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Abstract—The QR factorization and the SVD are two
fundamental matrix decompositions with applications
throughout scientific computing and data analysis. For
matrices with many more rows than columns, so-
called “tall-and-skinny matrices,” there is a numerically
stable, efficient, communication-avoiding algorithm for
computing the QR factorization. It has been used in
traditional high performance computing and grid com-
puting environments. For MapReduce environments,
existing methods to compute the QR decomposition
use a numerically unstable approach that relies on in-
directly computing the Q factor. In the best case, these
methods require only two passes over the data. In this
paper, we describe how to compute a stable tall-and-
skinny QR factorization on a MapReduce architecture
in only slightly more than 2 passes over the data. We
can compute the SVD with only a small change and no
difference in performance. We present a performance
comparison between our new direct TSQR method,
indirect TSQR methods that use the communication-
avoiding TSQR algorithm, and a standard unstable
implementation for MapReduce (Cholesky QR). We
find that our new stable method is competitive with
unstable methods for matrices with a modest number of
columns. This holds both in a theoretical performance
model as well as in an actual implementation.

Keywords-matrix factorization, QR, SVD, TSQR,
MapReduce, Hadoop

I. Introduction

The QR factorization of an m×n real-valued matrix A
is:

A = QR

where Q is an m×n orthogonal matrix and R is an n×n
upper triangular matrix. It is a fundamental subroutine in
many advanced data analysis procedures including princi-
pal components analysis, linear regression, and general lin-
ear models. We call a matrix tall-and-skinny if it has many
more rows than columns (m � n). This case is common
in big data applications with billions of data points with
only a few hundred descriptors. In practice, this means
that it is cheap to distribute O(n2) data to all processors
and cheap to perform O(n3) floating point operations in
serial. In this paper, we study algorithms to compute a

QR factorization of a tall-and-skinny matrix for nearly-
terabyte sized matrices on MapReduce architectures [7].

Previous work by one of the authors gave a fast MapRe-
duce method to compute only R [5]. (The details of these
are described further in Sec. II.) In order to compute the
matrix Q, an indirect formulation is used:

Q = AR−1.

For R to be invertible, A must be full-rank, and we assume
A is full-rank throughout this paper. The indirect formu-
lation is known to be numerically unstable. Numerically
stable algorithms are important because they ensure that
the algorithm behaves predictably regardless of the prop-
erties of the input. This feature is vital for implementing
algorithmic libraries that handle the diversity of data
input in real-world applications. We refer readers to the
text by Higham for more on the numerical properties of
various algorithms [11].

The simple process of repeating the algorithm, which is
called iterative refinement, can sometimes be used to pro-
duce a Q factor with acceptable accuracy [14]. However, if
a matrix is sufficiently ill-conditioned, iterative refinement
will still result in a computed matrix Q that is not
orthogonal, and hence, is not nearly the QR factorization
from any matrix. We shall describe a numerically stable
method (Sec. III) that computes Q and R directly in
approximately the same time as performing the repetition
of the indirect computation for some matrices.

In Sec. IV-A, we present a performance model for
our algorithms on a MapReduce cluster, which allows us
to compute lower bounds on running times. Real world
performance is almost always within a factor of two of the
lower bounds (Sec. IV-B).

A. MapReduce motivation
The data in a MapReduce computation is defined by

a collection of key-value pairs. When we use MapReduce
to analyze tall-and-skinny matrix data, a key represents
the identity of a row and a value represents the elements
in that row. Thus, the matrix is a collection of key-value
pairs. We assume that each row has a distinct key for
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simplicity; although we note that our methods also handle
cases where each key represents a set of rows.

There are a growing number of MapReduce frameworks
that implement the same computational engine: first, map
applies a function to each key-value pair which outputs
a transformed key-value pair; second, shuffle rearranges
the data to ensure that all values with the same key are
together; finally, reduce applies a function to all values
with the same key. The most popular MapReduce imple-
mentation – Hadoop [19] – stores all data and intermediate
computations on disk. Thus, we do not expect numerical
linear algebra algorithms for MapReduce to be faster than
state-of-the-art in-memory MPI implementations running
on clusters with high-performance interconnects. However,
the MapReduce model offers several advantages that make
the platform attractive for large-scale, large-data compu-
tations (see also [20] for information on tradeoffs). First,
many large datasets are already warehoused in MapRe-
duce clusters. With the availability of algorithms, such
as QR, on a MapReduce cluster, these data do not need
to be transferred to another cluster for analysis. In fact,
a simple corollary of our analysis is the performance of
the algorithms is largely bounded by simply reading and
writing the data in the MapReduce cluster, indicating that
even using an MPI cluster for the computation would not
greatly reduce running time. Second, MapReduce systems
like Hadoop provide transparent fault-tolerance, which
is a major benefit over standard MPI systems. Other
MapReduce implementations, such as Phoenix++ [18],
LEMOMR [9], and MRMPI [15], often store data in
memory and may be a great deal faster; although, they
usually lack the automatic fault tolerance. Third, the
Hadoop computation engine handles all details of the
distributed input-output routines, which greatly simplifies
the resulting programs.

For the majority of our implementations, we use Hadoop
streaming and the Python-based Dumbo MapReduce in-
terface [2]. These programs are concise, straightforward,
and easy-to-adapt to new applications. We have also
investigated C++ and Java implementations, but these
programs offered only mild speedups (around 2-fold), if
any. The Python implementation uses about 70 lines of
code, while the C++ implementation uses about 600 lines
of code.
B. Success metrics

Our two success metrics are speed and stability. The
differences in speed are examined in Sec. IV-B. To analyze
the performance, we construct a performance model for
the MapReduce cluster. After fitting two parameters to
the performance of the cluster, it predicts the runtime to
within a factor of two. We study stability in an expanded
online version of this manuscript.1 These results show that
only our new direct TSQR method produces a matrix Q
that is numerically orthogonal.

1Available from http://arxiv.org/abs/1301.1071.

II. Indirect QR factorizations in MapReduce

One of the first papers to explicitly discuss the QR
factorization on MapReduce architectures was written by
Constantine and Gleich [5]; however many had studied
methods for linear regression and principal components
analysis in MapReduce [3]. These methods all bear a close
resemblance to the Cholesky QR algorithm we describe
next.

A. Cholesky QR
The Cholesky factorization of an n × n symmetric

positive definite real-valued matrix A is:

A = LLT

where L is an n×n lower triangular matrix. Note that, for
any A that is full rank, AT A is symmetric positive definite.
The Cholesky factor L for the matrix AT A is exactly
the matrix RT in the QR factorization as the following
derivation shows. Let A = QR. Then

AT A = (QR)T QR = RT QT QR = RT R.

Since R is upper triangular and L is unique, RT R = LLT .
The method of computing R via the Cholesky decompo-
sition of AT A matrix is called Cholesky QR.

Thus, the problem of finding R becomes the problem of
computing AT A. This task is straightforward in MapRe-
duce. In the map stage, each task collects rows – recall
that these are key-values pairs – to form a local matrix
Ai and then computes AT

i Ai. These matrices are small,
n×n, and are output by row. In fact, AT

i Ai is symmetric,
and there are ways to reduce the computation by utilizing
this symmetry. We do not exploit them because disk
access time dominates the computation; a more detailed
performance discussion is in Sec. IV. In the reduce stage,
each individual reduce function takes in multiple instances
of each row of AT A from the mappers. These rows are
summed to produce a row of AT A. Formally, this method
computes:

AT A =
#(map tasks)∑

i=1
AT

i Ai

where Ai is the input to each map-task.
Extending the AT A computation to Cholesky QR sim-

ply consists of gathering all rows of AT A on one processor
and serially computing the Cholesky factorization AT A =
LLT . The serial Cholesky factorization is fast since AT A
is small, n × n. The Cholesky QR MapReduce algorithm
is illustrated in Fig. 1.

It is important to note the architecture limitation due
to the number of columns, n. The number of keys emitted
by each map task is exactly n: 0, 1, ... n− 1 (one for each
row of AT

i Ai), and the total number of unique keys passed
to the reduction stage is n. Thus, the row sum reduction
stage can use at most n tasks.

Alternatively, the reduce function can emit a key-value
pair where the key represents the row and column index
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Fig. 1. MapReduce Cholesky QR computation for a matrix A with
4 columns.

of a given entry of AT
i Ai, and the value is the given entry.

This increases the number of unique keys to n2 (or, by
taking symmetry into account, n(n − 1)). It is also valid
to use more general reduction trees where partial row sums
are computed on all the processors, and a reduction to n
processors accumulates the partial row sums. The cost of
this more general tree is the startup time for another map
and reduce iteration. Typically, the extra startup time
outweighs the benefit of additional parallelism.

Each of these variations of Cholesky QR can be de-
scribed by our performance model in Sec. IV-A. For exper-
iments, we use a small cluster (where at most 40 reduce
tasks are available), and these design choices have little
effect on the running times. We use the implementation
where the reduce function takes in rows of AT A as it is
the simplest.

B. Indirect TSQR
One of the problems with Cholesky QR is that the

matrix AT A has the square of the condition number of the
matrix A. This suggests that finite precision computations
with AT A will not always produce an accurate R matrix.
For this reason, Constantine and Gleich studied a succinct
MapReduce implementation [5] of the communication-
avoiding TSQR algorithm by Demmel et al. [8], where map
and reduce tasks both compute local QR computations.
This method is known to be numerically stable [8] and
was recently shown to have superior stability to many
standard algorithms [13]. Constantine and Gleich’s initial
implementation is only designed to compute R. We will
refer to this method as “Indirect TSQR”, because Q may
be computed indirectly with Q = AR−1. In Sec. III, we
extend this method to also compute Q in a stable manner.

We will now briefly review the Indirect TSQR algorithm
and its implementation to facilitate the explanation of the
more intricate direct version. Let A be a matrix that – for
simplicity of explanation – has 8n rows and n columns,

which is partitioned across four map tasks as:

A =

⎡
⎢⎢⎣

A1
A2
A3
A4

⎤
⎥⎥⎦ .

Each map task computes a local QR factorization:

A =

⎡
⎢⎢⎣

Q1
Q2

Q3
Q4

⎤
⎥⎥⎦

︸ ︷︷ ︸
8n×4n

⎡
⎢⎢⎣

R1
R2
R3
R4

⎤
⎥⎥⎦

︸ ︷︷ ︸
4n×n

.

The matrix of stacked upper triangular matrices on the
right is then passed to a reduce task and factored into
Q̃R̃. At this point, we have the QR factorization of A in
product form:

A =

=Q︷ ︸︸ ︷⎡
⎢⎢⎣

Q1
Q2

Q3
Q4

⎤
⎥⎥⎦

︸ ︷︷ ︸
8n×4n

Q̃︸︷︷︸
4n×n

=R︷︸︸︷

R̃︸︷︷︸
n×n

.

The above construction generalizes to the case that A
is not partitioned evenly. If A is m × n, in the first step,
a QR decomposition is computed on the block of A that
is streamed to a map task. The Indirect TSQR method
ignores the intermediate Q factors and simply outputs the
n × n factors Ri in the intermediate stage and R̃ in the
final stage. Fig. 2 illustrates each map and reduce output.
We do not need to gather all R factors onto a single task
to compute R̃. Any reduction tree computes R̃ correctly.
Constantine and Gleich found that using an additional
MapReduce iteration to form a more parallel reduction
tree could greatly accelerate the method. This finding
differs from the Cholesky QR method, where additional
iterations rarely helped. In the Sec. III, we show how to
save the Q factors to reconstruct Q directly.

C. Computing AR−1

Given the matrix R, the simplest method for computing
Q is computing the inverse of R and multiplying by A, that
is, computing AR−1. Since R is n×n and upper-triangular,
we can compute its inverse quickly. Fig. 3 illustrates how
the matrix multiplication and iterative refinement step
cleanly translate to MapReduce. This “indirect” method
of the inverse computation is not backwards stable (for
example, see [17]). Thus, a step of iterative refinement may
be used to get Q within desired accuracy. However, the
indirect methods may still have large errors after iterative
refinement if A is ill-conditioned enough. This further
motivates the use of a direct method.
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Fig. 3. Indirect MapReduce computation of Q with iterative
refinement.

D. Pseudo-Iterative Refinement
A variety of fast, randomized algorithms have recently

been developed for least squares problems [1], [12], [16]. A
key idea from this work is that the R factor from the QR
factorization of a small, random subset of the rows of A
is a first-order approximation to the R factor of the entire
matrix. For tall-and-skinny matrices, the number of rows
sampled grows as approximately 100n log n.

The standard iterative refinement procedure will com-
pute the R factor of two m × n matrices: the original
matrix A and the approximate Q factor AR−1. We take
a sampling approach to compute the R factor of only one
m × n matrix and one smaller matrix. To approximate
random sampling, we read a single block of the matrix
from Hadoop Distributed File System (HDFS). Given a
sample of rows, As, we compute its R factor, Rs. We then
compute the approximate Q factor via Q1 = AR−1

s . Next
the R factor of Q1, R1, is computed. Finally, the refined
Q factor is given by Q1R−1

1 . In the implementation, the

computations of Q1 and R1 are performed simultaneously
to avoid writing the disposable factor Q1 to disk. The
refined Q factor is computed by (AR−1

s )R−1
1 , and the R

factor is given by R1Rs. We call this method Pseudo-
Iterative Refinement. The standard iterative refinement
procedure is then the special case of Pseudo-Iterative
Refinement where As = A.

III. Direct QR Factorizations in MapReduce

One of the textbook algorithms to compute a stable QR
factorization is the Householder QR method [10]. This
method always produces a matrix Q where ‖QT Q− I‖2
is on the order of machine error. We have implemented
the algorithm in MapReduce and discuss it in the on-
line version (see previous footnote). However, the House-
holder method involves changing the entire matrix once
for each column. Writing the updated matrix to disk is
prohibitively expensive in MapReduce and our perfor-
mance data showed that Householder QR is an order of
magnitude slower. Thus, we begin our discussion with our
new, stable algorithm, Direct TSQR.

A. Direct TSQR

We finally arrive at our proposed method. Here, we
directly compute the QR decomposition of A in three
steps using two map functions and one reduce function,
as illustrated in Fig. 4. This avoids the iterative nature
of the Householder methods but maintains the stability
properties [8], [10], [13]. For an example, consider again a
matrix A with 8n rows and n columns, which is partitioned
across four map tasks for the first step:

A =

⎡
⎢⎢⎣

A1
A2
A3
A4

⎤
⎥⎥⎦ .

The first step uses only map tasks. Each task collects data
as a local matrix, computes a single QR decomposition,
and emits Q and R to separate files. The factorization
of A then looks as follows, with Qi,1Ri the computed
factorization on the i-th task:

A =

⎡
⎢⎢⎣

Q1,1
Q2,1

Q3,1
Q4,1

⎤
⎥⎥⎦

︸ ︷︷ ︸
8n×4n

⎡
⎢⎢⎣

R1
R2
R3
R4

⎤
⎥⎥⎦

︸ ︷︷ ︸
4n×n

.

The second step is a single reduce task. The input is
the set of R factors from the first step. The R factors
are collected as a matrix and a single QR decomposition
is performed. The sections of Q corresponding to each R
factor are emitted as values. In the following figure, R̃ is
the final upper triangular factor in our QR decomposition
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of A: ⎡
⎢⎢⎣

R1
R2
R3
R4

⎤
⎥⎥⎦

︸ ︷︷ ︸
4n×n

=

⎡
⎢⎢⎣

Q1,2
Q2,2
Q3,2
Q4,2

⎤
⎥⎥⎦

︸ ︷︷ ︸
4n×n

R̃︸︷︷︸
n×n

.

The third step also uses only map tasks. The input is
the set of Q factors from the first step. The Q factors from
the second step are small enough that we distribute the
data in a file to all map tasks. The corresponding Q factors
are multiplied together to emit the final Q:

Q︸︷︷︸
8n×n

=

⎡
⎢⎢⎣

Q1,1
Q2,1

Q3,1
Q4,1

⎤
⎥⎥⎦

︸ ︷︷ ︸
8n×4n

⎡
⎢⎢⎣

Q1,2
Q2,2
Q3,2
Q4,2

⎤
⎥⎥⎦

︸ ︷︷ ︸
4n×n

=

⎡
⎢⎢⎣

Q1,1Q1,2
Q2,1Q2,2
Q3,1Q3,2
Q4,1Q4,2

⎤
⎥⎥⎦

︸ ︷︷ ︸
8n×n

A = QR̃.

One implementation challenge is matching the Q and R
factors to the tasks on which they are computed. In the
first step, the key-value pairs emitted use a unique map
task identifier (e.g., via the uuid package in Python) as
the key and the Q or R factor as the value. The reduce
task in the second step maintains an ordered list of the
keys read. The k-th key in the list corresponds to rows
(k − 1)n + 1 to kn of the locally computed Q factor. The
map tasks in the third step parse a data file containing
the Q factors from the second step, and this redundant
parsing allows us to skip the shuffle and reduce. Another
implementation challenge is that the map tasks in the first
step and the reduce task in the second step must emit the
Q and R factors to separate files. For this functionality,
we use the feathers extension of Dumbo.

The thin singular value decomposition (SVD) of an m×
n real-valued matrix is A is:

A = UΣV T

where U is an m × n orthogonal matrix, Σ is a diagonal
matrix with decreasing, non-negative entries on the diago-
nal, and V is an n×n orthogonal matrix. To compute the
SVD of A, we modify the second step and add a fourth
step. In the second step, we also compute R = UΣV T .
Then A = (QU)ΣV T is the SVD of A. Since R is n × n,
computing its SVD is cheap. The fourth step computes
QU . If Q is not needed, i.e., only the singular vectors are
desired, then we can pass U to the third step and compute
QU directly without writing Q to disk. In this case, the
SVD uses the same number of passes over the data as the
QR factorization. If only the singular values are needed,
then only the first two steps of the algorithm are needed
along with the SVD of R. However, in this case, it would be
favorable to use the TSQR implementation from Sec. II-B
to compute R only.

B. Extending Direct TSQR to a recursive algorithm
A central limitation to the Direct TSQR method is the

necessity of gathering all R factors from the first step
onto one reduce task in the second step. As the matrix
becomes fatter, this serial bottleneck becomes limiting.
We can cope by recursively extending the method and
repeating the computation on the output R from the
first step. The algorithm is outlined in Alg. 1, and the
performance benefits of the algorithms are empirically
analyzed in Sec. IV-C.

Algorithm 1 Recursive extension of Direct TSQR
function DirectTSQR(matrix A)

Q1, R1 = FirstStep(A)
if R1 is too big then

Assign keys to rows of R1
Q2 = DirectTSQR(R1)

else
Q2 = SecondStep(R1)

end if
Q = ThirdStep(Q1, Q2)
return Q

end function

IV. Performance Experiments

We evaluate performance in two ways. First, we build
a performance model for our methods based on how
much data is read and written by the MapReduce cluster.
Second, we evaluate the implementations on a 10-node,
40-core MapReduce cluster at Stanford’s Institute for
Computational and Mathematical Engineering (ICME).
Each node has 6 2-TB disks, 24 GB of RAM, and a single
Intel Core i7-960 3.2 GHz processor. They are connected
via Gigabit ethernet. After fitting only two parameters –
the read and write bandwidth – the performance model
predicts the actual runtime within a factor of two.

Although the cluster is small, we emphasize that the
algorithms scale with the number of map tasks launched,
not the number of nodes. Therefore, these algorithms
scale to larger clusters. This is covered in detail in our
performance model, and the numbers of map tasks used
by the algorithms are listed in Table III.

All matrices used in the experiments are synthetic. The
matrix dimensions are chosen to reflect problems in model
reduction [6] and fast robust linear regression [4].

We do not perform standard parallel scaling studies
due to how the Hadoop framework integrates the com-
putational engine with the distributed filesystem. This
combination makes these measurements difficult without
rebuilding the cluster for each experiment.

A. Performance model
Since the QR decomposition algorithms have more out-

put data (Q and R factors) than input data (the matrix
A), we choose a performance model that emphasizes read
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Fig. 4. Direct MapReduce computation of Q and R.

and write volume. Our performance model targets Hadoop
so that we can more accurately evaluate the performance
of the algorithms for a popular MapReduce framework.

Let Mj and Rj be the number of map and reduce
tasks for step j, respectively. Let Mmax and Rmax be the
maximum number of map and reduce tasks that can run
concurrently on the cluster. Both Mmax and Rmax are
fixed in the Hadoop configuration, and Mmax + Rmax
is usually at least the total number of cores. Let kj be
the number of distinct input keys passed to the reduce
tasks for step j. We define the map parallelism for step j
as pm

j = min{Mmax,Mj} and the reduce parallelism for
step j as pr

j = min{Rmax,Rj , kj}. Let Rm
j , W m

j be the
amount of data read and written in the j-th map step, by
all map tasks, respectively. We have analogous definitions
for Rr

j and W r
j for the j-th reduce step. Finally, let βr and

βw be the inverse read and write bandwidth, respectively.
After computing βr and βw, we can provide a lower bound
for the algorithm by counting disk reads and writes. The
lower bound for a job with N iterations is:

Tlb =
N∑

j=1

Rm
j βr + W m

j βw

pm
j

+
Rr

j βr + W r
j βw

pr
j

.

We use streaming benchmarks to estimate βr and βw for
the 40-core ICME cluster, and the results are in Table I.
On this cluster, Mmax = Rmax = 40. Table II provides
the number of reads and writes for our algorithms, and
Tables III and IV provide the information for computing
pm

j and pr
j . The keys for the matrix row identifiers are

32-byte strings. The computed lower bounds for our algo-
rithms are in Table V. In Sec. IV-B, we examine how close
the implementations are to the lower bounds.

TABLE III
Values of Mj and Rj needed to compute pm

j and pr
j . M1,

M3, and M5 are dependent on the matrix size. Other listed

data are not. The values Mj and Rj for Cholesky and

Indirect TSQR are the same.

Matrix Cholesky, +PIR +IR Direct
Dimensions Indir. TSQR

4.0B × 4 M1 1200 3 1200 2000
2.5B × 10 1680 7 1680 2640
600M × 25 1200 3 1200 1600
500M × 50 1920 3 1920 2560
150M × 100 880 44 880 880

M2 Mmax 1 Mmax Mmax

4.0B × 4 M3 1200 1200 1200 2000
2.5B × 10 1680 1680 1680 2640
600M × 25 1200 1200 1200 1600
500M × 50 1920 1920 1920 2560
150M × 100 880 880 880 880

M4 – Mmax Mmax Mmax

4.0B × 4 M5 – 1200 1200 –
2.5B × 10 – 1680 1680 –
600M × 25 – 1200 1200 –
500M × 50 – 1920 1920 –
150M × 100 – 880 880 –

R1 Rmax Rmax Rmax Rmax
R2 1 1 1 1
R3 – Rmax Rmax –
R4 – 1 1 –

B. Algorithmic comparison

Using one step of iterative refinement yields numerical
errors that are acceptable in a vast majority of cases. In
these cases, performance is our motivator for algorithm
choice. Tables VI and VII show performance results of
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TABLE I
Streaming time to read from and write to disk. Performance is in inverse bandwidth, so larger βr and βw means slower

streaming. The streaming benchmarks are performed with Mmax map tasks.

Rows Cols. HDFS Size read+write read βr/Mmax βw/Mmax

(GB) (secs.) (secs.) (s/GB) (s/GB)

4,000,000,000 4 134.6 713 305 2.2660 3.0312
2,500,000,000 10 193.1 909 309 1.6002 3.1072
600,000,000 25 112.0 526 169 1.5089 3.1875
500,000,000 50 183.6 848 253 1.3780 3.2407
150,000,000 100 109.4 529 151 1.3803 3.4552

TABLE II
Number of reads and writes at each step (in bytes). We assume a double is 8 bytes and K is the number of bytes for a row

key (K = 32 in our experiments). The amount of key data is separated from the amount of value data. For example,

8mn + Km is Km bytes in key data and 8mn bytes in value data. For iterative refinement, psamp is the probability of

sampling a row. psamp = 1 for standard iterative refinement.

Cholesky Cholesky Indirect Indirect Direct
+ I.R TSQR TSQR + I.R. TSQR

Rm
1 8mn + Km psamp(8mn + Km) 8mn + Km psamp(8mn + Km) 8mn + Km

W m
1 8M1n2 + 8M1n 8M1n2 + 8M1n 8M1n2 + 8M1n 8M1n2 + 8M1n 8mn + 8M1n2 + Km + 64M1

Rr
1 8M1n2 + 8M1n 8M1n2 + 8M1n 8M1n2 + 8M1n 8M1n2 + 8M1n 0

W r
1 8n2 + 8n 8n2 + 8n 8R1n2 + 8R1n 8R1n2 + 8R1n 0

Rm
2 8n2 + 8n 8n2 + 8n 8R1n2 + 8R1n 8R1n2 + 8R1n 8M1n2 + KM1

W m
2 8n2 + 8n 8n2 + 8n 8R1n2 + 8R1n 8R1n2 + 8R1n 8M1n2 + KM1

Rr
2 8n2 + 8n 8n2 + 8n 8R1n2 + 8R1n 8R1n2 + 8R1n 8M1n2 + KM1

W r
2 8n2 + 8n 8n2 + 8n 8n2 + 8n 8n2 + 8n 8M1n2 + 32M1 + 8n2 + 8n

Rm
3 8mn + Km 8mn + Km 8mn + Km 8mn + Km 8mn + Km

+ M3(8n2 + 8n) + M3(8n2 + 8n) + M3(8n2 + 8n) + M3(8n2 + 8n) + M3(8M1n2 + 64M1)
W m

3 8mn + Km 8M3n2 + 8M3n 8mn + Km 8M3n2 + 8M3n 8mn + Km

Rr
3 0 8M3n2 + 8M3n 0 8M3n2 + 8M3n 0

W r
3 0 8n2 + 8n 0 8R3n2 + 8R3n 0

Rm
4 – 8n2 + 8n – 8R3n2 + 8R3n –

W m
4 – 8n2 + 8n – 8R3n2 + 8R3n –

Rr
4 – 8n2 + 8n – 8R3n2 + 8R3n –

W r
4 – 8n2 + 8n – 8n2 + 8n –

Rm
5 – 8mn + Km – 8mn + Km –

+2M5(8n2 + 8n) 2M5(8n2 + 8n)
W m

5 – 8mn + Km – 8mn + Km –
Rr

5 – 0 – 0 –
W r

5 – 0 – 0 –

TABLE V
Computed lower bounds for each algorithm. psamp is the sampling probability for Pseudo-iterative refinement.

Rows Cols. psamp Cholesky Indirect Cholesky Indirect Cholesky Indirect Direct
TSQR +PIR TSQR+PIR +IR TSQR+IR TSQR

Tlb (secs.)

4,000,000,000 4 0.0025 1803 1803 1821 1821 2343 2343 2528
2,500,000,000 10 0.0042 1645 1645 1655 1655 2062 2062 2464
600,000,000 25 0.0025 804 804 812 812 1000 1000 1237
500,000,000 50 0.0016 1240 1240 1250 1250 1517 1517 2103
150,000,000 100 0.0500 723 723 735 735 884 884 1217

TABLE VI
Times to compute QR on a variety of matrices with seven MapReduce algorithms; only the DirectTSQR method is

guaranteed to be numerically stable.

Rows Cols. HDFS Size Cholesky Indirect Cholesky Indirect Cholesky Indirect Direct
(GB) TSQR +PIR TSQR+PIR +IR TSQR+IR TSQR

job time (secs.)

4,000,000,000 4 134.6 2931 3460 3276 3620 4365 4741 6128
2,500,000,000 10 193.1 2508 2509 2887 3354 3778 4034 4035
600,000,000 25 112.0 1098 1104 1275 1476 1645 2006 1910
500,000,000 50 183.6 1563 1618 1772 1960 2216 2655 3090
150,000,000 100 109.6 1023 1127 1146 1304 1400 1652 2076
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TABLE IV
Values of kj needed to compute pm

j and pr
j .

Chol. Chol. Indir. TSQR Indir. TSQR Direct
+PIR,+IR +PIR,+IR

k1 n n M1n M1n M1
k2 n n M2n M2n M1
k3 0 n 0 M3n 0
k4 – n – M4n –
k5 – 0 – 0 –

TABLE VIII
Fraction of time spent in each step of the Direct TSQR

algorithm (fractions may not sum to 1 due to rounding).

Rows Cols. Step 1 Step 2 Step 3

4,000,000,000 4 0.72 0.02 0.26
2,500,000,000 10 0.61 0.04 0.34
600,000,000 25 0.56 0.06 0.38
500,000,000 50 0.55 0.07 0.39
150,000,000 100 0.47 0.15 0.38

Cholesky QR and the the Indirect and Direct TSQR
methods for a variety of matrices.

In our experiments, we see that Indirect TSQR and
Cholesky QR provide the fastest ways of computing the
Q and R factors, albeit ‖QT Q− I‖2 may be large. For
all matrices with greater than four columns, these two
methods have similar running times. For such matrices,
the majority of the running time is the AR−1 step, and
this step is identical between the two methods. This is
precisely because the write bandwidth is less than the read
bandwidth.

For the matrices with 10, 25, and 50 columns, Direct
TSQR is competitive with the indirect methods with iter-
ative refinement, albeit slightly slower. The performance
is the most similar for smaller number of columns (e.g.,
with ten columns). However, when the matrix becomes
too skinny (e.g., with four columns), Cholesky QR with
iterative refinement is a better choice. When the matrix
becomes too fat (e.g., with 100 columns), the local gather
in Step 2 becomes expensive. Table VIII shows the amount
of time spent in each step of the Direct TSQR compu-
tation. Indeed, Step 2 consumes a larger fraction of the
running time as the number of columns increases.

Table IX shows how each algorithm performs compared
to its lower bound from Table V. We see that Direct TSQR
diverges from this bound when the number of columns is
too small. To explain this difference, we note that Direct
TSQR must gather all the keys and values in the first step
before performing any computation. When the number
of key-value pairs is large, e.g., with the 4,000,000,000
× 4 matrix, then this step becomes limiting and this is
not accounted for by our performance model. Thus, the
model predicts the runtime of Cholesky QR and Indirect
TSQR with iterative refinement more accurately than
Direct TSQR. Although their lower bounds are greater,
the empirical performance makes these algorithms more
attractive as the number of columns increases. If guaran-

0 50 100 150 200
0

2000

4000

6000

number of columns

ru
nn

in
g 

tim
e 

(s
)

150M rows

 

 

0 50 100 150 200 250
0

2000

4000

6000

8000

number of columns

ru
nn

in
g 

tim
e 

(s
)

100M rows

 

 

0 50 100 150 200 250 300
0

5000

10000

15000

number of columns

ru
nn

in
g 

tim
e 

(s
)

50M rows

 

 

no recursion
recursion

no recursion
recursion

no recursion
recursion

Fig. 5. Running time of Direct TSQR with and without recursion.
The recursive version takes only one recursive step.

teed stability is required, Direct TSQR is the best method,
and the performance cost of stability is quite small for a
modest number of columns.
C. Recursive Direct TSQR

In the preceding performance analysis, we used Di-
rect TSQR without the recursive extension described in
Sec. III-B. Fig. 5 shows the performance benefits for the
recursive extension as the number of columns increases
for matrices with 50, 100, and 150 million rows. In these
experiments, a single recursive step is taken. For these
matrices, the recursive version of the algorithm is faster
once the number of columns is approximately 150.

V. Conclusion

If numerical stability is required, the Direct TSQR
method discussed in this paper is the best choice of
algorithm. It is guaranteed to produce a numerically or-
thogonal matrix. It usually takes no more than twice the
time of the fastest, but unstable method, and it is often
competitive with conceptually simpler methods.

Our code for this paper is openly available, see:
https://github.com/arbenson/mrtsqr

This software runs on any system with Hadoop streaming.
In the future we plan to investigate mixed MPI and

Hadoop code. The idea is that once all the local mappers

271



TABLE VII
Floating point operations per second on a variety of matrices with four MapReduce algorithms.

Rows Cols. 2∗rows∗cols2 Cholesky Indirect Cholesky Indirect Cholesky Indirect Direct
TSQR +PIR TSQR+PIR +IR TSQR+IR TSQR

2∗rows∗cols2/sec

4,000,000,000 4 1.280e+11 4.367e+07 3.140e+07 3.907e+07 3.536e+07 2.932e+07 2.700e+07 2.089e+07
2,500,000,000 10 5.000e+11 1.994e+08 1.993e+08 1.732e+08 1.491e+08 1.323e+08 1.239e+08 1.239e+08
600,000,000 25 7.500e+11 6.831e+08 6.793e+08 5.882e+08 5.081e+08 4.559e+08 3.739e+08 3.927e+08
500,000,000 50 2.500e+12 1.599e+09 1.545e+09 1.411e+09 1.276e+09 1.128e+09 9.416e+08 8.091e+08
150,000,000 100 3.000e+12 2.933e+09 2.662e+09 2.643e+09 2.338e+09 2.143e+09 1.836e+09 1.393e+09

TABLE IX
Performance of algorithms as a multiple of the lower bounds from Table V.

Rows Cols. Cholesky Indirect Cholesky Indirect Cholesky Indirect Direct
TSQR +PIR TSQR+PIR +IR TSQR+IR TSQR

multiple of Tlb

4,000,000,000 4 1.626 2.261 1.799 1.988 1.863 2.023 2.424
2,500,000,000 10 1.525 1.525 1.744 2.027 1.832 1.956 1.638
600,000,000 25 1.366 1.373 1.570 1.818 1.645 2.006 1.544
500,000,000 50 1.260 1.305 1.418 1.568 1.461 1.750 1.469
150,000,000 100 1.415 1.559 1.544 1.746 1.584 1.848 1.770

have run in the first step of the Direct TSQR method,
the resulting Ri matrices constitute a much smaller input.
If we run a standard, in-memory MPI implementation to
compute the QR factorization of this smaller matrix, then
we could remove two iterations from the direct TSQR
method. Also, we would remove much of the disk IO
associated with saving the Qi matrices. These changes
could reduce runtime by at most a factor of 4.

Acknowledgment

Austin R. Benson is supported by an Office of Technol-
ogy Licensing Stanford Graduate Fellowship.

David F. Gleich is supported by a DOE CSAR grant.
We acknowledge funding from Microsoft (award 024263)

and Intel (award 024894), and matching funding by
UC Discovery (award DIG07-10227), with additional
support from ParLab affiliates National Instruments,
Nokia, NVIDIA, Oracle, and Samsung, and support from
MathWorks. We also acknowledge the support of the
US DOE (grants DE-SC0003959, DE-SC0004938, DE-
SC0005136, DE-SC0008700, DE-AC02-05CH11231) and
DARPA (award HR0011-12-2-0016).

We are grateful to ICME for letting us use their MapRe-
duce cluster for these computations.

We are grateful to Paul Constantine for working on the
initial TSQR method and for continual discussions about
using these routines in simulation data analysis problems.

References

[1] H. Avron, P. Maymounkov, and S. Toledo. Blendenpik: Su-
percharging LAPACK’s least-squares solver. SIAM J. Sci.
Comput., 32(3):1217–1236, Apr. 2010.

[2] K. Bosteels. Dumbo. http://klbostee.github.io/dumbo/, 2012.
[3] C. T. Chu, S. K. Kim, Y. A. Lin, Y. Yu, G. R. Bradski, A. Y.

Ng, and K. Olukotun. Map-Reduce for machine learning on
multicore. In B. Schölkopf, J. C. Platt, and T. Hoffman, editors,
Advances in Neural Information Processing Systems 19, pages
281–288. MIT Press, 2006.

[4] K. L. Clarkson, P. Drineas, M. Magdon-Ismail, M. W. Mahoney,
X. Meng, and D. P. Woodruff. The fast Cauchy transform and
faster robust linear regression. In SODA, pages 466–477, 2013.

[5] P. Constantine and D. F. Gleich. Tall and skinny QR factoriza-
tions in MapReduce architectures. In MAPREDUCE2012, page
43.50, 2011.

[6] P. G. Constantine, D. F. Gleich, Y. Hou, and J. Templeton.
Model Reduction with MapReduce-enabled Tall and Skinny
Singular Value Decomposition. arXiv, math.NA:1306.4690,
June 2013.

[7] J. Dean and S. Ghemawat. MapReduce: Simplified data pro-
cessing on large clusters. In Proceedings of the 6th Symposium
on Operating Systems Design and Implementation (OSDI2004),
pages 137–150, 2004.

[8] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou.
Communication-optimal parallel and sequential QR and LU
factorizations. EECS-2008-89, Aug. 2008.

[9] Z. Fadika, E. Dede, M. Govindaraju, and L. Ramakrishnan.
Benchmarking MapReduce implementations for application us-
age scenarios. GRID ’11, pages 90–97, 2011.

[10] G. H. Golub and C. F. van Loan. Matrix Computations. The
Johns Hopkins University Press, third edition, October 1996.

[11] N. J. Higham. Accuracy and Stability of Numerical Algorithms.
SIAM, 2002.

[12] M. W. Mahoney. Randomized algorithms for matrices and data.
arXiv, cs.DS, 2011.

[13] D. Mori, Y. Yamamoto, and S.-L. Zhang. Backward error
analysis of the AllReduce algorithm for Householder QR decom-
position. Jpn. J. Ind. Appl. Math., 29(1):111–130, Feb. 2012.

[14] B. N. Parlett. The Symmetric Eigenvalue Problem. SIAM,
Philadelphia, PA, USA, 1998.

[15] S. J. Plimpton and K. D. Devine. MapReduce in MPI for large-
scale graph algorithms. Parallel Comput., 37(9):610–632, 2011.

[16] V. Rokhlin and M. Tygert. A fast randomized algorithm for
overdetermined linear least-squares regression. Proceedings of
the National Academy of Sciences, 105(36):13212–13217, 2008.

[17] A. Stathopoulos and K. Wu. A block orthogonalization proce-
dure with constant synchronization requirements. SIAM J. Sci.
Comput., 23:2165–2182, June 2001.

[18] J. Talbot, R. M. Yoo, and C. Kozyrakis. Phoenix++: modular
mapreduce for shared-memory systems. MAPREDUCE 2011,
pages 9–16, New York, NY, USA, 2011. ACM.

[19] Various. Hadoop version 0.21. http://hadoop.apache.org, 2012.
[20] J. Zhao and J. Pjesivac-Grbovic. MapReduce: The program-

ming model and practice. http://research.google.com/archive/
papers/mapreduce-sigmetrics09-tutorial.pdf, 2009. Tutorial.

272



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


