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Abstract

We consider the dimensionality of social networks, and develop experiments aimed at predicting that dimension. We find
that a social network model with nodes and links sampled from an m-dimensional metric space with power-law distributed
influence regions best fits samples from real-world networks when m scales logarithmically with the number of nodes of the
network. This supports a logarithmic dimension hypothesis, and we provide evidence with two different social networks,
Facebook and LinkedIn. Further, we employ two different methods for confirming the hypothesis: the first uses the
distribution of motif counts, and the second exploits the eigenvalue distribution.
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Introduction

Empirical studies of on-line social networks as undirected

graphs suggest these graphs have several intrinsic properties:

highly skewed or even power-law degree distributions [1,2], large

local clustering [3], constant [3] or even shrinking diameter with

network size [4], densification [4], and localized information flow

bottlenecks [5,6]. These are challenging properties to capture in

concise models of social network connections and growth [7–9],

and many models only possess them in certain parameter regimes.

One model that captures these properties asymptotically is the

geometric protean model (GEO-P) [10]. It differs from other

network models [1,4,11,12] because all links in geometric protean

networks arise based on an underlying metric space. This metric

space mirrors a construction in the social sciences called Blau
space [13]. In Blau space, agents in the social network correspond

to points in a metric space, and the relative position of nodes

follows the principle of homophily [14]: nodes with similar socio-

demographics are closer together in the space.

In order to accurately capture the observed properties of social

networks—in particular, constant or shrinking diameters—the

dimension of the underlying metric space in the GEO-P model

must grow logarithmically with the number of nodes. The

logarithmically scaled dimension is a property that occurs

frequently with network models that incorporate geometry, such

as in multiplicative attribute graphs [7] and random Apollonian

networks [15]. Because of its prevalence in these models, the

logarithmic relationship between the dimension of the metric

space and the number of nodes has been called the logarithmic
dimension hypothesis [10]. This hypothesis generalizes previous

analysis which shows that individuals in a social network can be

identified with relatively little information. For instance, Sweeney

found that 87% of the U.S. population had reported attributes that

likely made them unique using only zip code, gender and date of

birth, and concluded that few attributes were needed to uniquely

identity a person in the U.S. population [16]. Here, we find

evidence of the log-dimension property in real world social

networks.

We emphasize that the present paper is the first study that we

are aware of which attempts to quantify the dimensionality of

social networks and Blau space. While we do not claim to prove

conclusively the logarithmic dimension hypothesis for such

networks, our experiments, such as those of [16], suggest a much

smaller dimension in contrast to the overall size of the networks.

Interestingly, speculation on the low dimensionality of social

networks arose independently from theoretical analysis of math-

ematical models of social networks in [7,10,15].

Our findings provide evidence for dimensional properties

underlying social networks that have a number of potential

applications in future studies. First, the dimensional properties

could be used for further classification and characterization of

different types of networks. Second, many NP-hard optimization
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problems related to graph properties and community detection are

polynomial time solvable in a low dimensional metric space, and

thus, our findings suggest new techniques to explore for

understanding why we may expect to solve these problems in

social networks. Finally, if techniques to find these dimensions

emerge, we should be able to create powerful new methods to

harness the insight they offer into the network structure.

MGEO-P
The particular network model we study is a simple variation on

the GEO-P model that we name the memoryless geometric

protean model (MGEO-P), since it enables us to approximate a

GEO-P network without using a costly sampling procedure. Both

GEO-P and the MGEO-P model depends on five parameters

described in Table 1.

The nodes and edges of the network arise from the following

process. Initially the network is empty. At each of n steps, a new

node v arrives and is assigned both a random position qv in Rm

within the unit-hypercube ½0,1�m and a random rank rv from those

unused ranks remaining in the set 1 to n. The influence radius of

any node is computed based on the formula:

I(r)~
1

2
(r{an{b)1=m:

With probability p, the node v forms an undirected connection

to any preexisting node u where D(v,u)ƒI(rv), where the

distances are computed with respect to the following metric:

D(v,u)~ min qv{qu{zk k? : z[ {1,0,1f gm
� �

,

and where :k k? is the infinity-norm. We note that this implies that

the geometric space is symmetric in any point as the metric

‘‘wraps’’ around like on a torus. The volume of space influenced

by the node is r{a
v n{b. Then the next node arrives and repeats the

process until all n nodes have been placed. In the MGEO-P

model, the process ends here, whereas in the GEO-P model, the

network then removes the least-recently added node, and inserts a

new node following the same procedure. This iterative replace-

ment process continues until it reaches it reaches a random point.

Figure 1 illustrates two features of the model. First, after a few

steps, only a few nodes exist and even a large influence region will

only produce a few links. Second, when the number of steps

approaches n, a large influence region will produce many links.

The idea behind the model is a simple abstraction of the growth of

an on-line social network. When the network is first growing (few

steps), even influential members will only know a few other

members who have also joined. But after the network has been

around for a while (many steps), influential members will begin

with many friends.

We formally prove that the MGEO-P model has the following

properties. Let a[(0,1), b[(0,1{a), p[(0,1� and m be positive

integer. The following statements hold with probability tending to

1 as n tends to ?. See the MGEO-P section of File S1 for the

proofs. We actually show these results hold with extremely high

probability, which is a stronger notion that implies probability

tending to 1.

1. Let v be a node of MGEO{P(n,m,a,b,p) with rank R that

arrived at step t. Then

deg (v)~
i{1

n{1

p

1{a
n1{a{bz(n{i)pR{an{b

� �

: 1zO
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log2 (n)

n1{a{b

r ! ! :

This result implies that the degree distribution follows a

powerlaw with exponent g~1z
1

a
.

2. The average degree of node of MGEO{P(n,m,a,b,p) is

r~
p

1{a
n1{a{b 1zO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log2 (n)

n1{a{b

s0
@

1
A

0
@

1
A:

3. The diameter of MGEO{P(n,m,a,b,p) is nH 1
mð Þ.

This last property suggests that, ignoring constants, for a

network with n nodes and diameter D, the expected dimension

based on the MGEO-P model is

m&
log n

log D
:

Thus, like some network models that incorporate geometry

[7,15], in the MGEO-P model, the dimension m must scale

logarithmically in order for the diameter to remain constant as n
increases.

Experimental Design and Graph Summaries
Both graph motifs and spectral densities are numeric summaries

of a graph that abstract the details of a network into a small set of

values that are independent of the particular nodes of a network.

These summaries have the property that isomorphic graphs have

the same values, and we will use these summaries to determine the

dimension of the metric space that best matches Facebook and

LinkedIn networks as illustrated in Figure 2. Graph motifs,

graphlets, or graph moments are the frequency or abundance of

specific small subgraphs in a large network. We study undirected,

connected subgraphs up to four nodes as our graph motifs (with

the exception of the number of edges, or two-node motifs, as the

networks are created to preserve this count). This is a set of 8

graphs shown in at the bottom of Figure 2 along with the single

two node graph of an edge. The spectral density of a graph is the

statistical distribution of eigenvalues of the normalized Laplacian

matrix as indicated in the upper right of that figure. These

eigenvalues indicate and summarize many network properties

including the behavior of a uniform random walk, the number of

connected components, an approximate connectivity measure,

Table 1. The parameters of the MGEO-P model.

n the total number of nodes

m the dimension of the metric space

0vav1 the attachment strength parameter

0vbv1{a the density parameter

0vpƒ1 the connection probability

doi:10.1371/journal.pone.0106052.t001
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and many other features [17,18]. Thus, the spectral density of the

normalized Laplacian is a particularly helpful characterization that

captures many such separate network properties.

We study dimensional scaling in social networks by comparing

samples of the MGEO-P networks of varying dimensions with

samples of social network data from Facebook and LinkedIn. We

pay particular attention to the relationship between the number of

nodes n of the network and the dimension m of the best fit

MGEO-P network. In order to determine what underlying

dimension for MGEO-P best fits a given graph, we employ two

distinct methods. For one experiment, we use features known as

graph motifs, graphlets, or graph moments in concert with a

support vector machine (SVM) classifier. This approach has been

used successfully to determine the best generative mechanism of a

network [19] and to select parameters of a complicated network

models to fit real-world data [9,20]. In a second experiment, we

use spectral densities of the normalized Laplacian matrix of a

graph and a Kullback-Leibler divergence (KL divergence)

similarity measurement, which has been used to match protein

networks between species [21,22]. We find evidence of the

logarithmic dimension hypothesis in both cases.

The data
Facebook distributed 100 samples of social networks from

universities within the United States measured as of September

2005 [23], which range in size from 700 nodes to 42,000 nodes.

We call these networks the Facebook samples. The LinkedIn

samples were created from the LinkedIn connection network

together with the creation time of each connection from May 2003

to October 2006. To perform our experiments on networks of

different size, we build 71 snapshots of the LinkedIn network at

various timestamps. We then extracted a dense subset of their

graph at various time points that is representative of active users;

we used the 5-core of the network for this purpose [24]. The k-

core of a network is a maximum size subset of vertices such that all

vertices have degree k. See Figure 3 and the full statistics tables of

File S1 for additional properties of these networks. In both

networks, the number of edges per node grows at essentially the

same rate.

Results

The results of our dimensional fitting for graphlets are shown in

Figure 4 and the results of the fitting using spectral densities are in

Figure 5. For both datasets and both types of statistics, the best-fit

dimension scales logarithmically with the number of nodes and

closely tracks a simple model prediction based on the diameter D

of the network (the model curve plots m~ log (n)= log (D)). These

experiments corroborate the logarithmic dimension hypothesis;

although the precise fits differ as shown in Table 2.

The most important feature of these results is that both

methodologies show similar scaling in how the dimensionality

Figure 1. An example describing the MGEO-P process on a graph with 250 nodes in the unit square with torus metric, where a~0:9
and b~0:04 and p~1. Each figure shows the graph ‘‘replicated’’ in grey on all sides in order to illustrate the torus metric. Links are drawn to the

closest replicated neighbor. The blue square indicates the region ½0,1�2 . Top row (left to right) The MGEO-P process begins with relatively few nodes,
and thus, nodes must have large influence radii (red squares) to link anywhere. As more nodes arrive, large radii result in many connections, modeling
influential users, and small radii result in a few connections, modeling standard users. Bottom row Illustrates the final constructed graph.
doi:10.1371/journal.pone.0106052.g001
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scales with network size. There are minor differences between the

precise predicted dimensions–for instance, the spectral density

approach predicts slightly higher dimensions for Facebook than

does the graphlet approach–but the results agree to a reasonable

degree with the dimension predicted by the model:

log (n)= log (D). Also, the confidence bounds are small around

the chosen dimension.

Sensitivity and robustness
We investigate the sensitivity of the graphlet results in two

settings. If we reduce the training set size of the SVM classifier by

using a random subset of 20% of the input training data and then

rerun the training and classification procedure 50 times, then we

find a distribution over dimensions that we report as a box-plot,

shown in Figure 4. In File S1, we further study perturbation results

that argue against these results occurring due to chance. In

particular, we find that these dimensions are robust to moderate

changes to the network structure (Figure S2 in File S1) and we find

that our methodology does not predict useful dimensions of Erdös-

Rényi random graphs or random graphs with the same degree

distribution (Figure 1 in File S1). We do not report a precise p-

value as there are no widely accepted null-models for network

data. We study the sensitivity of the spectral densities that look for

matches that are within 105% of the true minimum divergence.

This defines a dimension interval around each match that is small

for all of our examples.

Discussion

There is a growing body of evidence that argues for some type

of geometric structure in social and information networks. An

important study in this direction views networks as samples of

geometric graphs within a hyperbolic space [25–27]. Recent work

has further shown that hyperbolic embeddings reproduce shortest

path metrics in real-world networks [28]. In both MGEO-P and

hyperbolic random geometric networks, highly skewed or power-

law degree distributions are imposed–either directly as in MGEO-

P, or implicitly as in the hyperbolic space scaling. These results

further support hidden metric structures in networks by empiri-

cally confirming a prediction about the dimension of the metric

Figure 2. At left and center, we have the steps involved in fitting via graphlets; at right and center, we have the steps involved in
fitting via spectral histogram. Throughout, red lines denote the flow of features for the MGEO-P networks whereas blue lines denote flow of
features for the original networks. At the bottom, we show an enlarged representation of the 8 graphlets we use.
doi:10.1371/journal.pone.0106052.g002

Figure 3. The scale of the network data involved in our study
varies over three orders of magnitude. We see similar scaling for
both types of networks, but with slightly different offsets. For Facebook,
log10 (edges)~1:06 log10 (nodes)z1:35 with R2~0:945; for LinkedIn
log10 (edges)~1:07 log10 (nodes)z0:56 with R2

w0:999. The regularity
in the LinkedIn sizes is due to our construction of those networks.
doi:10.1371/journal.pone.0106052.g003
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space made by one particular model. The importance of this

finding is that it provides new insight into how the metric space

must behave as the network grows. Previous studies assume a fixed

dimension metric structure and our results indicate that a variable

dimension may be more appropriate. In practice, estimating the

dimensions of these networks could be useful for anomaly

detection in the network and characterizing new types of network

data.

Note that these results do not conclusively argue that MGEO-P

is a perfectly accurate model for social networks; there are

meaningful differences between the spectral histograms from

MGEO-P and real social networks, see Figure 6. There are also

similar differences in the graphlet counts. Our results support a

different hypothesis. The closest MGEO-P network to a given

social network has a metric space whose dimension scales

logarithmically with the number of nodes. In File S1 (Sensitivity

studies section), we have determined that this property is not due

to either the edge density or the degree distribution; thus, our

findings appears to reflect a new intrinsic property of social

networks.

This finding suggests a number of opportunities for designing

social network models with metric spaces that evolve in time. We

believe that such models offer the opportunity to identify new

properties of social network based on emergent properties of the

models. One question to address is how the metric space and

connection radius change, if at all, as the network grows.

Answering this question would provide insight into the value of

additional users of a network. Additionally, our results suggest that

many network models that assume a fixed dimension should be

reevaluated.

Materials and Methods

Powerlaw fitting
To determine the powerlaw exponent g, we use the Clauset-

Shalizi-Newman power-law exponent estimator [29] as imple-

mented by Tamás Nepusz [30].

Diameters
The MGEO-P model of a network predicts that the dimension

m should approximate log (n)= log (D), where D is the diamater.

However, as D is sensitive to outliers we use the 99% effective

diameter computed via an asymptotically accurate approximation

scheme [31] as implemented in the SNAP library on 2011-12-31.

The effective diameter of all Facebook networks ranges between

3.5 and 4.6, with a mean of 4.1. For the LinkedIn data, the

Figure 4. Facebook dimension at left, LinkedIn dimension at right. Each red dot (SVM) is the predicted dimension computed via graphlet
features and a support vector machine classifier. For the Facebook data, we find that m~2:06 log (n)= log (10){3:00. For the LinkedIn data, we find
that m~0:7333 log (n)= log (10)z1. And these are plotted as the red linear fit line. Our theoretical model predicts a dimension of log(n)=log(D) and
we plot this as the dashed line. In each figure, we show the variance in the fitted dimension as a box-plot. We estimate the variance by using only
20% of the original training data and repeating over 50 trials. There are only a few outliers for small dimensions.
doi:10.1371/journal.pone.0106052.g004

Figure 5. Facebook data at left, LinkedIn data at right. Each blue point (Eigen) is the dimension of the MGEO-P sample with the minimum KL-
divergence between the graph and the MGEO-P sample. We also show any other other dimensions within 5% of this divergence value. The
dimensions shift modestly higher for Facebook and remain almost unchanged for LinkedIn. Both still are closely correlated with the theoretical
prediction based on the model based on log (n)= log (D) (dashed line). The linear fits to the predicted dimensions is plotted as the red linear fit line.
doi:10.1371/journal.pone.0106052.g005
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effective diameter ranges between 4.3 and 5.9, with a mean of 5.4.

In both networks, larger graphs have bigger effective diameters,

although the differences are slight and the full data is available in

the File S1, Full statistics tables.

Graphlets
To compute graphlets, we employ the rand-esu sampling

algorithm [32] as implemented in the igraph library [33]. This

algorithm approximates the count of each subgraph via a

stochastic search, which then depends on the probability of

continuing to search. Thus, if the probability is near 1 then the

scores are nearly exact, but very expensive to compute, and small

probabilities truncate the search early to produces fast estimates.

The value we use is 10=n. We use log-transformed output from this

procedure in order to capture the dynamic range of the resulting

values.

Spectral densities
We approximate the spectral density via a 201-bin histogram of

the eigenvalues of the normalized Laplacian, which all fall between

0 and 2. (The choice of 201 was based on prior experiences with

the spectral histograms of networks.) To compute eigenvalues of a

network, we employ the recently developed ScaLAPACK routine

using the MRRR algorithm [34–36].

SVM
We used a multi-class support-vector machine (SVM) based

classification tool from Weka [37] to predict the relationship

between the graphlets and the dimension. We considered

alternatives, such as alternating decision trees and logistic

regression; however, we settled on the SVM approach as it has

the most flexible classification boundary to fit the highly nonlinear

relationships between graphlet counts and dimensions.

Setting MGEO-P Parameters
Consider a graph G~(V ,E) that we wish to compare to an

MGEO-P sample. The MGEO-P model depends on four

parameters: n, m, a, and b. The choice of n is straightforward as

we use the number of nodes of the original graph. Both a and b
can be chosen independently of the dimension m. Specifically,

both a and b determine the average degree of the network and the

exponent of the power law in the degree distribution, up to lower-

order terms, as shown by property 1 and property 2. By computing

just these two simple statistics of a network–the exponent of the

power law and the average degree–we can invert these relation-

ships and choose these parameters. Let g be the power-law

exponent and r be the average degree. Then:

azb~1{ log (r)= log (n) and a~
1

g{1
:

In order to derive this simple expression, we make the simplifying

assumption that p does not go to zero too quickly, for example

p~n{o(1), in which case: log (r)~(1{a{b) log (n)zo(1) follows

from the expression for the average degree of a MGEO-P network.

We use the following treatment of the probability p in order to

maximize the clustering coefficient of the network. We first generate

Table 2. Dimension scaling for Facebook and LinkedIn.

Data Dimension fit Coefficients 95% Confidence

a log (n)= log (10)zb a b a b

Facebook Graphlet 2.06 23.00 (1.851, 2.264) (23.821, 22.182)

Spectral density 1.21 1.65 (0.9782, 1.446) (0.7272, 2.578)

LinkedIn Graphlet 0.98 1.01 (0.786, 1.178) (0.1591, 1.87)

Spectral density 0.77 1.1 (0.56, 0.99) (0.23, 1.95)

The specific dimensional scaling lines fit to the data in Figures 4 and 5 illustrate the growth of the network is logarithmic in the number of nodes.
doi:10.1371/journal.pone.0106052.t002

Figure 6. For three of the Facebook networks, we show the eigenvalue histogram in red, the eigenvalue histogram from the best fit
MGEO-P network in blue, and the eigenvalue histograms for samples from the other dimensions in grey. The MGEO-P model correctly
captures the peak of the distribution around 1, but fails to completely capture the tail between 1 and 2. Thus, we see meaningful difference between
these profiles and hence, do not suggest that MGEO-P captures all of the properties of real-world social networks.
doi:10.1371/journal.pone.0106052.g006
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an MGEO-P network with p~1. Then suppose that the original

network had E~nr=2 edges, we continue by randomly deleting

edges until the output has exactly the same number of edges as the

input network. This step can be interpreted as using the value of p
necessary to get the same edge count as the original graph. In the

case where there are insufficient edges, we leave the output from the

MGEO-P generator untouched. This process effectively chooses p
as large as possible, which gives us the largest local clustering.
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