxation and
MOV global in Fig. 5(a) and (b), respectively.

Given an input seed set, Fig. 5(c) and (d) illustrates the
weakly and strongly local solutions by MOV and ​​ℓ​1​​​-regular-
ized PageRank, respectively. For MOV in Fig. 5(c) we set
​​z​i​​ = 1​ for all ​i​ in the input seed set and ​​z​i​​ = 0​ for all ​i​ outside
the input seed set. Then, we orthogonalize ​z​ with respect to ​
D ⋅ ​1​||​​​. For ​​ℓ​1​​​-regularized PageRank, we only give a single
node as an input seed set, i.e., ​​h​i​​ = 1​ where ​i​ is the input node
and ​​h​i​​ = 0​ for all other nodes. Moreover, we set the locality
parameter ​ε​ large enough such that the solution is very sparse,
i.e., strongly local. In Fig. 5(c) and (d), we demonstrate the
input seed sets by nodes with a blue halo around them. In
Fig. 5(c), the cluster which is found by MOV consists of the
nodes which have large mass concentration around the input
seed set, i.e., the nodes around the input seed set that have
large size and are colored with a bright red shade. MOV recov-
ers this cluster by examining the whole graph; each node
has a weight assigned to it in Fig. 5(c). On the other hand,
a similar cluster is found in Fig. 5(d) by using ​​ℓ​1​​​-regularized
PageRank without examining the whole graph. This is pos-
sible because nodes of the graph have zero weight assigned
and need not be considered. This speed and data advantage,
along with the sparsity-based implicit regularization [41], are
some of the reasons that strongly local algorithms, such as
​​ℓ​1​​​-regularize PageRank, are used so often in practice [7], [9].

In Fig. 6, we present global, weakly local, and strongly
local solutions for the less well-partitionable and thus less
easily-visualizable CA-GrQc graph. As already mentioned in
the description of this data set, this graph has many small
clusters with small conductance ratio and large clusters
have large ratio. This is also justified in our experiment

Fountoulakis et al . : Optimization Approach to Locally-Biased Graph Algorithms

Vol. 105, No. 2, February 2017 | Proceedings of the IEEE  267

Fig. 7.  FB-Johns55. This figure shows the solutions of spectral
relaxation, MOV with global input, MOV with local input, and ​​
ℓ​1​​​-regularized PageRank. The meaning of the colors of the
nodes and its sizes is the same as in Fig. 5. (a) Spectral relaxation.
(b) MOV global. (c) MOV local. (d) MOV local, seed 2. (e) ​​ℓ​1​​​-regularized
PageRank. (f) ​​ℓ​1​​​-regularized PageRank, Seed 2.

Fig. 8.  US-Senate. This figure shows the solutions of FlowImprove and Local FlowImprove for various input seed sets. Red nodes are only
FlowImprove or Local FlowImprove, depending on the experiment; yellow nodes are only seed set; and orange nodes are both part of the
flow algorithm and the seed set. (a) Local FlowImprove, seed: Spectral relaxation + sweep cut. (b) FlowImprove, local seed set. (c) Local
FlowImprove, local seed set.

we demonstrate in Fig. 6(c) and (d) that MOV success-
fully finds other clusters than the ones obtained by the
global methods. The same is shown in Fig. 6(e) and (f)
for ​​ℓ​1​​​-regularized PageRank. Notice that MOV assigns
weights (perhaps small) to all the nodes of the graph; on
the other hand, ​​ℓ​1​​​-regularized PageRank, as a strongly
local procedure, assigns weights only to a small number of
nodes, without examining all of the graph.

We now use the FB-Johns55 graph which has an
expander-like behavior at all size scales, i.e., all small and
large clusters have large conductance ratio. See [9, Fig. 6] for
details. We present the results of this experiment in Fig. 7.
Notice that in Fig. 7(a) and (b) the global methods identify
three main clusters, one small (red nodes), one medium
size (orange nodes), and one large (yellow nodes). All these
clusters have similar conductance ratio. In Fig. 7(c) and (d),
we show that MOV can recover the medium or small size clus-
ters, respectively, by giving a localized seed set. In Fig. 7(e)
and (f), we illustrate that using ​​ℓ​1​​​-regularized PageRank one
can find very similar clusters while exploiting the strongly
local running time of the method.

Let us now present the performance of flow-based
algorithms on the same graphs. We begin with US-Senate
in Fig. 8. In this figure, the red nodes are part of the solu-
tion of FlowImprove or Local FlowImprove, depend-
ing on the experiment; the yellow nodes are part of the
seed set only; and the orange nodes are in both the solu-
tion of the flow algorithm and the input seed set. In
Fig. 8(a), we used as an input seed set to FlowImprove
the cluster obtained by applying sweep cut with respect to
the conductance ratio on the spectral relaxation solution.
Fig. 8(b) and (c) presents a clear distinction between
FlowImprove and Local FlowImprove, weakly and strongly
local algorithms, respectively. For both figures, the input seed
set is located at about the middle of the graph. FlowImprove
as a weakly local algorithm examines the whole graph and
returns a cluster which includes the period before 1913. Also,
it includes big part of the input seed set in the cluster due

by the fact that global methods, such as the spectral
relaxation and MOV global in Fig. 6(a) and (b), respec-
tively, recover small clusters. The two global procedures
find small clusters which are presented in Fig. 6(a) and
(b) with red, orange, and yellow colors. However, since
there are many small clusters of small conductance ratio,
one might want to find different clusters than the ones
obtained by spectral relaxation and MOV global. This is
possible using localized procedures such as MOV and
​​ℓ​1​​​-regularized PageRank. Given two different seed sets

Fountoulakis et al . : Optimization Approach to Locally-Biased Graph Algorithms

268  Proceedings of the IEEE | Vol. 105, No. 2, February 2017

to the overlapping regularization term in the denominator
of its objective function. See the definition of the objective
function ​​f​ R​​​ for FlowImprove in Section IV. On the other
hand, in Fig. 8(c) Local FlowImprove as a strongly local
algorithm does not examine the whole graph
and its solution is concentrated only around the input
seed set.

The distinction that we discussed in the previous
paragraph between FlowImprove and Local FlowImprove is
easy to visualize in the relatively well-structured US-Senate,
but it is not so clear in all graphs. For example, in Fig. 9,
we present the performance of these two algorithms for
the CA-GrQc graph. Since this graph has only small clus-
ters of small conductance ratio, FlowImprove and Local
FlowImprove find the same clusters. This is clearly shown by
comparing Fig. 9(a) and (b) and Fig. 9(c) and (d). A simi-
lar performance is observed for the FB-Johns55 graph in
Fig. 10, except that the solutions of FlowImprove and Local
FlowImprove are not exactly the same but only very similar.

B. Flow Versus Spectral or ​​ℓ​1​​​ Versus ​​ℓ​2​​​

Spectral algorithms measure distances of the nodes based
on the ​​ℓ​2​​​-norm. Generally this means that the nodes of the
graph are embedded on the real line. On the other hand,
flow algorithms measure distances of the nodes based on the
​​ℓ​1​​​-norm. The solution to flow-based algorithms that we discussed

is binary, either a node is added in the solution with weight
1 or it is not and it has weight 0. In this case, the objective
function ​​‖B ​x​ ​​‖​1,C​ of the flow algorithms is a locally-biased
variation on ​cut(S )​, where ​S​ is constructed based on the
binary ​x​. Therefore, the flow algorithms aim to find a balance
between finding good cuts and identifying the input seed set.
This implies that the flow algorithms try to minimize the
absolute number of edges that cross the partition, but at the
same time they try to take into account the volume regulari-
zation effect of the denominator in the objective function.

In this section, we will try to isolate the effect of ​​ℓ​1​​​ and ​​
ℓ​2​​​ metrics in the output solution. We do this by employing
MQI and spectral MQI, which are flow (i.e., ​​ℓ​1​​​) and spectral
(i.e., ​​ℓ​2​​​) problems, respectively. The first set of results is shown
in Fig. 11. Notice in Fig. 11(a) and (b) that MQI and spectral
MQI + sweep cut recover the large clusters, i.e., before and
after the year 1913. There are only minor differences between
the two solutions. Moreover, observe that spectral MQI returns
a solution which is not binary. This is illustrated in Fig. 11(c),
where the weights of the nodes are real numbers. Then sweep
cut is applied on the solution of spectral MQI to obtain a
binary solution with small conductance ratio, i.e., Fig. 11(b).

The previous example did not reveal any difference
between MQI and spectral MQI other than the fact that
spectral MQI has to be combined with the sweep cut round-
ing procedure to obtain a binary solution. In Fig. 12, we pre-
sent a result showing where the solutions have substantial
differences. The graph that we used for this is the US-Roads,
and the input seed set consists of nodes near Minneapolis
together with some suburban areas around the city. Notice
in Fig. 12(a) that MQI, i.e., ​​ℓ​1​​​ metric, shrinks the bounda-
ries of the input seed set. However, MQI does not accurately
recover Minneapolis. The reason is the volume regularization

Fig. 9.  CA-GrQc. This figure shows the solutions of FlowImprove
and Local FlowImprove for various input seed sets. Red nodes
are only FlowImprove or Local FlowImprove, depending on the
experiment; yellow nodes are only seed set; and orange nodes are
both part of the flow algorithm and the seed set. (a) FlowImprove,
seed 1. (b) Local FlowImprove, seed 1. (c) FlowImprove, local seed 2.
(d) Local FlowImprove, seed 2.

Fig. 10.  FB-Johns55. This figure shows the solutions of
FlowImprove and Local FlowImprove for various input seed sets.
Red nodes are only FlowImprove or Local FlowImprove, depending
on the experiment; yellow nodes are only seed set; and orange
nodes are both part of the flow algorithm and the seed set.
(a) FlowImprove, seed 1. (b) Local FlowImprove, seed 1.
(c) FlowImprove, seed 2. (d) Local FlowImprove, seed 2.

Fountoulakis et al . : Optimization Approach to Locally-Biased Graph Algorithms

Vol. 105, No. 2, February 2017 | Proceedings of the IEEE  269

Fig. 11.  US-Senate. This figure shows the solutions of MQI, spectral MQI, spectral MQI + sweep cut given the solution of spectral relaxation
+ sweep cut as an input seed set. For (a) and (b) the red nodes are only MQI or spectral MQI + sweep cut depending on the experiment;
yellow nodes are only seed set; and orange nodes are both part of the flow or spectral algorithm and the seed set. (c) shows the solution
of spectral MQI without sweep cut. For (c), we use a heat map to represent the weights of the nodes. Bright yellow means large positive
and bright red means small positive. The size of the nodes shows the weights of the solution in absolute value. (a) MQI, seed: Spectral
relaxation + sweep cut. (b) Spectral MQI + sweep cut, seed: Spectral relaxation + sweep cut. (c) Spectral MQI, seed: Spectral relaxation +
sweep cut.

Fig. 12.  US-Roads. This figure shows the solutions of MQI, spectral MQI, spectral MQI + sweep cut given Minneapolis and its suburban
areas as an input seed set. The meaning of the colors of the nodes and its sizes is the same as in Fig. 11. (a) MQI, seed: Minneapolis
and suburban areas. (b) Spectral MQI + sweep cut, seed: Minneapolis and suburban areas. (c) Spectral MQI, seed: Minneapolis and
suburban areas.

which is imposed by the denominator of the objective func-
tion of MQI. This regularization forces the solution to have
large volume. On the other hand, spectral MQI + sweep cut
in Fig. 12(b) recovers Minneapolis. The reason is that for
spectral MQI the regularization effect of the denominator
is unimportant since the objective function is invariant to
scalar multiplications of the solution vector. It is the solu-
tion of spectral MQI, i.e., the eigenvector of smallest eigen-
value, which is presented in Fig. 12(c), that is concentrated
closely around Minneapolis. Due to this concentration of
the eigenvector around Minneapolis, the sweep is success-
ful. Briefly, spectral MQI, which is a continuous relaxation
of MQI, implicitly offers an additional level of volume regu-
larization, which turns out to be useful in this example.

Finally, we present another set of results using the
FB-Johns55 graph in Fig. 13. As we saw before, notice that
for this less well-structured graph the solutions of MQI and
spectral MQI + sweep cut are nearly the same. This happens
because the regularization effect of the denominator of MQI
and the regularization imposed by spectral MQI have nearly
the same effect on this graph. This is also justified by the fact
that MQI in Fig. 13(a) and spectral MQI without sweep cut
in Fig. 13(c) recover nearly the same cluster.

V I.   DISCUSSION A ND CONCLUSION

Although the optimization approach we have adopted is
designed to highlight similarities between different vari-
ants of locally-biased graph algorithms, it is also worth
emphasizing that there are a number of quite different and
complementary perspectives people in different research
communities have adopted thus far on these methods. Here
are the examples.

1)	� Theoretical and empirical. The theoretical
implications of these locally-biased algorithms
are often used to improve the performance of
long-standing problems in theoretical computer
science by improving runtimes, improving approx-
imation constants, and handling special cases.
Empirically, these algorithms are used to study
real-world data and to accelerate and improve
performance on discovery and prediction tasks.
Due to the strong locality, the fast runtimes for
theory often manifest as extremely fast algorithms
in practice. Well-implemented strongly-local algo-
rithms often have runtimes in milliseconds even
on billion-edge graphs [37], [39].

Fountoulakis et al . : Optimization Approach to Locally-Biased Graph Algorithms

270  Proceedings of the IEEE | Vol. 105, No. 2, February 2017

2)	� Algorithmic and statistical. Some of the work is
motivated by having better algorithmic results, e.g.,
being fast and/or being a rigorous approximation
algorithm, i.e., worst case guarantees in terms of
approximating the optimal solution of a combina-
torial problem, while other work has provided an
interpretation in terms of statistical properties, e.g.,
explicitly optimizing a regularized objective [71] or
implicitly having output that are nice in some sense,
i.e., well-connected output cluster [72]. Often,
locally-biased algorithms alone suffice as the result
is an improvement to some downstream activity
that will necessarily look at all the data anyway.

3)	� Optimization and operational. The locally-biased
methods tend to result from stating an optimization

problem and solving it with some sort of black box
or white box. Strongly local algorithms often arise by
studying a specific procedure on a graph and show-
ing that it satisfies some condition, e.g., that it ter-
minates so quickly that it cannot explore the entire
graph, that it leads to a solution with certain quality-
of-approximation guarantees, etc. See, for instance,
the spectral algorithms [38]–[40], [60], [73]–[75]
and the flow-based algorithms [56], [76], [77].

In light of these complementary approaches as well
as the ubiquity with which graphs are used to model
data, we expect that locally-biased graph algorithms and
our optimization perspective on locally-biased graph
algorithms will find increasing usefulness in many
application areas.� 

Fig. 13.  FB-Johns55. This figure shows the solutions of MQI, spectral MQI, spectral MQI + sweep cut for a given input seed set. The meaning
of the colors of the nodes and its sizes is the same as in Fig. 11. (a) MQI. (b) Spectral MQI + sweep cut. (c) Spectral MQI.

REFERENCES
	 [1]	 N. Tuncbag et al., “Network modeling

identifies patient-specific pathways in
glioblastoma,” Sci. Rep., vol. 6, p. 28668, Jun.
2016.

	 [2]	 D. S. Bassett and E. Bullmore, “Small-world
brain networks,” Neuroscientist, vol. 12,
no. 6, pp. 512–523, Dec. 2006.

	 [3]	 O. Sporns, “Network analysis, complexity,
and brain function,” Complexity, vol. 8, no. 1,
pp. 56–60, Sep. 2002.

	 [4]	 J. L. Morrison, R. Breitling, D. J. Higham,
and D. R. Gilbert, “GeneRank: Using search
engine technology for the analysis of
microarray experiments,” Bioinformatics, vol.
6, no. 1, p. 233, Sep. 2005.

	 [5]	 E. Estrada and N. Hatano, “Communicability
graph and community structures in complex
networks,” May 2009. [Online]. Available:
https://arxiv.org/abs/0905.4103

	 [6]	 J. Leskovec, K. Lang, A. Dasgupta, and M.
Mahoney, “Statistical properties of
community structure in large social and
information networks,” in Proc. 17th Int. Conf.
World Wide Web, Apr. 2008, pp. 695–704.

	 [7]	 J. Leskovec, K. J. Lang, A. Dasgupta, and
M. W. Mahoney, “Community structure in
large networks: Natural cluster sizes and the
absence of large well-defined clusters,”
Internet Math., vol. 6, no. 1, pp. 29–123, 2009.

	 [8]	 J. Leskovec, K. Lang, and M. Mahoney,
“Empirical comparison of algorithms for
network community detection,” in Proc. 19th
Int. Conf. World Wide Web, Apr. 2010,
pp. 631–640.

	 [9]	 L. G. S. Jeub, P. Balachandran, M. A. Porter,
P. J. Mucha, and M. W. Mahoney, “Think
locally, act locally: Detection of small,
medium-sized, and large communities in
large networks,” Phys. Rev. E, vol. 91, Jan.
2015, Art. no. 012821.

	[10]	 M. Boguñá, R. Pastor-Satorras, A. Díaz-
Guilera, and A. Arenas, “Models of social
networks based on social distance
attachment,” Phys. Rev. E, vol. 70, no. 5, Nov.
2004, Art. no. 056122.

	[11]	 T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M.
Hattori, and Y. Sakaki, “A comprehensive
two-hybrid analysis to explore the yeast
protein interactome,” Proc. Nat. Acad. Sci.,
vol. 98, no. 8, pp. 4569–4574, 2001.

	[12]	 M. Girvan and M. E. J. Newman,
“Community structure in social and
biological networks,” Proc. Nat. Acad. Sci.
USA, vol. 99, no. 12, pp. 7821–7826, Apr.
2002.

	[13]	 M. Faloutsos, P. Faloutsos, and C. Faloutsos,
“On power-law relationships of the Internet
topology,” in Proc. Conf. Appl. Technol. Archit.
Protocols Comput. Commun., Aug. 1999,
pp. 251–262.

	[14]	 A. Réka, H. Jeong, and A.-L. Barabási,
“Internet: Diameter of the world wide web,”
Nature, vol. 401, pp. 130–131, Sep. 1999.

	[15]	 J. M. Kleinberg, R. Kumar, P. Raghavan,
S. Rajagopalan, and A. S. Tomkins, “The
Web as a graph: Measurements, models, and
methods,” in Proc. 5th Annu. Int. Conf.
Comput. Combinatorics, 1999, pp. 1–17.

	[16]	 J. Scott, Social Network Analysis. London,
U.K.: Sage, 2013.

	[17]	 A. L. Traud, P. J. Mucha, and M. A. Porter,
“Social structure of Facebook networks,”
2011. [Online]. Available: https://arxiv.org/
abs/1102.2166

	[18]	 J. Ugander, B. Karrer, L. Backstrom, and
C. Marlow, “The anatomy of the Facebook
social graph,” 2011. [Online]. Available:
https://arxiv.org/abs/1111.4503

	[19]	 J. P. Onnela et al., “Structure and tie
strengths in mobile communication
networks,” Proc. Nat. Acad. Sci., vol. 104,
no. 18, pp. 7332–7336, 2007.

	[20]	 P. Expert, T. S. Evans, V. D. Blondel, and
R. Lambiotte, “Uncovering space-
independent communities in spatial
networks,” Proc. Nat. Acad. Sci., vol. 108,
no. 19, pp. 7663–7668, 2011.

	[21]	 M. A. Porter, P. J. Mucha, M. E. J. Newman,
and C. M. Warmbrand, “A network analysis
of committees in the U.S. House of
Representatives,” Proc. Nat. Acad. Sci. USA,
vol. 102, no. 20, pp. 7057–7062, 2005.

	[22]	 P. Mucha, T. Richardson, K. Macon, M.
Porter, and J. Onnela, “Community structure
in time-dependent, multiscale, and multiplex
networks,” Sciences, vol. 328, no. 5980,
pp. 876–878, 2010.

	[23]	 K. T. Macon, P. J. Mucha, and M. A. Porter,
“Community structure in the united nations
general assembly,” Phys. A, Stat. Mech. Appl.,
vol. 391, nos. 1–2, pp. 343–361, 2012.

	[24]	 A. L. Traud, E. D. Kelsic, P. J. Mucha, and
M. A. Porter, “Comparing community
structure to characteristics in online
collegiate social networks,” SIAM Rev.,
vol. 53, no. 3, pp. 526–543, 2011.

Fountoulakis et al . : Optimization Approach to Locally-Biased Graph Algorithms

Vol. 105, No. 2, February 2017 | Proceedings of the IEEE  271

	[25]	 M. C. González, H. J. Herrmann, J. Kertész,
and T. Vicsek, “Community structure and
ethnic preferences in school friendship
networks,” Phys. A, Stat. Mech. Appl., vol. 379,
no. 1, pp. 307–316, 2007.

	[26]	 A. C. Lewis, N. S. Jones, M. A. Porter, and
C. M. Deane, “The function of communities in
protein interaction networks at multiple scales,”
Syst. Biol., vol. 4, no. 100, pp. 1–14, 2010.

	[27]	 D. S. Basset, E. T. Owens, K. E. Daniels, and
M. A. Porter, “Influence of network topology
on sound propagation in granular materials,”
Phys. Rev. E, vol. 86, Oct. 2012, Art. no.
041306.

	[28]	 P. Ronhovde et al., “Detecting hidden spatial
and spatio-temporal structures in glasses and
complex physical systems by multiresolution
network clustering,” Eur. Phys. J. E, vol. 34,
no. 105, pp. 1–24, 2012.

	[29]	 D. S. Bassett, N. F. Wymbs, M. A. Porter,
P. J. Mucha, J. M. Carlson, and S. T.
Grafton, “Dynamic reconfiguration of
human brain networks during learning,”
Proc. Nat. Acad. Sci., vol. 108, no. 18,
pp. 7641–7646, 2011.

	[30]	 N. F. Wymbs, D. S. Bassett, P. J. Mucha,
M. A. Porter, and S. T. Grafton, “Differential
recruitment of the sensorimotor putamen
and frontoparietal cortex during motor
chunking in humans,” Neuron, vol. 74, no. 5,
pp. 936–946, 2012.

	[31]	 D. S. Basset, N. F. Wymbs, M. P. Rombach,
M. A. Porter, P. J. Mucha, and S. T. Grafton,
“Task-based core-periphery organization of
human brain dynamics,” PLoS Comput. Biol.,
vol. 9, no. 9, p. e1003171, 2013.

	[32]	 T. S. Evans, R. Lambiotte, and P. Panzarasa,
“Community structure and patterns of
scientific collaboration in business and
management,” Scientometrics, vol. 89, no. 1,
pp. 381–396, 2011.

	[33]	 M. W. Mahoney, L. Orecchia, and N. K.
Vishnoi, “A local spectral method for graphs:
With applications to improving graph
partitions and exploring data graphs locally,”
J. Mach. Learn. Res., vol. 13, pp. 2339–2365,
Aug. 2012.

	[34]	 R. Andersen and K. Lang, “An algorithm for
improving graph partitions,” in Proc. 19th
ACM-SIAM Symp. Discrete Algorithms (SODA),
2008, pp. 651–660.

	[35]	 D. Zhou, O. Bousquet, T. N. Lal, J. Weston,
and B. Schölkopf, “Learning with local and
global consistency,” in Proc. Annu. Adv.
Neural Inf. Process. Syst., 2004, pp. 321–328.

	[36]	 J.-Y. Pan, H.-J. Yang, C. Faloutsos, and
P. Duygulu, “Automatic multimedia cross-
modal correlation discovery,” in Proc. 10th
ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, 2004, pp. 653–658.

	[37]	 K. Fountoulakis, X. Cheng, J. Shun, F.
Roosta-Khorasani, and M. W. Mahoney,
“Exploiting optimization for local graph
clustering.” 2016. [Online]. Available: https://
arxiv.org/abs/1602.01886

	[38]	 R. Andersen, F. Chung, and K. Lang, “Local
graph partitioning using pagerank vectors,”
in Proc. 47th Annu. IEEE Symp. Found.
Comput. Sci., Oct. 2006, pp. 475–486.

	[39]	 K. Kloster and D. F. Gleich, “Heat kernel
based community detection,” in Proc. 20th
ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, 2014, pp. 1386–1395.

	[40]	 D. A. Spielman and S. H. Teng, “A local
clustering algorithm for massive graphs and
its application to nearly linear time graph
partitioning,” SIAM J. Sci. Comput., vol. 42,
no. 1, pp. 1–26, 2013.

	[41]	 D. F. Gleich and M. W. Mahoney, “Anti-
differentiating approximation algorithms: A
case study with min-cuts, spectral, and
flow,” in Proc. 31st Int. Conf. Mach. Learn.,
2014, pp. 1018–1025.

	[42]	 L. N. Veldt, D. F. Gleich, and M. W.
Mahoney, “A simple and strongly-local flow-
based method for cut improvement,” in Proc.
Int. Conf. Mach. Learn., 2016, pp. 1938–1947.

	[43]	 M. W. Mahoney and L. Orecchia,
“Implementing regularization implicitly via
approximate eigenvector computation,” in Proc.
28th Int. Conf. Mach. Learn., 2011, pp. 121–128.

	[44]	 R. Tibshirani, “Regression shrinkage
and selection via the lasso,” J. Roy. Statist.
Soc., B (Methodological), vol. 58, no. 1,
pp. 267–288, 1996.

	[45]	 F. Shahrokhi, “The maximum concurrent
flow problem,” J. ACM, vol. 37, no. 2,
pp. 318–334, 1990.

	[46]	 T. Leighton and S. Rao, “Multicommodity
max-flow min-cut theorems and their use in
designing approximation algorithms,” J.
ACM, vol. 46, no. 6, pp. 787–832, 1999.

	[47]	 S. Arora, S. Rao, and U. V. Vazirani,
“Expander flows, geometric embeddings and
graph partitioning,” J. ACM, vol. 56, no. 2,
2009, Art. no. 5.

	[48]	 G. F. Lawler and A. D. Sokal, “Bounds on the ​​
ℓ​​ 2​​ spectrum for Markov chains and Markov
processes: A generalization of Cheeger’s
inequality,” Trans. Amer. Math. Soc., vol. 309,
no. 2, pp. 557–580, 1988.

	[49]	 A. Sinclair and M. Jerrum, “Approximate
counting, uniform generation and rapidly
mixing Markov chains,” Inf. Comput., vol. 82,
no. 1, pp. 93–133, 1989.

	[50]	 B. Mohar, “Isoperimetric numbers of
graphs,” J. Combinatorial Theory, B, vol. 47,
no. 3, pp. 274–291, 1989.

	[51]	 M. Mihail, “Conductance and convergence of
Markov chains—A combinatorial treatment
of expanders,” in Proc. 30th Annu. IEEE Symp.
Found. Comput. Sci., Oct. 1989, pp. 526–531.

	[52]	 D. S. Hochbaum, “A polynomial time
algorithm for rayleigh ratio on discrete
variables: Replacing spectral techniques
for expander ratio, normalized cut, and
Cheeger constant,” Oper. Res., vol. 61, no. 1,
pp. 184–198, 2013.

	[53]	 D. S. Hochbaum, C. Lu, and E. Bertelli,
“Evaluating performance of image
segmentation criteria and techniques,” EURO
J. Comput. Optim., vol. 1, nos. 1–2, pp. 155–180,
2013.

	[54]	 M. M. Deza and M. Laurent, Geometry Cuts
Metrics. New York, NY, USA: Springer-
Verlag, 1997.

	[55]	 R. Andersen and K. J. Lang, “An algorithm
for improving graph partitions,” in Proc. 19th
Annu. ACM-SIAM Symp. Discrete Algorithms,
2008, pp. 651–660.

	[56]	 L. Orecchia and Z. A. Zhu, “Flow-based
algorithms for local graph clustering,” in
Proc. 25th Annu. ACM-SIAM Symp. Discrete
Algorithms, 2014, pp. 1267–1286.

	[57]	 K. Lang and S. Rao, “A flow-based method
for improving the expansion or conductance
of graph cuts,” in Proc. 10th Int. IPCO Conf.
Integer Program. Combinatorial Optim., 2004,
pp. 325–337.

	[58]	 F. Chung, “Random walks and local cuts in
graphs,” Linear Algebra Appl., vol. 423,
pp. 22–32, May 2007.

	[59]	 A. V. Goldberg and R. E. Tarjan, “Efficient
maximum flow algorithms,” Commun. ACM,
vol. 57, no. 8, pp. 82–89, 2014.

	[60]	 N. Ailon and E. Liberty, “Fast dimension
reduction using Rademacher series on dual
BCH codes,” in Proc. 19th Annu. ACM-SIAM
Symp. Discrete Algorithms, 2008, pp. 1–9.

	[61]	 B. Cherkassky and A. Goldberg, “On
implementing push-relabel method for the
maximum flow problem,” in Proc. 4th Int.
IPCO Conf. Integer Program. Combinatorial
Optim., 1995, pp. 157–171.

	[62]	 Y. Boykov and V. Kolmogorov, “An
experimental comparison of min-cut/max-
flow algorithms for energy minimization in
vision,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 26, no. 9, pp. 1124–1137, Sep.
2004.

	[63]	 E. A. Dinic, “Algorithm for solution of a
problem of maximum flow in a network with
power estimation,” Soviet Math. Docladi,
vol. 11, pp. 1277–1280, 1970.

	[64]	 D. S. Hochbaum, “Polynomial time
algorithms for ratio regions and a variant of
normalized cut,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 32, no. 5, pp. 889–898,
May 2010.

	[65]	 T. J. Hansen and M. W. Mahoney, “Semi-
supervised eigenvectors for large-scale
locally-biased learning,” J. Mach. Learn. Res.,
vol. 15, no. 1, pp. 3691–3734, 2014.

	[66]	 D. Lawlor, T. Budavari, and M. W. Mahoney,
“Mapping the similarities of spectra: Global
and locally-biased approaches to SDSS
galaxy data,” 2016. [Online]. Available:
https://arxiv.org/abs/1609.03932

	[67]	 N. K. Vishnoi, “​Lx = b​ Laplacian solvers and
their algorithmic applications,” Theor.
Comput. Sci., vol. 8, nos. 1–2, pp. 1–141,
2012.

	[68]	 D. F. Gleich and M. W. Mahoney, “Using
local spectral methods to robustify graph-
based learning algorithms,” in Proc. 21st
Annu. ACM SIGKDD Conf., 2015, pp. 359–368.

	[69]	 A. L. Traud, P. J. Mucha, and M. A. Porter,
“Social structure of Facebook networks,”
Phys. A, Stat. Mech. Appl., vol. 391, no. 16,
pp. 4165–4180, 2012.

	[70]	 Y. Hu, “Efficient and high quality force-
directed graph,” Math. J., vol. 10, no. 1,
pp. 37–71, 2005.

	[71]	 Y. X. Wang, J. Sharpnack, A. Smola, and R.
Tibshirani, “Trend filtering on graphs,” in
Proc. 18th Int. Conf. Artif. Intell. Statist., Oct.
2014, pp. 1042–1050.

	[72]	 Z. A. Zhu, S. Lattanzi, and V. Mirrokni, “A
local algorithm for finding well-connected
clusters,” in Proc. 30th Int. Conf. Mach. Learn.,
Dec. 2013, pp. 396–404.

	[73]	 R. Andersen and Y. Peres, “Finding sparse
cuts locally using evolving sets,” in Proc. 41st
Annu. ACM Symp. Theory Comput., 2009,
pp. 235–244.

	[74]	 F. Chung, “A local graph partitioning
algorithm using heat kernel pagerank,”
Internet Math., vol. 6, no. 3, pp. 315–330,
2009.

	[75]	 F. Chung and O. Simpson, “Computing heat
kernel pagerank and a local clustering
algorithm,” in Proc. 25th Int. Workshop
IWOCA, May 2014, pp. 110–121.

	[76]	 R. Khandekar, S. Khot, L. Orecchia, and
N. Vishnoi, “On a cut-matching game for the
sparsest cut problem,” Univ. California,
Berkeley, CA, USA, Tech. Rep. UCB/EECS-
2007-177, Dec. 2007.

	[77]	 L. Orecchia, L. Schulman, U. Vazirani, and
N. Vishnoi, “On partitioning graphs via single
commodity flows,” in Proc. 40th Annu. ACM
Symp. Theory Comput., 2008, pp. 461–470.

Fountoulakis et al . : Optimization Approach to Locally-Biased Graph Algorithms

272  Proceedings of the IEEE | Vol. 105, No. 2, February 2017

ABOUT THE AUTHORS

Kimon Fountoulakis received the B.Sc. degree from Athens University of

Economics and Business, Athens, Greece and the M.Sc. and Ph.D. degrees

from University of Edinburgh, Edinburgh, U.K.

He is a Postdoctoral Fellow of the International Computer Science

Institute and the Department of Statistics, University of California Berkeley,

Berkeley, CA, USA. His research is on numerical optimization, network and

graph algorithms, and parallel and distributed computing.

David F. Gleich received the B.Sc. degree from Harvey Mudd College,

Claremont, CA, USA and the Ph.D. degree from Stanford University,

Stanford, CA, USA.

He is an Assistant Professor of Computer Science at Purdue University,

West Lafayette, IN, USA. His research is on matrix computations, network

and graph algorithms, and parallel and distributed computing.

Prof. Gleich has been awarded a Microsoft Research Graduate fel-

lowship, the John von Neumann postdoctoral fellowship, an NSF CAREER

award, and a Sloan Research Fellowship.

Michael W. Mahoney received the Ph.D. degree from Yale University, New

Haven, CT, USA, with a dissertation in computational statistical mechanics.

He is currently with the Department of Statistics and at the International

Computer Science Institute, University of California Berkeley, Berkeley,

CA, USA. He works on algorithmic and statistical aspects of modern large-

scale data analysis. Much of his recent research has focused on large-

scale machine learning, including randomized matrix algorithms and

randomized numerical linear algebra, geometric network analysis tools

for structure extraction in large informatics graphs, scalable implicit

regularization methods, and applications in genetics, astronomy, medi-

cal imaging, social network analysis, and internet data analysis. He has

worked and taught at the Mathematics Department, Yale University; at

Yahoo Research; and at the Mathematics Department, Stanford Univer-

sity. Among other things, he is on the national advisory committee of the

Statistical and Applied Mathematical Sciences Institute (SAMSI), he was

on the National Research Council's Committee on the Analysis of Massive

Data, he runs the biennial MMDS Workshops on Algorithms for Modern

Massive Data Sets, and he spent fall 2013 at UC Berkeley co-organizing

the Simons Foundation's program on the Theoretical Foundations of Big

Data Analysis.

