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Abstract

Spectral graph theory-based methods represent an important

class of tools for studying the structure of networks. Spec-

tral methods are based on a first-order Markov chain de-

rived from a random walk on the graph and thus they cannot

take advantage of important higher-order network substruc-

tures such as triangles, cycles, and feed-forward loops. Here

we propose a Tensor Spectral Clustering (TSC) algorithm

that allows for modeling higher-order network structures in a

graph partitioning framework. Our TSC algorithm allows the

user to specify which higher-order network structures (cy-

cles, feed-forward loops, etc.) should be preserved by the

network clustering. Higher-order network structures of in-

terest are represented using a tensor, which we then partition

by developing a multilinear spectral method. Our framework

can be applied to discovering layered flows in networks as

well as graph anomaly detection, which we illustrate on syn-

thetic networks. In directed networks, a higher-order struc-

ture of particular interest is the directed 3-cycle, which cap-

tures feedback loops in networks. We demonstrate that our

TSC algorithm produces large partitions that cut fewer di-

rected 3-cycles than standard spectral clustering algorithms.

1 Introduction

Spectral graph methods investigate the structure of networks

by studying the eigenvalues and eigenvectors of matrices as-

sociated to the graph, such as its adjacency matrix or Lapla-

cian matrix. Arguably the most important spectral graph

algorithms are the spectral graph partitioning methods that

identify partitions of nodes into low conductance commu-

nities in undirected networks [1]. While the simple matrix

computations and strong mathematical theory behind spec-

tral clustering methods makes them appealing, the methods

are inherently limited to two-dimensional structures, for ex-

ample, undirected edges connecting pairs nodes. Thus, it is

a natural question whether spectral methods can be general-

ized to higher-order network structures. For example, tradi-

tional spectral clustering attempts to minimize (appropriately
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normalized) number of first-order structures (i.e., edges) that

need to be cut in order to split the graph into two parts. In a

similar spirit, a higher-order generalization of spectral clus-

tering would try to minimize cutting higher-order structures

that involve multiple nodes (e.g., triangles).

Incorporating higher-order graph information (that is,

network motifs/graphlets) into the partitioning process can

significantly improve our understanding of the underlying

network. For example, triangles (three-dimensional network

structures involving three nodes) have proven fundamental to

understanding social networks [14, 21] and their community

structure [10, 26, 29]. Most importantly, higher-order spec-

tral clustering would allow for greater modeling flexibility

as the application would drive which higher-order network

structures should be preserved by the network clustering. For

example, in financial networks, directed cycles might indi-

cate money laundering and higher-order spectral clustering

could be used to identify groups of nodes that participate

in such directed cycles. As directed cycles involve multi-

ple edges, current spectral clustering tools would not be able

to identify groups with such structural signatures.

Generalizing spectral clustering to higher-order struc-

tures involves several challenges. The essential challenge

is that higher-order structures are often encoded in tensors,

i.e., multi-dimensional matrices. Even simple computations

with tensors lack the traditional algorithmic guarantees of

two-dimensional matrix computations such as existence and

known runtimes. For instance, eigenvectors are a key com-

ponent to spectral clustering, and finding tensor eigenvectors

is NP-hard [15]. An additional challenge is that the number

of higher-order structures increases exponentially with the

size of the structure. For example, in a graph with n nodes,

the number of possible triangles is O(n3). However, real-

world networks have far fewer triangles.

While there exist several extensions to the spectral

method, including the directed Laplacian [5], the asymmet-

ric Laplacian [4], and co-clustering [9, 28], these methods

are all limited to two-dimensional graph representations. A

simple work-around would be to weight edges that occur in

higher-order structures [19]. However, this heuristic is un-

satisfactory because the optimization is still on edges, and

not on the higher-order patterns we aim to cluster.

Here, we propose a Tensor Spectral Clustering (TSC)

framework that is directly based on higher-order network

structures, i.e., network information beyond edges connect-
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ing two nodes. Our framework operates on a tensor of net-

work data and allows the user to specify which higher-order

network structures (cycles, feed-forward loops, etc.) should

be preserved by the clustering. For example, if one aims to

obtain a partitioning that does not cut triangles, then this can

be encoded in a third-order tensor T, where T(i, j, k) is equal

to 1 if nodes i, j, and k form a triangle and 0 otherwise.

Given a tensor representation of the desired higher-order

network structures, we then use a mutlilinear PageRank vec-

tor [13] to reduce the tensor to a two-dimensional matrix.

This dimensionality reduction step allows us to use effi-

cient matrix algorithms while approximately preserving the

higher-order structures represented by the tensor. Our result-

ing TSC algorithm is a spectral method that partitions the

network to minimize the number of higher-order structures

cut. This way our algorithm finds subgraphs that contain

many instances of the higher-order structure described by the

tensor. Figure 1 illustrates a directed network, and our goal

is to identify clusters of directed 3-cycles. That is, we aim

to partition the nodes into two sets such that few directed 3-

cycles get cut. Our TSC algorithm finds a partition that does

not cut any of the directed 3-cycles, while a standard spectral

partitioner (the directed Laplacian [5]) does.

Clustering networks based on higher-order structures

has many applications. For example, the TSC algorithm

allows for identifying layered flows in networks, where

the network consists of several layers that contain many

feedback loops. Between layers, there are many edges,

but they flow in one direction and do not contribute to

feedback. We identify such layers by clustering a tensor

that describes small feedback loops (e.g., directed 3-cycles

and reciprocated edges). Similarly, TSC can be applied to

anomaly detection in directed networks, where the tensor

encodes directed 3-cycles that have no reciprocated edges.

Our TSC algorithm can find subgraphs that have many

instances of this pattern, while other spectral methods fail

to capture these higher-order network structures.

Our contributions are summarized as follows:

• In Sec. 3, we develop a tensor spectral clustering frame-

work that computes directly on higher-order graph

structures. We provide theoretical justifications for our

framework in Sec. 4.

• In Sec. 5, we provide two applications—layered

flow networks and anomaly detection—where our ten-

sor spectral clustering algorithm outperforms standard

spectral clustering on small, illustrative networks.

• In Sec. 6, we use tensor spectral clustering to parti-

tion large networks so that directed 3-cycles are not cut.

This provides additional empirical evidence that our al-

gorithm out-performs state-of-the-art spectral methods.

Code used for this paper is available at https:

//github.com/arbenson/tensor-sc, and all networks

used in experiments are available from SNAP [23].
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Tensor spectral clustering:

{0, 1, 2}, {3, 4, 5}

Directed Laplacian:

{1, 2, 5}, {0, 3, 4}

Figure 1: (Left) Network where directed 3-cycles only ap-

pear within the blue or red nodes. (Right) Partitioning found

by our proposed tensor spectral clustering algorithm and the

directed Laplacian. Our proposed algorithm doesn’t cut any

directed 3-cycles. Directed 3-cycles are just one higher-order

structure that can be used within our framework.

2 Preliminaries and background

We now review spectral clustering and conductance cut. The

key ideas are a Markov chain representing a random walk

on a graphs, a second left eigenvector of the Markov chain,

and a sweep cut that uses the ordering of the eigenvector to

compute conductance scores. In Sec. 3, we generalize these

ideas to tensors and higher-order structures on graphs.

2.1 Notation and the transition matrix Consider an

undirected, weighted graph G = (V, E), where n = |V | and

m = |E|. Let A ∈ Rn×n
+ be the weighted adjacency matrix of

G, i.e., Ai j = wi j if (i, j) ∈ E and Ai j = 0 otherwise. Let D

be the diagonal matrix with generalized degrees of the ver-

tices of G. In other words, D = diag (Ae), where e is the

vector of all ones. The combinatorial Laplacian or Kirchoff

matrix is K = D − A. The matrix P = AT D−1 is a column

stochastic matrix, which we call the transition matrix. We

now interpret this matrix as a Markov chain.

2.2 Markov chain interpretation Since P is column

stochastic, we can interpret the matrix as a Markov chain

with states S t, for each time step t. Specifically, the states of

the Markov chain are the vertices on the graph, i.e., S t ∈ V .

The transition probabilities are given by P:

Prob(S t+1 = i | S t = j) = Pi j = A ji/D j j.

This Markov chain represents a random walk on the

graph G. In Sec. 3.2, we will generalize this idea to

tensors of graph data. We now show how the second left

eigenvector of the Markov chain described here is key to

spectral clustering.

2.3 Second left eigenvector for conductance cut The

conductance of a set S ⊂ V of nodes is

(2.1) φ (S ) = cut (S ) /min
(

vol(S ), vol(S̄ )
)

,

where cut (S ) =
∣

∣

∣{(u, v) | u ∈ S , v ∈ S̄ }
∣

∣

∣, and vol(S ) =

|{(u, v) | u ∈ S }|. Small conductance indicates a good par-
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tition of the graph: the number of cut edges must be small

and neither S nor S̄ can be too small. Let z ∈ {−1, 1}n be an

indicator vector over the nodes in G, where zi = 1 if the ith

node is in S . Then

(2.2) z
T

Kz =
∑

(i, j)∈E

4I
(

zi = z j

)

∝ cut (S ) .

The conductance cut eigenvalue problem is an approxi-

mation for the NP-hard problem of minimizing conductance:

(2.3)
minimize

z∈Rn
z

T
Kz/zT

Dz

subject to e
T

Dz = 0, ‖z‖ = 1

The idea of the real-valued relaxation in Eqn. (2.3) is

that positive and negative values of z correspond to the ±1

indicator vector for the cut in Eqn. (2.2). In Sec. 2.4 we will

review how to convert the real-valued solution to a cut.

The matrices K and D are positive semi-definite, and

Eqn. (2.3) is a generalized eigenvalue problem. In particular,

the solution is the vector z such that Kz = λDz, where λ

is the second smallest generalized eigenvalue (the smallest

eigenvalue is 0 and corresponds to the trivial solution z = e).

To get the solution z, we observe that

Kz = λDz ⇐⇒ (I − D
−1

A)z = λz

⇐⇒ z
T

P = (1 − λ)z
T

where 1 − λ is the second largest left eigenvalue of P. We

know that eT P = eT , so we are looking for the dominant left

eigenvector that is orthogonal to the trivial one.

Here, we call the above partitioning algorithm for undi-

rected graphs the “undirected Laplacian” method. One gen-

eralization to directed graphs is due to Chung [5]. For this

method, we use the undirected Laplacian method on the

following symmetrized network: Asym := 1
2

(

ΠPT + PΠ
)

,

where P = AT D−1 and Π = diag (π) for Pπ = π, the station-

ary distribution of P. Note that Dsym = diag
(

Asyme
)

= Π, so

we are interested in the second left eigenvector of

(2.4) Psym =
1

2

(

ΠP
T
Π
−1 + P

)

.

By “directed Laplacian”, we refer to the method that uses the

second left eigenvector of Psym.

2.4 Sweep cuts In order to round the real-valued solution

z to a solution set S to evaluate Eqn. (2.1), we sort the

vertices by the values zi and consider vertex sets S k that

consist of the first k nodes in the sorted vertex list. In

other words, if σi is equal to the index of the ith smallest

element of z, then S k = {σ1, σ2, . . . σk}. We then choose

S = arg minS k
φ(S k). The set of nodes S satisfies the

celebrated Cheeger inequality [1]: φ2
∗/2 ≤ φ(S ) ≤ 2φ∗,

where φ∗ is the minimum conductance over all cuts. The

sweep cut computation is fast, since S k+1 differs from S k by

only one node, and the sequence of scores φ(S 1), . . . , φ(S n)

can be computed in O(n + m) time.

In addition to conductance, other scores can also

be computed in the same sweeping fashion. Of par-

ticular interest are the normalized cut, ncut(S ) =

cut (S )
(

1/vol(S ) + 1/vol(S̄ )
)

, and the expansion, ρ(S ) =

cut (S ) /min(|S |, |S̄ |). The normalized cut differs by at most

a factor of two from conductance, so we will limit ourselves

to conductance and expansion in this paper.

3 Tensor spectral clustering framework

The key ingredients for spectral clustering discussed in

Sec. 2 were a transition matrix from an undirected graph,

a Markov chain interpretation of the transition matrix, and

the second left eigenvector of the Markov chain. We now

generalize these ideas for higher-order network structures.

3.1 Transition tensors Our first goal is to represent the

higher-order network stuctures of interest. For example, to

represent structures on three nodes (i.e., directed cycles, or

feed-forward loops) we required a three-dimensional tensor.

In particular, we want a symmetric order-3 tensor T ∈ Rn×n×n
+

such that the entry at index (i, j, k) contains information

about nodes i, j, k ∈ V . (Here, symmetric means that the

value of T(i, j, k) remains the same under any permutation of

the three indices.) A tensor describing triangles in G is:

(3.5) T(i, j, k) = I
(

i, j, k ∈ V distinct and form a triangle
)

.

This tensor represents third-order information about the

graph. We form a transition tensor by

P(i, j, k) = T(i, j, k)/

n
∑

i=1

T(i, j, k), 1 ≤ i, j, k ≤ n.

In the case that
∑n

i=1 T(i, j, k) = 0, we fill in P(:, j, k) with

a stochastic vector u, i.e., P(:, j, k) = u. We call the vector

u the dangling distribution vector, borrowing the term from

the PageRank community [3]. Next, we see how to interpret

this transition tensor as a second-order Markov chain.

3.2 Second-order Markov chains and the spacey ran-

dom surfer Next, we seek to generalize the Markov chain

interpretation of spectral clustering to tensors. While spec-

tral clustering on matrices is analogous to a first-order

Markov chain, we will show that tensor spectral clustering

is analogous to a second-order Markov chain on a matrix

representation of the tensor.

Entries of the transition tensor P from Sec. 3.1 can be

interpreted as the transition probabilities of a second-order

Markov chain. Specifically, given a second-order Markov

120 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/1

9/
15

 to
 1

62
.1

7.
27

.1
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



chain with state space the set of vertices, V , we define the

transition probabilities as

P(i, j, k) = Prob (S t+1 = i | S t = j, S t−1 = k) .

In other words, the probability of moving to state i depends

on the current state j and the last state k. For the triangle

tensor in Eqn. (3.5),

P(i, j, k) =
I
(

i, j, k form triangle
)

#(triangles involving nodes j and k)

If the previous state was node k and the current state is

node j, then, for the next state, the Markov chain chooses

uniformly over all nodes i that form a triangle with j and k.

The stationary distribution Xi j of the second-order

Markov chain satisfies
∑

k P(i, j, k)X jk = Xi j. We would

like to model the full second-order dynamics of the Markov

chain, but doing so is computationally infeasible because

just storing the stationary distribution requires O(n2) mem-

ory. Instead, we will make the simplifying assumption that

Xi j = xix j for some vector x ∈ R
n
+ with

∑

i xi = 1. The

stationary distribution then satisfies

(3.6)
∑

1≤ j,k≤n

P(i, j, k)x jxk = xi.

With respect to Eqn. (3.6), x is called a z eigenvector of

the tensor P with eigenvalue 1 [27]. To simplify notation,

we will denote the one-mode unfolding of P by R ∈ R
n×n2

,

namely R =
[

P(:, :, 1) P(:, :, 2) . . . P(:, :, n)
]

. The ma-

trix R is a column stochastic matrix. We use Rk = P(:, :, k) to

denote the kth n×n block of R. With this notation, Eqn. (3.6)

reduces to R · (x ⊗ x) = x, where ⊗ denotes the Kronecker

product.

The simplifying approximation Xi j = xix j is computa-

tionally and algebraically appealing, but we also want a ran-

dom process to interpret the vector. Recent work [13] has

considered the multilinear pagerank vector x that satisfies

(3.7) αR (x ⊗ x) + (1 − α)u = x, xk ≥ 0, e
T

x = 1,

for a constant α ∈ (0, 1) and stochastic vector u.

This vector is the stationary distribution of a stochastic

process recently termed the spacey random surfer [12]. At

any step of the process, a random surfer has just moved from

node k to node j. With probability (1−α), the surfer teleports

to a random state via the stochastic vector u. With probability

α, the surfer wants to transition to node i with probability

P(i, j, k). However, the surfer spaces out and forgets that s/he

came from node k. Instead, the surfer guesses the previous

state, based on the historical distribution over the state

space. Formally, the surfer guesses node ℓ with probability
1

t+n

(

1 +
∑t

r=1 I [S t = ℓ]
)

. It is important to note that although

this process is an approximation to a second-order Markov

chain, the process is no longer Markovian.

3.3 Second left eigenvector Following the steps of spec-

tral clustering, we now need to obtain an equivalent of the

second left eigenvector (Sec. 2.3). In particular, we now

show how to get a relevant eigenvector from the multilinear

PageRank vector x and the transition tensor P. The multilin-

ear PageRank vector x satisfying αR · (x ⊗ x)+ (1− α)u = x

can also be re-interpreted as the stationary distribution of a

particular Markov chain. Specifically, define the matrix

(3.8) P[x] :=

n
∑

k=1

xk Rk.

(Recall that Rk = P(:, :, k) is the kth n × n block of R). The

matrix P[x] is column stochastic because each Rk is column

stochastic and
∑n

k=1 xk = 1. Note that

R · (x ⊗ x) =

n
∑

k=1

Rk (xk x) =















n
∑

k=1

xk Rk















x = P[x] · x.

Hence, x is the stationary distribution of the PageRank

system αP[x] · x + (1 − α)u = x. However, the transition

matrix depends on x itself.

We use the second left eigenvector of P[x] for our

higher-order spectral clustering algorithm. Heuristically,

P[x] is a weighted sum of n “views” of the graph (the

matrices Rk), from the perspective of each node (k, 1 ≤ k ≤

n), according to three-dimensional graph data (the tensor T).

If node k has a large influence on the three-dimensional data,

then xk will be large and we will weight data associated with

node k more heavily. The ordering of the eigenvector will be

used for a sweep cut on the vertices.

3.4 Sweep cuts The last remaining step is to generalize

the notion of the sweep cut (Sec. 2.4). Recall that the sweep

cut takes some ordering on the nodes, σ, and computes some

score f (S k) for each cut S k = {σ1, . . . , σk}. Finally, the

sweep cut procedure returns arg maxS k
f (S k). The eigenvec-

tor from Sec. 3.3 provides us with an ordering for a sweep

cut, just as in the two-dimensional case (Sec. 2.4). We gen-

eralize the cut and volume measures as follows:

cut3(S ) :=
∑

i, j,k∈V

T(i, j, k) −
∑

i, j,k∈S

T(i, j, k) −
∑

i, j,k∈S̄

T(i, j, k)

vol3(S ) :=
∑

T(S ,V,V).

And we define “higher-order conductance” (denoted φ3) and

“higher-order expansion” (denoted ρ3) as

φ3 (S ) :=
cut3(S )

min
(

vol3(S ), vol3(S̄ )
)(3.9)

ρ3(S ) :=
cut3(S )

min
(

|S |, |S̄ |
) .(3.10)

This definition ensures that φ3(S ) ∈ [0, 1], as in standard

conductance.
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Algorithm 1: Tensor Spectral Partitioning

Data: G = (V, E), |V | = n, T ∈ Rn×n×n
+ , dangling

distribution vector u, α ∈ (0, 1)

Result: Set of nodes S ⊂ V

for 1 ≤ i, j, k ≤ n, T(i, j, k) , 0 do
P(i, j, k)← T(i, j, k)/

∑

i T(i, j, k)

for j, k such that
∑

i T(i, j, k) = 0 do
P(:, j, k)← u

x← MultilinearPageRank(α, P)

Rk ← P(:, :, k)

P[x]←
∑

k xk Rk

Compute second left eigenvector z of P[x]

σ← sorted ordering of z

S ← SweepCut(σ,G)

Algorithm 2: Tensor Spectral Clustering (TSC)

Data: G = (V, E), |V | = n, T ∈ Rn×n×n
+ , dangling

distribution vector u, α ∈ (0, 1), number of

clusters C

Result: Partition P of V

if |P| < C then
Partition G into G1 = (V1, E1) and G2 = (V2, E2)

via Algorithm 1.

P = P ∪ {V1,V2}.

Recurse on largest component in P.

3.5 Tensor spectral clustering framework We now have

higher-order analogs of all the spectral clustering tools from

Sec. 2. The central routine of our tensor spectral clustering

framework is given in Algorithm 1, which is the tensor

spectral partitioning algorithm. This subroutine takes a

data tensor T of third-order information about a graph G

and partitions the nodes into two sets. Algorithm 2 is

the clustering algorithm that performs recursive bisection in

order to decompose the graph into several components. This

algorithm can also be used with other partitioning algorithms

[11], and we will take that approach in Sec. 5.

3.6 Complexity The complexity of Algorithm 2 depends

on the sparsity of the data tensor T, i.e.the number of higher-

order structures in the network. The algorithm depends on

the sparsity in three ways. First, all of the higher-order

structures in the network must be enumerated as an upfront

cost. Second, the sparsity affects the complexity of the

multilinear PageRank subroutine in Algorithm 1. Third,

the number of non-zeroes in P[x] is equal to the number

of the higher-order structures. When performing recursive

bisection (Algorithm 2), there is no upfront cost to enumerate

the structures—we only need to determine which structures

are preserved under the partition.

We argue that the upfront cost is not cumbersome.

Triangle enumeration for real-world undirected networks is

a well-studied problem [7, 30]. For directed graphs, we can:

(1) undirect the graph, (2) use high-performance code to

enumerate the triangles, and (3) stream through the triangles

and only keep those that are the directed structure of interest.

Now, we consider the second and third computations.

Let T be the number of non-zeroes in T. There are several

methods for computing the multilinear PageRank vector in

Algorithm 1 [13]. We use the shifted fixed point method

(akin to the symmetric higher-order power method [20]).

Each iteration takes O(T ) time, and we found that this

method converges very quickly—usually within a handful of

iterations. The computation of the second left eigenvector of

P[x] dominates the running time. We use the power method

to compute this eigenvector. Since P[x] has T non-zero

entries, each iteration takes O(T ) time.

Finally, we look at the relationship between T and the

size of the graph. In theory, T can be O(n3), but this is

far from what we see in practice. For the large networks

considered in Sec. 6, T ≤ 6m (see Table 1).

To summarize, the majority of our time is spent comput-

ing the eigenvector of P[x]. Each iteration takes O(T ) time,

and T ≤ 6m for the algorithms we consider. Standard spec-

tral algorithms also compute an eigenvector with the power

method, but each iteration is only O(m) time. Thus, we can

think of our algorithms as running within an order of magni-

tude of standard algorithms. However, when moving beyond

third-order structures, we note that T can be much larger.

4 Generalizations and directed 3-cycle cut

Before transitioning to applications, we mention two impor-

tant generalities of our framework and discuss directed 3-

cycle cuts. The directed 3-cycle will play an important role

for our applications in Sections 5 and 6.

4.1 Generalizations Our first generalization deals with

data beyond three dimensions. While we have presented the

algorithm with three-dimensional data, the same ideas carry

through for higher-order data. The multilinear PageRank

vector can still be computed, although α must be smaller to

guarantee convergence [13]. However, in practice, we do not

observe large α impeding convergence.

Second, our TSC algorithm is a strict generalization of

traditional spectral clustering in the following sense. There

is a data tensor T such that for any multilinear PageRank

vector x, we compute the same eigenvector that conductance

cut computes. In particular, we can always define T(i, j, k) =

Ai j, where A is the adjacency matrix. Then Rk = P,

1 ≤ k ≤ n, and P[x] =
∑

k xkP = P
∑

k xk = P.

4.2 Directed 3-cycle cuts We now turn our attention to a

particular three-dimensional representation of directed graph
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data: directed 3-cycles (D3Cs), i.e., sets of edges (i, j), ( j, k),

and (k, i) for distinct nodes i, j, and k. Such structures

are important for community detection [19] and are natural

motifs for network feedback. We will use this structure for

applications in Sections 5 and 6. The data tensor we use for

directed 3-cycle cuts is

(4.11) T(i, j, k) =



















2 i, j, k form two D3Cs

1 i, j, k form one D3C

0 otherwise

Nodes i, j, and k form two D3Cs if and only if every possible

directed edge between them is present. When T(i, j, k) = 1,

we do not differentiate between 0, 1, or 2 reciprocated edges.

For directed 3-cycle cut, we want to find partitions of the

graph that do not cut many D3Cs.

4.3 Strongly connected components We now show that

TSC correctly breaks up strongly connected components

when using the data tensor in Eqn. (4.11). Suppose we

have an undirected graph G = (V, E) with two connected

components V1 and V2. A standard result of the spectral

method for conductance cut on undirected graphs (Sec. 2.3)

is that there is a second left eigenvector z of P such that

zT P = z, and sign(zi) = −sign(z j) for i ∈ V1, j ∈ V2

[6]. This means that the ordering induced by the eigenvector

correctly separates the components. A similar result holds

for strongly connected components in a directed graph G

using the directed Laplacian.

We now present a similar result for directed 3-cycle

cut. First, we observe the following: there is no directed

3-cycle that has nodes from different strongly connected

components. Now, Lemma 4.1 shows that if we have a

graph with two strongly connected components, then, under

some conditions, the second left eigenvector computed by

Algorithm 1 correctly partitions the two strongly connected

components.

Lemma 4.1. Consider a directed graph G = (V, E) with two

components V1 and V2 such that there are no directed 3-

cycles containing a node i ∈ V1 and j ∈ V2. Assume

that the directed 3-cycle tensor T is given by Eqn. (4.11).

Augment the corresponding transition matrices Rk with a

sink node t so that transition involving j ∈ V1, k ∈ V2 (or

vice versa) jump to the sink node, i.e., P(i, j, k) = I (i = t).

Finally, instead of using the dangling distribution vector u

to fill in P, assume that when
∑

i T(i, j, k) = 0 for j, k ∈ V1,

P(i, j, k) = I(i ∈ V1)/|V1|. (And the same for transitions

involving j, k ∈ V2).

Then P[x] has a second left eigenvector z with eigen-

value 1 such that zTe = 0 and sign(zi) = −sign(z j) for any

i ∈ V1, j ∈ V2.

Proof. See the full version of the paper.1

1Available from https://github.com/arbenson/tensor-sc.

5 Applications on synthetic networks

We now explore applications of our TSC framework. The

purpose of this section is to illustrate that explicitly parti-

tioning higher-order network data can improve partitioning

and clustering on directed networks. The examples that fol-

low are small and synthetic but illustrative. In future work,

we plan to use these ideas on real data sets.

For the applications in this section, we use the following

parameters for the tensor spectral clustering algorithm: α =

0.99 for the multilinear PageRank vector, γ = 0.01 for SS-

HOPM, u = u = 1
n
e, and the higher-order conductance score

function (Eqn. (3.9)).

5.1 Layered flow networks Our first example is a net-

work consisting of multiple layers, where feedback loops

primarily occur within a layer. Information tends to flow

“downwards” from one layer to the next. In other words,

most edges between two layers point in the same direction.

Figure 2 gives an example of such a network with three lay-

ers, each consisting of four nodes.

We are interested in separating the layers of the network

via our TSC algorithm. Feedback in a directed network is

synonymous with directed cycle. For this example, we count

all directed 2-cycles (i.e., reciprocated edges) and directed

3-cycles. In order to account for the directed 2-cycles, we

will say that the data tensor T is equal to one for any index

of the form (i, i, j), (i, j, i), or ( j, i, i) when nodes i and j have

reciprocated edges. Formally, the data tensor is:

T(i, j, k) =































2 i, j, k distinct and form two D3Cs

1 i, j, k distinct and form one D3C

1 (k = j or k = i) and (i, j), ( j, i) ∈ E

1 j = i and (i, k), (k, i) ∈ E

Figure 2 lists the three communities found by (1) TSC

(Algorithm 2 with C = 3), (2) the directed Laplacian

(DL), and (3) the directed Laplacian on the subgraph only

including edges involved in at least one directed 2-cycle

or directed 3-cycle (Sub-DL). TSC is the only method that

correctly identifies the three communities. Sub-DL performs

almost as well, but misclassifies node 1, placing it with the

green nodes two layers beneath. In general, DL does not

do well because there are a large number of edges between

layers, and the algorithm does not want to cut these edges.

5.2 Anomaly detection Our second example is anomaly

detection. In many real networks, most directed 3-cycles

have at least one reciprocated edge [19]. Thus, a set of

nodes with many directed 3-cycles and few reciprocated

edges between them would be highly anamolous. The goal

of this example is to show that our TSC framework can find

such sets of nodes when they are planted in a network.

Figure 3 shows a network where the anomalous cluster

we want to identify is nodes 0–5. All triangles between
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0

12
3

4 5

6 7

8 9

10 11

TSC {0, 1, 2, 3},

{4, 5, 6, 7},

{8, 9, 10, 11}

DL {1, 2, 3, 6, 7, 10},

{0, 4, 5, 8, 9},

{11}

Sub-DL {8, 10, 11},

{9},

{0, 1, 2, 3, 4, 5, 6, 7}

Figure 2: (Left) Layered flow network, where almost

all feedback occurs at three different layers (specified by

the blue, red, and green nodes). There are many edges

going from one layer to the layers below it. (Right) Three

communities found when using TSC, the directed Laplacian

(DL), and the directed Laplacian on the subgraph of edges

participating in at least one directed 2- or 3-cycle (Sub-DL).

Only TSC correctly identifies all three communities.

nodes 0–5 are directed 3-cycles with no reciprocated edges.

Nodes 6–21 connect to each other according to a Erdős-

Rényi model with edge probability 0.25. Finally, nodes 0–

5 each have four outgoing and two incoming edges with

nodes 6–21. In total, there are 18 directed 3-cycles with no

reciprocated edges, and 8 of them occur between nodes 0–5.

To use the TSC framework, we form a data tensor that

only counts directed 3-cycles with no reciprocated edges:

T(i, j, k) = I ((i, j), ( j, k), (k, i) ∈ E, ( j, i), (k, j), (i, k) < E)

+ I (( j, i), (k, j), (i, k) ∈ E, (i, j), ( j, k), (k, i) < E)

Figure 3 lists the smaller of the two communities found

by (1) TSC (Algorithm 2 with C = 2), (2) the directed

Laplacian (DL), and (3) the directed Laplacian on the sub-

graph only including edges involved in at least one directed

3-cycle with no reciprocated edges (Sub-DL). We see that

only TSC correctly captures the planted anomalous commu-

nity. DL does not capture any information about directed

3-cycles with no reciprocated edges, and hence the cut does

not make sense in this context. Sub-DL correctly captures

nodes 0, 1, 4, and 5, but misses nodes 2 and 3.

6 Directed 3-cycle cuts on large networks

We now transition to real data sets and show that our tensor

spectral partitioning algorithm provides good cuts for the

directed 3-cycle (D3C) data tensor given by Eqn. (4.11). We

compare the following algorithms:

• TSC: This is our proposed method (Algorithm 2 with

C = 2), where the data tensor is given by Eqn. (4.11).

The sweep cut ordering is provided by the second left

eigenvector of P[x].
• Undirected Laplacian (UL): The sweep cut ordering is

provided by the second left eigenvector of the transition

matrix of the undirected version of the graph.

0

1

23

4

5

6

7891011

12

13

14

15

16 17 18 19 20

21

TSC {0, 1, 2, 3, 4, 5,

12, 13, 16}

DL {1, 4, 5, 7, 8, 12,

13, 15, 18, 20}

Sub-DL {0, 1, 4, 5, 9, 11

16, 17, 19, 20}

Figure 3: (Left) Network with planted anomalous clus-

ter (nodes 0–5). Between these nodes, there are many

directed 3-cycles with no reciprocated edges (thick black

lines). Nodes 6–22 follow an Erdős-Rényi graph pattern with

edges indicated by dashed lines. (Right) Smaller of two com-

munities found by TSC, the directed Laplacian (DL), and the

directed Laplacian on the subgraph with only edges involved

in a directed 3-cycle with no reciprocated edges (Sub-DL).

Only TSC finds the entire anomalous cluster.

• Directed Laplacian (DL) [5]: The sweep cut ordering

is provided by the second left eigenvector of Psym in

Eqn. (2.4).

• Asymmetric Laplacian (AL) [4]: The sweep cut or-

dering is provided by the second left eigenvector of P.

• Co-clustering (Co) [9, 28]: The sweep cut ordering

is based on the second left and right singular vectors

of a normalized adjacency matrix. Specifically, let

Drow = diag(Ae) and Dcol = diag(ATe) and let UΣVT

be the singular value decomposition of D
−1/2
row AD

−1/2

col
.

The the sweep cut ordering is provided by D
−1/2
row U(:, 2)

or D
−1/2

col
V(:, 2). We take the better of the two cuts.

• Random: The sweep cut ordering is random. This

provides a simple baseline.

6.1 Data preprocessing Before running partitioning algo-

rithms, we first filter the networks as follows: (1) remove all

edges that do not participate in any D3C, and (2) take the

largest strongly connected component of the remaining net-

work. We perform this filtering to make a fairer comparison

between the different partitioning algorithms. Table 1 lists

the relevant networks and statistics for the filtered networks

that we use in our experiments. We limit ourselves to a few

representative networks to illustrate the main patterns we ob-

served. Data for more networks is available in the full ver-

sion of this paper. Networks are available from SNAP [23].

6.2 Results Figure 4 shows the sweep profiles on the net-

works in Table 1. The results are for a single cut of the

network. The plots show the higher-order conductance

(Eqn. (3.9)), higher-order expansion (Eqn. (3.10)), and den-

sity of the smaller of the partitionined vertex sets. For

email-EuAll and wiki-Talk, higher-order conductance

is the same for most algorithms, but TSC has much bet-
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Figure 4: (Top row) Higher-order conductance, φ3(S ), as a function of the smaller vertex partition set (|S |). The size of

the vertex set runs from twenty to half the nodes in the network. (Middle row) Higher-order expansion, ρ3(S ). (Bottom

row) Density of the cluster. For email-EuAll and wiki-Talk (left two coumns), higher-order conductance from TSC is

on par with other spectral methods, and higher-order expansion is better for large enough clusters. For soc-Epinions1

and twitter combined, the higher-order conductance and expansion is better using standard clustering algorithms. In all

cases, TSC finds much denser clusters.

Table 1: Statistics of networks used for computing directed

3-cycle cuts. The statistics are taken on the largest strongly

connected component of the network after removing all

edges that do not participate in any D3C.

Network n = |V | m = |E| # D3Cs

email-EuAll 11,315 80,211 183,836

soc-Epinions1 15,963 262,779 738,231

wiki-Talk 52,411 957,753 5,138,613

twitter combined 57,959 1,371,621 6,921,399

ter higher-order expansion when the vertex set gets large

enough. On soc-Epinions1 and twitter combined,

standard spectral methods have better higher-order conduc-

tance and higher-order expansion. Crucially, in all cases,

TSC finds much denser subgraphs. In general, we expect

communities with lots of directed 3-cycles to be dense sets.

Thus, even though TSC sometimes does not always do well

with respect to the score metrics discussed in Sec. 3.4, it is

still finding relevant structure.

Since our goal is to explore structural properties of

the cuts, we did not tune our TSC algorithms for high

performance. Subsequently, we do not compare running

times of the algorithms. However, we note that for each

network, our straightforward implementation of TSC ran in

under 10 minutes using a laptop with 4GB of memory.

7 Related work

While the bulk of community detection algorithms are for

undirected networks, there is still an abundance of meth-

ods for directed networks [25]. There are several spectral

algorithms related to partitioning directed networks. The

ones we investigated in this paper were based on the undi-

rected Laplacian (i.e., standard spectral clustering but ignor-

ing edge directions), the directed Laplacian [5], the asym-

metric Laplacian [4], and co-clustering [9, 28]. Other spec-

tral algorithms are based on dyadic methods [24] and opti-

mizing directed modularity [22].

There is some work in community detection that explic-

itly targets higher-order structures. Klymko et al. weight

directed edges in triangles and then revert to a clustering

algorithm for undirected networks [19]. Clique percola-

tion builds overlapping communities by examining small

cliques [8]. Optimizing the LinkRank metric can identify

communities based on information flow [18], which is sim-

ilar to our use of directed 3-cycles in Sec. 5.1. Multi-way

relationships between nodes are also explicitly handled by

hypergraph partitioners [17] .

Finally, we mention that tensor factorizations have been

used by Huang et al. to find overlapping communities [16].

This work uses new spectral techniques for learning latent

variable models from higher-order moments [2].
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8 Discussion

We have provided a framework for tensor spectral clustering

that opens the door to further higher-order network analy-

sis. The framework gives the user the flexibility to cluster

structures based on his or her application. In Sec. 5 we pro-

vided two applications—layered flow networks and anomaly

detection—that showed how this framework can lead to bet-

ter clustering of nodes based on network motifs. For these

applications, the networks were small and manually con-

structed. In future work, we plan to explore these applica-

tions on large networks.

In Sec. 6, we explored clustering based on directed 3-

cycles. In some cases, TSC provided much better cuts in

terms of higher-order expansion. Interestingly, for some

networks, simply removing edges that do not participate in

a directed 3-cycle and using a standard spectral clustering

algorithm is sufficient for finding good cuts with respect

to higher-order conductance and higher-order expansion.

However, in these cases, we are comparing against baselines

optimized for our specific problem. That being said, TSC

does always identify much denser clusters. The networks

we analyzed were social and internet-based, and it would be

interesting to see if similar trends hold for networks derived

from physical or biological systems.

For the large networks, we did not perform full directed

clustering—we only investigated the sweep profiles. The

higher-level goal of this paper is to explore the ideas in

higher-order clustering, and we leave full-stack algorithms

to future work. One interesting question for such algorithms

is whether we should partition based on recursive bisection

(Algorithm 2) or k-means. These algorithmic variations

provide several opportunities for challenging future work.
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