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Abstract. Competition networks are formed via adversarial interac-
tions between actors. The Dynamic Competition Hypothesis predicts
that influential actors in competition networks should have a large num-
ber of common out-neighbors with many other nodes. We empirically
study this idea as a centrality score and find the measure predictive of
importance in several real-world networks including food webs, conflict
networks, and voting data from Survivor.

1 Introduction

While social networks are often studied from the perspective of positive inter-
actions such as friendship or followers, the impact of negative social interaction
on their structure and evolution cannot be ignored. Structural balance theory
posits positive and negative ties between actors in social networks, and assumes
such signed networks will stabilize so that triples of actors are either all mutually
friends or possess common adversaries; see [12], and [9] for a modern treatment.
The prediction of the signs of edges in a social network was previously stud-
ied [15,18,21]. Further, negative interactions as a model for edges was studied in
the context of negatively correlated stocks in market graphs [4], and in the spa-
tial location of cities as a model to predict the rise of conflicts and violence [11].
Even in the highly cited Zachary Karate club network [22], the negative inter-
action between the administrator and instructor was the impetus for the split
of the club participants into two communities. We propose that competition or
negative interactions are critically important to the study of social networks and
more broadly, real-world complex networks, and are often hidden drivers of link
formation.

In [6], we investigated properties inherent in social networks of competitors
that evolve dynamically over time. Such networks are viewed as directed, where
a directed edge from nodes u to v corresponds to some kind of negative social
interaction. For example, a directed edge may represent a vote by one player
for another in a social game such as the television program Survivor. Directed
edges are added over discrete time-steps in what we call dynamic competition
networks. Our main contribution in [6] was the presentation of a hypothesis,
referred to as the Dynamic Competition Hypothesis, or (DCH), that served as
a predictive tool to uncover alliances and leaders within dynamic competition
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networks. We provided evidence for the hypothesis using U.S. voting record data
from 35 seasons of Survivor.

In the present paper, we focus on a particular implication of the DCH.
Namely, the DCH predicts that leaders and central actors in these networks
should have large a large number of common out-neighbors with other nodes
in the network. Consequently, this score should constitute a more accurate and
interesting centrality score in competition networks where edges have a negative
connotation. We study this score in terms of its ranking of leaders in various
kinds of networks ranging from additional international seasons of Survivor, to
conflict networks, and to food webs.

We organize the discussion in this paper as follows. In Sect. 2, we formally
define dynamic competition networks, and review the DCH as stated in [6], with
a focus on the common out-neighbor scores, called CON scores. In Sect. 3, we
investigate using CON scores as centrality measures in three distinct sources: (i)
voting data from all international (that is, non-U.S.) seasons of Survivor, (ii) from
conflict networks arising from the countries of Afghanistan, India, and Pakistan,
and (iii) in 14 food webs. We find that the CON scores predict influential actors
in the networks with high precision. The final section interprets our results for
real-world complex networks, and suggests further directions.

We consider directed graphs with multiple directed edges throughout the
paper. Additional background on graph theory and complex networks may be
found in the book [5] or [7].

2 The Dynamic Competition Hypothesis

The Dynamic Competition Hypothesis (DCH) provides a quantitative framework
for the structure of dynamic competition networks. We recall the statement of the
DCH as first stated in [6]. Before we state the DCH, we present some terminology.

A competition network G is one where nodes represent actors, and there is
directed edge between nodes u and v in G if actor u is in competition with actor
v. A dynamic competition network is a competition network where directed edges
are added over discrete time-steps. For example, nodes may consist of individuals
and edges correspond to conflicts between them; as another example, we may
consider species in an ecological community, and directed edges correspond to
predation. Observe that dynamic competition networks may have multiple edges
if there were multiple conflicts; further, not all edges need be present.

The central piece of the DCH we study here are the common out-neighbor
scores. Without loss of generality, we assume that the node correspond to integers
such that we can use the nodes to address an adjacency matrix as well. Conse-
quently, let A be the adjacency matrix of given competition network. Entries in
the matrix are 0 or positive integers for the number of competition interactions.
For nodes u, v, and w, we say that w is a common out-neighbor of u and v if (u,w)
and (v, w) are directed edges. Alternatively, AuvAvw ≥ 1. For a pair of distinct
nodes u, v, we define CON(u, v) to be the number of common out-neighbors of
u and v. Note that this common out-neighbor score counts multiplicities based
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on the minimum number of interactions: CON(u, v) =
∑

k min(Auk, Avk), which
corresponds to a multiset intersection. For a fixed node u, define

CON(u) =
∑

v∈V (G)

CON(u, v).

We call CON(u) the CON score of u. For a set of nodes S with at least two
nodes, we define

CON(S) =
∑

u,v∈S

CON(u, v).

Observe that CON(S) is a non-negative integer.
In the DCH, leaders are defined as members of a competition network with

high standing in the network, and edges emanating from leaders may influence
edge creation in other actors. In the context of conflict networks within a country,
leaders may be actors who exert the strongest political influence within the
country; note that these may not be the largest or most powerful actors. As
another example, leaders in a food web would naturally have higher trophic
levels (that is, higher position in a food chain). The DCH characterizes leaders
as those nodes with high CON scores, low in-degree, high out-degree and high
closeness. Recall that for a strongly connected digraph G and a node v, we define
the closeness of u by

C(u) =

⎛

⎝
∑

v∈V (G)\{u}
d(u, v)

⎞

⎠

−1

where d(u, v) corresponds to the distance measured by one-way, directed paths
from u to v.

In this paper, we focus on the implication that leaders in competition net-
works should have high CON scores, which suggests this is a natural centrality
measure for these networks. The DCH also involves the notion of alliances, that
does not factor into our present study. Alliances are defined as groups of agents
who pool capital towards mutual goals. In the context of social game shows such
as Survivor, alliances are groups of players who work together to vote off players
outside the alliance. Members of an alliance are typically less likely to vote for
each other, and this is the case in strong alliances. This is characterized in terms
of near independent sets; see [6] for the formalism.

In summary, the Dynamic Competition Hypothesis (or DCH ) asserts that
dynamic competition networks satisfy the following four properties.

1. Alliances are near independent sets.
2. Strong alliances have low edge density.
3. Members of an alliance with high CON scores are more likely leaders.
4. Leaders exhibit high closeness, high CON scores, low in-degree, and high

out-degree.
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Our focus in this work will be on the validation of the DCH with regards to
detecting leaders; in particular, we will focus on items (3) and (4) of the DCH.
Note that while we expect leaders to be in alliances (that is, have prominent
local influence), leaders are determined via global metrics of the network.

3 Methods and Data

3.1 Survivor

In [6], we studied the voting history of U.S. seasons of Survivor, which is a
social game show where players compete by voting each other out. In Survivor,
strangers called survivors are placed in a location and forced to provide shelter
and food for themselves, with limited support from the outside world. Survivors
are split into two or more tribes which cohabit and work together. Tribes com-
pete for immunity and the losing tribe goes to tribal council where one of their
members is voted off. At some point during the season, tribes merge and the
remaining survivors compete for individual immunity. Survivors voted off may
be part of the jury. When there are a small number of remaining survivors who
are finalists (typically two or three), the jury votes in favor of one of them
to become the Sole Survivor who receives a cash prize of one million dollars.
Figure 1 represents a graphical depiction of the voting history of a season of U.S.
Survivor.

Fig. 1. The Survivor Heroes vs. Healers vs. Hustlers co-voting network. Nodes are
scaled by closeness, and color-coded according to their original tribe. Thicker edges
represent multiple votes.
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Table 1. Three international Survivor seasons. Players are listed by first name, in
order from top to bottom with the winner at the top, and the first eliminated player
at the bottom. For each player we list the in-degree, out-degree, closeness, and CON
score. The horizontal line separates finalists from the rest of the group.

Australian Survivor (2002)

Name ID OD C CON

Robert 5 10 0.714 44

Sciona 1 9 0.652 37

Joel 7 8 0.625 35

Katie 3 9 0.652 38

Sophie 3 8 0.652 38

Jane 9 6 0.625 36

Lance 8 5 0.577 27

Craig 8 8 0.577 18

Naomi 8 7 0.5 25

Caren 10 6 0.5 25

Sylvan 3 5 0.417 30

Deborah 4 4 0.395 23

Jeff 5 1 0.395 4

David 6 3 0.441 23

Tim 4 2 0.294 10

Lucinda 8 1 0.0 7

Robinson 2009

Name ID OD C CON

Ellenor 0 6 0.563 36

Jarmo 7 8 0.557 34

Anna 2 10 0.645 54

Nina 4 7 0.557 38

Erik Bl. 7 9 0.612 47

Lukas 4 7 0.557 31

Angela 6 8 0.612 46

Ranjit 5 5 0.51 30

Christian 3 4 0.51 24

Rafael 5 4 0.49 28

Erik Bi. 9 5 0.438 26

Erik R. 5 4 0.422 18

Mika 5 3 0.306 13

Josefine 0 2 0.265 17

Erika 7 2 0.306 15

Beatrice 6 2 0.35 12

Micha 12 1 0.299 7

Survivor South Africa Malaysia

Name ID OD C CON

Lorette 4 9 0.653 35

Grant 5 8 0.653 33

Amanda 4 8 0.622 26

Mandla 0 8 0.652 32

Angie 6 9 0.688 31

Angela 4 6 0.594 28

Dyke 4 6 0.568 17

Hein 5 4 0.484 22

Irshaad 3 5 0.544 25

Lisa 11 4 0.484 16

Rijesh 4 3 0.408 13

Nichal 6 2 0.363 12

Elsie 8 2 0.436 9

Viwe 5 2 0.344 11

Nicola 5 1 0.304 6

Nomfundo 4 1 0.335 8

We extend the analysis of the 35 U.S. seasons in [6] to 82 international seasons
of Survivor. Data used in our analysis was obtained from the Survivor wiki pages
https://survivor.fandom.com/wiki/Main Page. Several seasons (beyond the 82)
were excluded for varying reasons. In some cases, a wiki page exists, but there
was no voting data. In other cases, much of the voting information was missing,
or the rules are significantly different than the traditional version of the game
shows. Nevertheless, the number of seasons collected exceeds the number in [6].

In Table 1 we display some of the CON scores for a few example seasons. We
distinguish which players are finalists, since the rules change in determining who
is the last player eliminated. For example, instead of eliminating the last player
via votes against players, in survivor many players may return for a final vote
for who they would like to win.

Table 2. Statistics on international Survivor seasons.

CON PageRank Jaccard similarity Random set

Survivor Top 3 57.3 43.9 47.6 11.1–27.3

Top 5 81.7 78.0 72.0 18.5–45.5

https://survivor.fandom.com/wiki/Main_Page
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In Table 2, we detail relevant statistics on these networks. For each network,
we consider whether the winner of the season had one of the top three or top five
CON scores and list the percentage of such networks. For example from Table 2
we see that 81.7% of Survivor winners had one of the largest 5 CON scores. For
comparison, we also compute PageRank (on the reversed-edge network, where we
change the orientation of directed edge) and Jaccard similarity scores, which are
both standard ranking scores. Jaccard similarity is a type of normalized CON
score; see [10]. We find that the CON scores are a more accurate predictor for
determining finalists of Survivor than both PageRank and Jaccard similarity.
We observe that these results are consistent with the analysis in [6] for the U.S.
seasons. As an added comparison, we list the probability of the winner appearing
in a random set of three or five players; note that there is a range of percent-
ages depending on how many players are in a given season. In the interest of
space, we refer the reader to https://eikmeier.sites.grinnell.edu/uncategorized/
competition-show-data/ where we house all data on these seasons.

3.2 Political Conflicts

For our second competition network, we extracted data from The Armed Conflict
Location and Event Data Project (or ACLED), which may be found at https://
www.acleddata.com/data/. ACLED catalogs information about political conflict
and protests across the world. In these conflict networks, nodes correspond to
actors in a given region, and edges correspond to conflicts between the actors.
Many types of metadata are recorded corresponding to each event. Our particular
interest is in the actors involved in each event, and where the event took place.
More information about this project can be found on the project website.

An important note about the ACLED data is that we do not know which
actor initiated a given event. Therefore, we do not consider the majority of
edges (events) to be directed. The only events which we assume knowledge about
directed-ness is when civilians are involved. We restricted our study to a set of
events to a particular country; keeping the scale at the country level allows us to
keep a larger set of actors. We selected three countries that have a large number
of actors and events to analyze: Afghanistan, India, and Pakistan.

We first consider the rankings for Pakistan with commentary.
Pakistan has faced terrorism activities since 2000, with many militant groups

attacking civilians and Pakistan armed forces. TTP (Pakistan) is one of the
largest radical extremist groups, which is an umbrella organization of many
militant groups such as Lashkar-e-Islam, Islamic State (Pakistan), and Jamaat-
ul-Ahrar. In Fig. 2, we find that TTP has one of the highest CON scores. TTP
has alliances with another terrorist organizations in Pakistan and neighboring
countries, which lends to its prominence. In addition, due to the Afghan war,
TTP has a strong influence and hold over many Islamic institutions in Pakistan.
The Police Forces of Pakistan and Military Forces of Pakistan ensure national
security, and they share information for achieving their goals. The Police Forces
of Pakistan are an influential actor in the conflict network with another one of
the highest CON scores. They perform their duties in all provinces of Pakistan

https://eikmeier.sites.grinnell.edu/uncategorized/competition-show-data/
https://eikmeier.sites.grinnell.edu/uncategorized/competition-show-data/
https://www.acleddata.com/data/
https://www.acleddata.com/data/
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Fig. 2. A Slope Graph to compare the rankings via CON and PageRank. On the left,
the top actors in the conflict network Pakistan via CON metrics, while on the right,
the top actors in Pakistan via PageRank on the reverse network. Actors are labeled in
black if the difference in rankings is less than or equal to three. Actors are labeled in
red if the CON ranking is at least four places higher than the PageRank, and in green
if the PageRank is at least 4 places higher than the CON ranking. Note that no line
appears to connect the left and right side if the actor does not show up in the top 15
of the other ranking.

with the help of their paramilitary forces such as Pakistan Rangers and Frontier
Corps, and they maintain law and order, as well as border control. Military
Forces of Pakistan (2013–2018) has one of the largest CON scores owing to their
increased activities against terrorist groups in recent years.

We also offer commentary on some of the lower ranked actors. The Baloch
Liberation Front (or BLF) is an ethnic-separatist political front and militant
organization that is currently fighting against the Pakistani government for an
independent Balochi state. The BLF is the strongest and most influential mili-
tant group of Baluchistan, but there has been no confirmed coordination between
the BLF and other Balochi and non-Balochi groups, and they operate indepen-
dently of one another. This is a large reason that BLF have low CON and close-
ness scores. The Islamic State is a part of the militant Islamist group: Islamic
State of Iraq and Levant (ISIS). The Islamic State was formed by some of the
TTP leaders and is more successful in Afghanistan. This organization has had
less success in Pakistan largely carrying out isolated, small scale attacks. The
Police Forces of Pakistan actively participated with the support of paramilitary
forces of Pakistan in 2008–2018 for war against terror. The Police Forces of
Pakistan mostly work to maintain the daily law and order in their respective
provinces. Likely for these reasons, they have lower CON scores than the years
between 2008–2018.
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Fig. 3. Top actors in Afghanistan via CON score and PageRank.

We note that the ranking of the top actors using the CON score (on the
left in Fig. 2) is not dissimilar to the one using PageRank on the reversed-edge
network (on the right in Fig. 2). To quantify the difference in the rankings we
used Spearman’s rank correlation coefficient. Note that we cannot use Pearson
correlation because our data is not at all Gaussian. Recall that Spearman’s
correlation coefficient is defined as

1 − 6
∑N

i=1 d
2
i

N(N2 − 1)
,

where N is the total number of actors, and di is the difference in rankings
between actor i. A value close to 1 means that the two rankings are very well
positively correlated. The Spearman correlation for Pakistan is −0.341, which
suggests that the rankings are not that similar. In fact, the negative value implies
that as the CON ranking decreases, the PageRank score increases. There are 741
total actors we consider in the Pakistan data set, and the later rankings clearly
vary greatly.

Fig. 4. Top actors in India via CON score and PageRank.

We finish this section with the rankings for Afghanistan and India in Figs. 3
and 4. The Spearman coefficients are 0.604 and −.267 respectively, indicating



Centrality in Dynamic Competition Networks 113

that the rankings provided by CON matches more similarly to PageRank in the
Afghanistan dataset. While we do not provide in-depth commentary on these
rankings, we find influential actors in both countries with the largest rankings
against DCH metrics.

3.3 Food Webs

As a third and final type of data that we analyzed against the DCH, we stud-
ied food web datasets from the Pajek website: http://vlado.fmf.uni-lj.si/pub/
networks/data/bio/foodweb/foodweb.htm [3]. These are 14 food webs in total.
In food webs, the nodes are species, and a weighted edge (u, v) exists with weight
w if u inherits carbon from v (that is, u preys on v) [2]. We interpret this as a
directed negative interaction from node u to node v. A noteworthy difference in
these networks (vs. Survivor, say) is that the movement of energy is balanced,
meaning the in-degree and out-degree for each species is equal.

Fig. 5. The Chesapeake Bay Lower food web dataset. On the left, organisms are listed
in decreasing order, with the largest CON score at the top. On the right, organisms
are listed by decreasing PageRank score.

Rankings of selected food web datasets are in Figs. 5 and 6; the rankings for all
the datasets may be found at https://eikmeier.sites.grinnell.edu/uncategorized/
competition-show-data/ along with the computed CON scores, closeness, and
PageRank on the reversed-edge network.

In studying the rankings of these 14 food webs, we see a difference between
the CON rankings and PageRank. PageRank has been used to study the impor-
tance of species in regards to co-extinction [1,14,16], which we expect is likely

http://vlado.fmf.uni-lj.si/pub/networks/data/bio/foodweb/foodweb.htm
http://vlado.fmf.uni-lj.si/pub/networks/data/bio/foodweb/foodweb.htm
https://eikmeier.sites.grinnell.edu/uncategorized/competition-show-data/
https://eikmeier.sites.grinnell.edu/uncategorized/competition-show-data/
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reflected in the rankings we see here using vanilla PageRank. However, we find
a substantially different ranking when using the CON scores; for example, see
the placement of Heteroflagellates in Fig. 5. The average Spearman correlation
coefficient across these 14 datasets is 0.271, and the range is between 0.004 and
0.554. (Recall that a value close to 1 means very well correlated.) Therefore,
we suggest that the CON scores are giving a different ranking, which is much
closer to trophic levels of species. In particular, the CON scores reflect a natural
hierarchical structure in ecosystems, and this is consistent with the DCH.

Fig. 6. The CrystalC food web dataset. On the left, organisms are listed in decreasing
order, with the largest CON score at the top. On the right, organisms are listed by
decreasing PageRank score.

4 Conclusion and Future Directions

We studied an implication of the Dynamic Competition Hypothesis (DCH) for
competition networks across several different types of real-world networks. We
found that the DCH prediction that high CON scores should correspond to lead-
ers is supported in predicting winners in international seasons of Survivor, in pre-
dicting species with high trophic level species in food web, and for determining
influential actors in conflict networks in Afghanistan, India, and Pakistan. Met-
rics such as CON scores outperformed PageRank as an indicator of influential
actors in the competition networks we studied.

While our results provide support for the DCH, more work needs to be done.
We did not address items (1) and (2) of the DCH regarding alliances in our data
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sets, and that would be an important next step. Another direction is to consider
an aggregate score, based on the CON score, closeness, and in- and out-degree, as
a measure of detecting leaders in competition networks. An interesting direction
would be to study more closely the dynamic aspects of competition networks,
analyzing them over time to predict leaders. For example, we could analyze
the co-voting network of Survivor of each episode of a season, and determine if
temporal trends in network statistics predict finalists.

An open question is whether CON score centrality is applicable to large-scale
networks exhibiting adversarial interactions, such as in Epinions and Slashdot
(which give rise to signed data sets with tens of thousands of nodes, and available
from [13]). Epinions was an on-line consumer review site, where users could trust
or distrust each other. Slashdot is a social network that contains friend and foe
links. A challenge with these data sets from the view of validating the DCH is
that there is no inherently defined ranking, as there is in Survivor (via the order
contestants were voted off), food webs (trophic level), and in conflict graphs (via
political and strategic influence).
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