
MTF , BIT , and COMB:
A Guide to Deterministic and Randomized Online

Algorithms for the List Access Problem

Kevin Andrew
kandrew@cs.hmc.edu

David Gleich
dgleich@cs.hmc.edu

April 30, 2004

Abstract

In this survey, we discuss two randomized online algorithms for the list access
problem. First, we review competitive analysis and show that the MTF algorithm
is 2-competitive using a potential function. Then, we introduce randomized compet-
itive analysis and the associated adversary models. We show that the randomized
BIT algorithm is 7/4-competitive using a potential function argument. We then in-
troduce the pairwise property and the TIMESTAMP algorithm to show that the
COMB algorithm, a COMBination of the BIT and TIMESTAMP algorithms, is
8/5-competitive. COMB is the best known randomized algorithm for the list access
program.

Contents

1 Introduction 2

2 Competitive Analysis and the List Access Problem 2
2.1 MTF is 2-competitive . 3
2.2 Online Deterministic List Access Algorithms are 2-competitive 5

3 Randomized Competitive Analysis and the BIT Algorithm 7
3.1 Adversary Models . 7
3.2 The BIT Algorithm . 7
3.3 BIT is 7/4-competitive! . 8

4 The Pairwise Property and the COMB Algorithm 12
4.1 The Pairwise Property . 12
4.2 The TIMESTAMP Algorithm . 14
4.3 The COMB Algorithm . 15

5 Conclusion 20

1

1 Introduction

The List Access Problem, originally proposed by Sleator and Tarjan [5], is a common
problem used to introduce online algorithms. As we saw in class (and as we’ll see
in this paper), the best deterministic algorithm for this problem is 2-competitive and
no algorithm can be any better. However, this bound does not apply to randomized
algorithms. Later, we’ll see two randomized algorithms: BIT and COMB. BIT [4]
is 7/4-competitive and COMB [1] is 8/5-competitive. Currently, COMB is the best
known randomized algorithm for the List Access Problem.

2 Competitive Analysis and the List Access Prob-

lem

Before we delve into the details of BIT and COMB, we’ll spend some time reviewing
the results from class. In this section, we review competitive analysis and reproduce
the proofs that the MTF algorithm is 2-competitive and that any deterministic online
algorithm is, at best, 2-competitive.

The List Access Problem is an online algorithm problem. There is a sequence of
requests to elements in a list; however, the online algorithm does not know the entire
sequence and must serve the request in order. In this case, it doesn’t make sense to
look at the actual cost of the algorithm because a suitable adversary could always ask
for the “worst” element at every term. Instead, we examine the competitive ratio of
the algorithm, that is, how much worse it is than the optimal offline algorithm (this is
an algorithm that knows the entire sequence).

Consequently, we define the competitive ratio of an online algorithm as the smallest
number c such that

ALG(σ) ≤ c ·OPT (σ) + α,

where ALG(σ) is the cost of the online algorithm and OPT (σ) is the cost of the offline
algorithm, and α is a constant that does not depend on |σ|. An algorithm is strictly c-
competitive if α = 0. When we do the analysis, we typically try to find c by computing
the ratio ALG(σ)

OPT (σ) for an arbitrary sequence σ. The competitive ratio of an algorithm
gives us one tool to analyze the efficiency of an online algorithm.

Now, we formally define the List Access Problem.

The List Access Problem Given an unordered list with ` elements, and a length
m sequence of requests σ = σ1 σ2 . . . σm for elements in the list, an algorithm must
retrieve each element σi in order. If element x is in position i in the list, then the cost
of finding x and retrieving it is i, i.e. FIND(x) = i. If an element x is not in the list,
then FIND(x) costs ` + 1. After a FIND operation on an element x, an algorithm
may move x forward — this operation is called a free transposition. Alternatively, an
algorithm may transpose two adjacent items in the list for cost 1, which is called a paid
transposition.

Typically, the list access problem is modeled as in Figure 1. We present a de-
tailed example of the costs associated with each operation in the list access problem in
Example 2.1.

2

σ = 1 5 3 8 7 8 7 7 4, . . .

3 8 7 4 1 5 2 10 6 9

Figure 1: In the list access problem, the list is typically pictured as a
length ` array with an associated request sequence σ. See Example 2.1
for a more elaborate example involving the actual operations. The
double bar signifies the start of the list.

When we analyze algorithms for the list access problem, we assume that each re-
quest σi is for an element in the list. Intuitively, it makes sense that we can assume
this without loss of generality because both ALG and OPT will both pay ` + 1 for
that access. Consequently, if f is the total cost in ALG and OPT for all requests
to elements not in the list, then we show that if ALG is c-competitive without these
requests, ALG is still c competitive with them.

Lemma. If ALG is c-competitive on a request sequence without requests to elements
not in the list, then ALG is c-competitive on a request sequence with requests to ele-
ments not in the list.

Proof. If the list has length ` and there are k requests to elements not in the list, then
both ALG and OPT must pay k(` + 1) for each of those requests. If σ− is a request
sequence without requests to elements not in the list, and σ+ is σ− with the k requests
to elements not in the list, then if ALG is c-competitive on σ−, we have

ALG(σ−) ≤ c ·OPT (σ−) + α.

Now, ALG(σ+) = ALG(σ−) + k(` + 1) and likewise OPT (σ+) = OPT (σ−) + k(` + 1).
If we add k(` + 1) to the previous inequality, we get

ALG(σ−) + k(` + 1) ≤ c ·OPT (σ−) + α + k(` + 1).

Since c is always greater than 1 we can replace k(` + 1) on the right with c · k(` + 1),
and we have

ALG(σ+) ≤ c ·OPT (σ+) + α,

or that ALG is c-competitive with requests to elements not in the list.

We now use the result of this lemma to analyze the MTF algorithm for the list
access problem.

2.1 MTF is 2-competitive

Before we can begin the analysis that shows MTF is 2-competitive, we have to define
the MTF algorithm! The MTF , or Move-To-Front, algorithm is simple. After a FIND
operation on an element x, move x to the front of the list using a free transposition.
The MTF algorithm never engages in paid transpositions. Example 2.2 shows how
MTF handles a request sequence.

3

OPT x y

MTF y x

(a) A single inversion

OPT 1 4 2 3
ppppp

iiiiiiii
VVVVVVVVV

KKKKK

MTF 4 3 1 2

(b) Total inversion count

Figure 2: In the first figure, we illustrate an inversion of two elements
y and x. In the second figure, we show how the elements are permuted
between the two lists. If we count the number of intersections between
the lines, we count the number of inversions. Hence, there are three
inversions in the second figure. The non-inverted elements are (1, 2),
(2, 4), and (3, 4).

Theorem 2.1. MTF is 2-competitive.

Proof. With the definition of the MTF algorithm, and the previous lemma, we can
show that MTF is 2-competitive by analyzing a list with ` element, over a request
sequence σ without accesses to elements not in the list. Interestingly, we do not need
to know the optimal offline algorithm, OPT . To prove this result we use a potential
function argument. A potential function Φ is a function of some aspect of the problem
such that at the start of the algorithm, Φ = 0, and at the end of the algorithm Φ ≥ 0.
If we have operations 1, . . . , f , then we can get an upper bound on the cost of the
algorithm by examining the amortized cost

ĉi = ci + Φi − Φi−1 1 ≤ i ≤ f,

where ci is the true cost of operation i, and Φi is the potential after operation i. Notice
that the total amortized cost is

∑
i ĉi =

∑
i (ci + Φi − Φi−1) =

∑
i ci+

∑
i (Φi − Φi−1) =∑

i ci+Φf , where the last equality is because we had a telescoping sum. Because Φf ≥ 0
according to the definition of the potential function, we have that

∑
i ĉi ≥

∑
i ci, or

that the sum of all ĉi upper bounds the actual cost of the algorithm.
In the following analysis, we will use the potential function

Φ = the number of inversions between MTF and OPT .

Formally, an inversion is an ordered pair of items (y, x) such that y precedes x in
MTF ’s list and x precedes y in OPT ’s list. In Figure 2 we graphically illustrate an
inversion and provide a helpful way to count the total number of inversions.

With the potential function Φ and the definition of inversion, we can now show
that MTF is 2-competitive. Let σ = σ1σ2 . . . σm. On σi, 1 ≤ i ≤ m, MTF finds σi

in the list and moves it to the front, whereas OPT makes a series of 0 or more paid
transpositions, finds σi, and may make a free transposition. We will show that on each
σi, ĉi ≤ 2OPTCOSTi where ĉi is the amortized cost of MTF , and OPTCOSTi is the
cost for all of OPT ’s work.

Recall ĉi = ci + ∆Φ = ci + ∆ΦMTF + ∆ΦOPT, where ci is the cost of MTF to find
element σi, ∆ΦMTF is the change in potential due to MTF moving x to the front, and
∆ΦOPT is the change in potential due to moves by OPT . Let σi = x. If x is in position
k, then ci = k. Let v be the number of elements in front of x in MTF ’s list, but after x

4

in OPT ’s list. Since x is at position k, then there are k− 1− v other elements in front
of x in MTF ’s list. Hence, ∆ΦMTF = −v + (k − 1− v), because we remove inversions
due to the v elements which are “realigned,” but introduce inversions in the k − 1− v
other elements. However, notice that if x is in position j in OPT ’s list, then k− v ≤ j,
because v was everything in front of x in MTF ’s list, but not in OPT ’s. So, what is
left (k − v) can be no larger than what is left in front of x in OPT ’s list.

Now, if OPT makes any paid transposition, those, at worst, increase the potential
by 1 for each transposition. If OPT moves x to the front, then this just decreases the
potential because we remove all inversions due to x. If

OPTCOSTi = OPT FINDi + OPT PAIDi,

then because k − v ≤ j, OPT FINDi ≤ j — thus we have k − v as a lower bound on
the cost for OPT FINDi. Also, ∆ΦOPT ≤ OPT PAIDi.

At this point, we have all the pieces we need.

ĉi = ci + ∆ΦMTF + ∆ΦOPT

≤ k + (−v) + (k − 1− v) + OPT PAIDi

= 2(k − v)− 1 + OPT PAIDi

≤ 2OPT FINDi + 2OPT PAIDi

= 2OPTCOSTi.

Thus,

MTF (σ) =
∑

i

ci ≤
∑

i

ĉi ≤
∑

i

2OPTCOSTi = 2
∑

i

OPTCOSTi = 2OPT (σ),

or MTF is 2-competitive.

2.2 Online Deterministic List Access Algorithms are 2-
competitive

Although we don’t formally prove the lower bound for the deterministic List Access
problem, we do sketch the result.

Claim. For the list accessing problem with a list of ` items, any deterministic online
algorithm has a competitive ratio of at least 2− 2

`+1 .

The proof proceeds using an adversary that requests the last element in ALG’s
list at every step, so ALG costs `m on a request sequence with m elements. Then,
it uses an averaging argument over offline algorithms that permute the list initially
and then never reorder. With this setup, the cost of accessing any item in the list
(over all `! algorithms) is `(`+1)

2 · (`− 1)!. Taking the average over all algorithms for m
requests shows that an algorithm cannot be better than 2 − 2

`+1 -competitive against
the average of a set of offline algorithms, and cannot be any more competitive against
a true optimal offline algorithm.

5

Example 2.1 Starting with the list from Figure 1, we demonstrate the cost of various
operations and the subsequent state of the list. After a FIND(10) operation, an algorithm
may move the element 10 to any forward position. At any point, any algorithm may swap
two adjacent elements with a paid transposition, such as PAID(1) which swaps 1 and 5.

��

FIND(10)

3 8 7 4 1 5 2 10 6 9YY EE

PAID(1)

Example 2.2 When MTF services this request sequence σ there are no paid transpositions,
all the cost is from the FIND operations. The bold number at the head of the list is the
element that was moved. In this example, MTF (σ1−5) = 5 + 6 + 3 + 4 + 5 = 23, we leave
computing the total cost of MTF on σ to the reader.

σ = 1 5 3 8 7 8 7 7 4.

3 8 7 4 1 5 2 10 6 9

↓ FIND(1) = 5

1 3 8 7 4 5 2 10 6 9

↓ FIND(5) = 6

5 1 3 8 7 4 2 10 6 9

↓ FIND(3) = 3

3 5 1 8 7 4 2 10 6 9

↓ FIND(8) = 4

8 3 5 1 7 4 2 10 6 9

↓ FIND(7) = 5

7 8 3 5 1 4 2 10 6 9

6

3 Randomized Competitive Analysis and the BIT

Algorithm

Randomized competitive analysis is more complicated than traditional, deterministic
competitive analysis due to the uncertainty in the randomized algorithm. Instead
of examining the worst-case performance over all input sequences σ, we examine the
expected value of the algorithm over each input sequence σ. Thus, a randomized online
algorithm is c-competitive if

E[ALG(σ)] ≤ c · E[OPT (σ)] + α.

In this formula, we need to take the expected value of the optimal algorithm as well,
because different types of analysis give the optimal algorithm and associated adversary
different properties.

3.1 Adversary Models

Another distinction of randomized online algorithms compared to deterministic ones
is the range of adversary models available. For deterministic algorithms, an adversary
cannot gain any new knowledge by changing the input sequence in response to the
online algorithm because the algorithm is deterministic! However, in the randomized
case, the adversary could gain valuable information by watching the online algorithm’s
behavior. Therefore, there are three main adversary models studied: oblivious, adap-
tive online, and adaptive offline.

• The oblivious adversary acts much in the same way as the traditional adversary.
The entire input sequence is created in advance and the adversary may service it
in the optimal offline manner. The adversary knows the structure of the online
algorithm (including any probability distributions used), but none of its random
choices.

• The adaptive online adversary gets to create the input sequence one item at
a time, while observing the choices made by the online algorithm. Therefore, it
can create the most heinous request possible at each step. However, it must then
service the request online as well, with no knowledge of future requests.

• The adaptive offline adversary creates the input sequence in the same manner
as the adaptive online adversary. However, it gets to service the request sequence
offline, after creating it all.

Notice that an adaptive online adversary could simulate an oblivious adversary by
completely ignoring the online algorithm’s behavior, and servicing all the requests
exactly as the oblivious adversary does. Also, an adaptive offline adversary could
simulate an adaptive online algorithm by servicing the requests (offline) exactly as the
online adversary would. Therefore, we see that the oblivious adversary is the weakest
adversary, and the adaptive offline adversary is the strongest.

3.2 The BIT Algorithm

The BIT algorithm uses a very simple random addition to the MTF algorithm. When
the BIT algorithm begins, it allocates a bit for each element in the list and randomly

7

3 8 7 4 1 5 2 10 6 9
0 1 1 0 0 0 1 0 1 1

Figure 3: A visual display of the data structure the BIT algorithm
uses. The values below the elements in the list are the random bits,
b(x).

initializes this bit to 0 or 1. For an element x, let b(x) be the current value of its bit.
Thus, BIT allocates a total of ` random bits on initialization. Figure 3 shows how this
arrangement might work. On an access for element x, BIT first searches for x. After
BIT finds x, it complements b(x) and if b(x) = 1, then BIT moves element x to the
front of the list, and otherwise leaves it in its position. Example 3.1 demonstrates how
BIT handles a sequence of requests.

One interesting aspect of the BIT algorithm is that it is barely random, that is, the
number of random bits it uses is bounded by the size of the list. Even on a request
sequence with thousands of requests, the BIT algorithm will only use the ` initial
random bits. In contrast, the RMTF algorithm, which moves an element to the front
of the list based on a random bit for each request, uses m bits where m is the length
of the request sequence.1 In fact, the BIT algorithm was the first barely random
algorithm to achieve a competitive ratio smaller than a deterministic algorithm [4].

3.3 BIT is 7/4-competitive!

In this section, we prove the amazing result that BIT is 7/4-competitive using a
potential argument (similar to how we showed MTF was 2-competitive). In the next
section, we will show the COMB algorithm is 8/5-competitive, and as a by-product,
show that BIT is 7/4-competitive a different way. Hence, if you only want to learn
about the COMB algorithm, feel free to skip this section of our paper.

Before we can prove that BIT is 7/4-competitive, we must first prove that the
actual bits, i.e. b(x)’s, stay independent throughout the computation.

Lemma. The value of b(x) at any request is equally likely to be 0 or 1 (i.e. its value
is uniformly distributed in {0, 1}).

Proof. Because BIT initially chose each b(x) randomly with a uniform distribution,
the values are initially equally likely to 0 or 1. In the implementation, b(x) actually
counts the accesses to x mod 2. At any request, there are equally likely to be an even
or odd number of accesses to x, hence b(x) stays equally likely to be 0 or 1 at any
point.

Now, we get to the first big theorem.

1In addition to using more random bits than the BIT algorithm, the RMTF algorithm is amazingly only
2-competitive [3].

8

Theorem 3.1. BIT is 7/4-competitive against oblivious adversaries.

Proof. First, we note that the value of b(x) for any x is unknown to the adversary
because the adversary is oblivious. Thus, we can see that BIT might be able to beat
the deterministic bound because the adversary cannot deterministically foil it. In the
remainder of the proof, we first introduce the potential function Φ(x). We then divide
the request sequence σ into a series of requests for elements and paid transpositions
(by the OPT algorithm). For these two cases, we show that E[BIT (σ)] ≤ 7/4OPT (σ),
and finally conclude that BIT is 7/4-competitive.

Before defining the potential function, we must define an inversion. An inversion
is an ordered pair of items (y, x) such that y precedes x in BIT ’s list and x precedes
y in OPT ’s list. This definition is analogous to the definition used in the proof that
MTF was 2-competitive. For this problem, we call an inversion a type 1 inversion if
b(x) = 0, and a type 2 inversion if b(x) = 1. In fact, the type of an inversion counts
the number of accesses before that element will be moved to the front of the list. If φ1

is the number of type 1 inversions and φ2 is the number of type 2 inversions, then to
show BIT is 7/4-competitive, we use the potential function

Φ = φ1 + 2φ2.

With this potential function, we divide the cost of the BIT and OPT algorithms
into a series of FIND operations and paid transpositions. If operation i is a FIND
operation, then the amortized cost is ĉi = cFIND + ∆Φ. Let x be the element sought
in the FIND operation and let R be a random variable that counts the number of
inversions of the form (y, x). In other words, R counts the number of items in front
of x in BIT ’s list, but not in OPT ’s list. Finally, let k be the cost of OPT on this
particular find operation. Then, cFIND = k + R.

Now, let ∆Φ = A + B + C where A is a random variable counting the change
in potential due to new inversions, B is a random variable counting the change in
potential due to the removal of old inversions, and C is a random variable counting the
change in potential due to inversions changing type. These scenarios account for all
the change in potential. We now show that E[B +C] ≤ −R. Consider what happens if
BIT does not move x to the front of the list. Then all the inversions involving x were
type 2 inversions, so when BIT changed b(x) to 0, all these inversions change to type
1 which decreases the potential by R. If instead, BIT moves x to the front of the list,
then all R inversions will disappear. There could also be additional inversions removed
when OPT moves x forward, but these only decrease the potential further. Since only
one of these two cases can occur on each FIND operation, E[B + C] ≤ −R.

To complete the proof, we need to calculate E[A]. Only OPT can create new
inversions when it moves x forward. If the element x was originally at position k in
OPT ’s list, let k′ ≤ k be the new position of x after OPT moves x forward. Since OPT
is oblivious, it doesn’t know if BIT moved x forward or not. Hence, let’s look at each
element z1, z2, . . . , zk−1 in OPT ’s list in front of x. The algorithms introduce a new
inversion if there is an element zi where zi precedes x in BIT ’s list, and either BIT
or OPT move x in front of zi. Let Zi be a random variable that counts the change
in potential due to each pair of elements (x, zi). To help ease the confusion, we have
provided Figure 4 which we hope will make the following relationships more clear.

If b(x) = 0, then BIT will move x to the front of the list. In the worst case,
this creates a new inversion of type 1 + b(zi) for each of the k′ − 1 elements in front

9

OPT z1 z2 . . . zk′−1 x zk′+1 . . . zk−1 x
k′ k

BIT zi x

Figure 4: In this figure, we have omitted the values of the bits, since
they are random variables unknown to the oblivious adversary. In the
top list here, we are simulating OPT ’s movement of x from position k to
a position k′. In the bottom list, we are visualizing BIT ’s list. The key
things to notice here for the analysis. If BIT leaves x in place, then we
create new inversions with zk′+1, . . . , zk−1. Alternatively, if BIT moves
x to the front, then we create new inversions with z1, . . . , zk′−1.

the the position where OPT moved x. In other words, the only elements that might
contribute to creating new inversions are those in front of x’s new position in OPT .
Hence, Zi ≤ 1 + b(zi) for 1 ≤ i ≤ k′ − 1. Since the lists are not changed past the k′

position, we have that Zi ≤ 0 for k′ ≤ i ≤ k.
If b(x) = 1, then BIT will not move x and b(x) changes to 0. This action could po-

tentially create a new inversion because OPT moved x forward. However, the elements
involved in the inversion are those between the new position of x in OPT and the old
position of x in OPT . Hence, this could create inversions of type 1 (since b(x) = 0)
with zk′ , . . . , zk−1, i.e. Zi ≤ 1 for k′ ≤ i ≤ k − 1. Since the lists are equivalent prior to
k′ we have that Zi ≤ 0 for 1 ≤ i ≤ k′ − 1.

We can enumerate the expected cost of A as

E[A] =
k∑

i=1

E[Zi] ≤
k′−1∑
i=1

1
2

(1 + E[b(zi)]) +
k−1∑
i=k′

1
2
· 1 ≤ 3

4
(k − 1) ≤ 3

4
OPT.

In the second step, half the time Zi, 1 ≤ i ≤ k′ − 1 is positive, and the other half, it
is negative. Likewise for the other portion of the list. E(b(zi))] = 1

2 by the previous
lemma.

The only remaining case is that OPT performs a paid transposition. If OPT
performs a paid transposition, then OPT pays 1. In the worst case, this introduces
a new inversion between OPT and BIT . Since BIT has 0 cost (it never does paid
transpositions), the amortized cost of the operation is just the change in potential,
which is the expected increase in potential due to the new inversion. This expectation
is just 3

2 since half the time it increases 1 (type 1 inversion) and the other half it
increase by 2 (type 2 inversion).

Hence, for all operations, ĉi performed by BIT and OPT , we have that the amor-
tized cost of BIT is less than 7

4 times the amortized cost. Since this holds for each
operation, it holds for all operations, and we know the amortized cost is an upper
bound on the real cost. Hence,

E[BIT (σ)] ≤ 7
4
OPT (σ).

10

Example 3.1 Here we see how BIT behaves differently from the MTF algorithm. Notice
that element 8 is not moved to the front when it is accessed.

σ = 1 5 3 8 7 8 7 7 4.

3 8 7 4 1 5 2 10 6 9
0 1 1 0 0 0 1 0 1 1

↓ FIND(1) = 5

1 3 8 7 4 5 2 10 6 9
1 0 1 1 0 0 1 0 1 1

↓ FIND(5) = 6

5 1 3 8 7 4 2 10 6 9
1 1 0 1 1 0 1 0 1 1

↓ FIND(3) = 3

3 5 1 8 7 4 2 10 6 9
1 1 1 1 1 0 1 0 1 1

↓ FIND(8) = 4

3 5 1 8 7 4 2 10 6 9
1 1 1 0 1 0 1 0 1 1

11

4 The Pairwise Property and the COMB Algo-

rithm

The eventual proof that COMB is 8/5-competitive depends upon a series of results.
The first of these is a particular property of some algorithms called the pairwise prop-
erty. Essentially, if an algorithm has the pairwise property, then we can do all the
analysis for the algorithm on request sequences for only two elements in a two item
list. This greatly simplifies the analysis because the optimal behavior of an algorithm
is often easy to determine in these cases. In contrast, the previous two results did not
explicitly know the behavior of the optimal algorithm.

4.1 The Pairwise Property

Before we state the definition of the pairwise property, we introduce a new cost model
and a set of new notation. First, until now we have used the full cost model for the
list access problem. In this cost model, a FIND operation on an element x in position
i costs i. In the partial cost mode a FIND operation for an element x in position i
costs i− 1. One way of viewing this difference is if we make each element before x pay
for impeding access to x because the algorithm must do some sort of comparison. In
the full cost model, x must pay for comparing to itself. In the partial cost model, we
relax this restriction and do not require x to pay for itself. We now show that analysis
under the partial cost model is sufficient.

Lemma. If ALG is c-competitive on a request sequence in the partial cost model, then
ALG is c-competitive in the full cost model.

Proof. In essence, this proof is exactly like the proof that ALG is c-competitive without
accesses to items not in the list from the first section. If the request sequence has m
FIND operations, then the difference in cost between an algorithm in the partial cost
model and in the full cost model is just m, i.e. ALGf (σ) = ALGp(σ) + m where
ALGf (σ) is the cost of ALG in the full cost model and ALGp(σ) is the cost of ALG
in the partial cost model. Likewise, OPTf (σ) = OPTp(σ) + m. Hence,

ALGp(σ) ≤ c ·OPTp(σ) + α.

Now, add m to the left side and c ·m to the right side, which is alright since c ≥ 1,

ALGp(σ) + m ≤ c ·OPTp(σ) + c ·m + α,

ALGf (σ) ≤ c ·OPTf (σ) + α.

From this point forward, all analysis will be done with the partial cost model!
Now, we introduce ALG∗ notation. Let ALG∗(x, j) be 1 when item x precedes the

element σj (i.e. the jth element requested in σ) in the list on the jth request, and 0
otherwise, including when x = σj . ALG∗(x, j) could be thought of as the charge on
element x for impeding access to element σj in the partial cost model. If the request

12

sequence σ has length m and L is the set of elements in the list, then using ALG∗ we
can write the total cost of ALG,

ALG(σ) =
m∑

j=1

∑
x∈L

ALG∗(x, j).

Next, we interchange the order of the summation. Instead of summing over each
request, we sum over each element and look at its total cost for all requests.

ALG(σ) =
∑
x∈L

m∑
j=1

ALG∗(x, j).

Observe that we can enumerate the set {1, . . . ,m} as {j | there exists y such that σj = y}.
Thus, we can transform the cost of ALG into

ALG(σ) =
∑
x∈L

∑
y∈L

∑
j|σj=y

ALG∗(x, j).

While this transformation seems strange, for each element x we are summing the total
cost that x incurs impeding access to each element y. Now, if we look at pairs of
elements x and y, we can restate the cost.

ALG(σ) =
∑

{x,y}⊆L

∑
j|σj∈{x,y}

(ALG∗(x, j) + ALG∗(y, j)) .

At this point, we have a very odd sum. For each pair of elements x and y, we compute
the cost due to x impeding access to y, and the cost due to y impeding access to x.
Because this is in the partial cost model, in ALG∗(x, j) + ALG∗(y, j), one of the two
values will always be 0! Nevertheless, this equation is a valid method to compute the
total cost of the algorithm.

If we define

ALGxy(σ) =
∑

j|σj∈{x,y}

(ALG∗(x, j) + ALG∗(y, j)) ,

then the cost of the algorithm simplifies to

ALG(σ) =
∑

{x,y}⊆L

ALGxy(σ).

To try and get some intuition about the quantity ALGxy(σ) see Example 4.1.
We now state the pairwise property. An algorithm ALG has the pairwise property

if
ALGxy(σ) = ALG(σxy),

where ALG(σxy) is the cost of ALG on the (boring) two element list of x and y over the
arbitrarily long sequence of requests to x and y from σ. In other words, if we project
the list and the request sequence onto the items x and y (i.e. remove everything else
from the list and σ), then ALG(σxy) is the cost of ALG on the projected list and
request sequence. We now characterize the pairwise property.

13

Lemma. An algorithm satisfies the pairwise property if and only if for every request
sequence σ, when ALG serves σ, the relative order of every two elements x and y in
the list is the same as their relative order when ALG serves σxy.

Proof. In the forward direction, we show that if for every request sequence σ, when
ALG serves σ, the relative order of every two elements x and y is the same as their
relative order when ALG serves σxy, then ALG satisfies the pairwise property. Consider
ALGxy(σ) =

∑
j|σj∈{x,y} (ALG∗(x, j) + ALG∗(y, j)). Since the relative order of the

items is always the same, ALG∗(x, j) = 1 when y is in front of x in Lxy and likewise,
ALG∗(y, j) = 1 when y is in front of x in Lxy. Hence, ALGxy(σ) = ALG(σxy).

In the reverse direction, we show that if an algorithm satisfies the pairwise property,
then when ALG serves σ, the relative order of every two elements x and y is the same
as their relative order when ALG serves σxy. If, by way of contradiction, we assume
this isn’t true, then there exists a step when the relative order of x and y in the list
and in σxy are out of sync. Let σ′ be all the requests prior to the step that is out of
sync. Consider the next request after σ′, request σk. Since the relative orders are out
of sync, one of the partial costs (ALG(x, k)+ALG(y, k) or the cost of σk) will be 1 and
the other will be 0. However, then the algorithms do not have the pairwise property
since we can end σ at this step. Thus we have our contradiction.

We now show that BIT has the pairwise property.

Lemma. BIT has the pairwise property.

Proof. Since BIT is a randomized algorithm, we need to show that the pairwise prop-
erty holds when the bits associated with x and y are shared. Thus, since the behavior
of BIT is independent of the order of the list (e.g. the front of the list does not depend
on the order), BIT has the pairwise property.

4.2 The TIMESTAMP Algorithm

On a request for item x in the list, this (complicated) algorithm moves it directly in
front of the first item in the list that was accessed at most once since the last request
for x. If there is no such item, or x has not been requested before, do nothing. First, we
notice that TIMESTAMP is deterministic. Also, TIMESTAMP is 2-competitive
(as will be shown later, in the analysis of COMB), and so its competitive ratio is tight
(as is MTF ’s).

Lemma. After the TIMESTAMP algorithm has served a request sequence σ, element
x is before element y if and only if the sequence σxy terminates in the subsequence
xx, xyx, or xxy, or if x was before y initially and y was requested at most once.

Proof.

• (⇐) Notice that in the cases where σxy ends in xx or xyx, y is requested at most
once between the final two x’s. Therefore, x must be moved in front of y at the
end. If σxy ends in xxy, then x is requested twice in a row, which moves it in
front of y, and at least twice between the final two y’s in the sequence, if there
are two. Therefore, the final request to y does not move it in front of x, and so x
is before y. If y is requested at most once, then it will not be moved in front of
x ever, and so if x starts before y, it will also end before y.

14

• (⇒) If element x is before element y in the list after TIMESTAMP services σxy,
then one of two things must have happened: either y was requested at most once
between the final two requests for x, or – if there were fewer than 2 requests for x
– x started before y and there were no more than 1 request for y in the sequence.
So we see that x ending before y implies that σxy ends in xx, xyx, or xxy, or
contains at most one y, with x starting before y in the list. This concludes the
proof.

Lemma. TIMESTAMP has the pairwise property.

Proof. This lemma follows from the previous lemma when we apply it to every step
of the request sequence. Note that in the previous lemma, we specified the relative
position of x and y solely based on the access pattern to just elements x and y. Hence,
the relative position of x and y does not depend on the other elements in the request
sequence or the list.

4.3 The COMB Algorithm

The COMB algorithm is simple. With probability 4/5 serve the request sequence with
BIT , with probability 1/5 serve the request sequence with TIMESTAMP . We would
like to note that COMB does not alternate between BIT and COMB, when COMB
“initializes,” it picks either BIT or COMB and serves the entire request sequence with
that algorithm. Intuitively, the COMB algorithm might be better because the worse
case analysis for BIT and TIMESTAMP might be different, thus an adversary could
fool BIT or TIMESTAMP but an oblivious adversary could not succeed against
COMB.

Before proving that COMB is 8/5-competitive, we need a lemma about BIT .

Lemma. After serving the request sequence xyx, or the sequence yx on a list where x
was before y initially, x is before y afterward with probability 3/4. The same theorem
holds with x and y interchanged (i.e. y before x, yxy and xy).

Proof. We prove this using an explicit case analysis. If x is before y and BIT serves
the sequence xyx, the list will have the following orders.

b(y)
0 1

b(x)
0 yx xy
1 xy xy

If x is before y and BIT serves the sequence yx, then the list will have the following
orders.

b(y)
0 1

b(x)
0 xy xy
1 yx xy

The lemma follows since the value of b(x) and b(y) are independent, and in 3 of 4 cases
each time, x precedes y after the sequence is served.

15

With this lemma, we can now prove that COMB is 8/5-competitive.

Theorem 4.1. COMB is 8/5-competitive against oblivious adversaries.

Proof. Since BIT and TIMESTAMP both have the pairwise property, COMB has
the pairwise property. Thus, we can apply the pairwise property theorem and it suffices
to show that COMB is 8/5 competitive against an optimal algorithm on 2 element
lists.

If σxy is an arbitrary request sequence for elements x and y, then we can uniquely
partition σxy into subsequences terminated by two requests to the same item. First
note that in both BIT and TIMESTAMP , if an element is requested twice in a row it
will always be moved to the front of the list. If we assume that element x is first in the
list, then a subsequence may have the form xlyy, xl(yx)kyy, or xl(yx)kx where l ≥ 0
and k ≥ 1. If this subsequence ends in xx, then in both BIT and TIMESTAMP , x
will be first in the list. Hence, the next subsequence will be of the same form. If the
subsequence ends in yy, then y will be first in the list, and the next subsequence will
be of the form ylxx, yl(xy)k, or yl(xy)ky, where l ≥ 0 and k ≥ 1. This partitioning is
unique because one of the list forms must match at each step. If the request sequence
does not end with two accesses to the same element, we simply repeat the last request
so we can partition the sequence, this adds a negligible cost.

Since the two subsequence forms are equivalent if we simply replace x with y, we
can restrict the analysis to only one case. Then, the following costs hold on a list where
x is before y in the partial cost model.

request sequence BIT TIMESTAMP OPT

xlyy 3
2 2 1

xl(yx)kyy 3
2k + 1 2k k + 1

xl(yx)kx 3
2k + 1

4 2k − 1 k

We show these costs by analyzing each algorithm independently. First, when BIT
serves xlyy, the expected cost is 3/2 because all accesses to x cost 0, and y will move
forward after the first access with probability 1/2. After the accesses to the initial xs in
xl(yx)kyy, the first access to y costs 1. The subsequence access to x costs 1/2 because
half the time y moves to the front. At this point, we have seen the sequence yx on a
list where x preceded y, hence x will be at the front of the list with probability 3/4 by
our previous lemma. Subsequently, we assume that each alternating access to x and y
has expected cost 3/4 by the previous lemma.2 The final expected cost of the two ys
is 3/4+1/4. Thus, the total expected cost is 1+1/2+(3/4+3/4)(k−1)+1 = 3

2k +1.
A similar argument shows the expected cost for BIT in the last case is 3

2k + 1
4 .

The cost of the TIMESTAMP algorithm is easier to find because TIMESTAMP
is deterministic. Accessing the sequence xlyy has cost 2 because y is not moved to the
front until the second access to y according to the lemma about TIMESTAMP . On
the sequence xl(yx)kyy the first access to y has cost 1, and the subsequent access to x
costs 0. All further requests to x and y have cost 1 because they constantly move to the
front of the list. Finally, the two ys at the end cost 1 total as the y is moved to the front
after the first access. Hence, TIMESTAMP costs 1+0+2(k−1)+1 = 2k. By the same

2At this step, you may be concerned that the previous lemma doesn’t apply because x doesn’t have to
be before y when serving x after an arbitrary yx. However, the expected cost from the lemma is the worst
case, so we get an upper bound.

16

logic, TIMESTAMP costs 2k − 1 on the final subsequence. This analysis, combined
with the subsequent analysis of OPT , shows that TIMESTAMP is 2-competitive as
previously claimed.

The optimal algorithm has cost 1 on the first subsequence because the y is imme-
diately moved to the front after the accesses to x. On the second subsequence, OPT
must pay 1 for the k alternations and then 1 for the access to the two ys at the end.
On the final subsequence, it is optimal just to keep x at the front of the list for a total
cost of k, i.e. just pay for the ys.

Since the expectation is a linear operator, we just multiply the probability of se-
lecting BIT by its expected cost and do the same for TIMESTAMP . Thus, on the
first subsequence, COMB has cost 4

5 ·
3
2 + 1

5 · 2 = 8
5 . The second subsequence has

cost 8
5k + 4

5 and the third has cost 8
5k. Computing the ratios against OPT shows that

COMB is 8/5-competitive.

17

Example 4.1 The value ALGxy(σ) is slightly strange at first. In this example we provide
a concrete example of this quantity when ALG is the MTF algorithm. Also, we compute
the value of ALG(σxy) to build intuition about the pairwise property. On the right of
each equation, we have provided the state of the list immediately prior to that operation.
For example, on the second line, we show the list immediately prior to σ2. If a particular
operation does not contribute in the final sum, we don’t list a value for that operation. Since
MTF has the pairwise property, notice that the relative position of the two elements in each
list is the same. Hence, MTF24(σ) = MTF (σ24).

In this example, we will use MTF as our algorithm.
Let ` = 4 and

σ = 2 1 1 4 3 1 4 4 3 2.

Then,

MTF24(σ) =
∑

j∈{1,4,7,8,10}

ALG∗(2, j) + ALG∗(4, j)

= 0 1 2 3 4 σ1

2 1 3 4 σ2

1 2 3 4 σ3

+ 1 1 2 3 4 σ4

4 1 2 3 σ5

3 4 1 2 σ6

+ 0 1 3 4 2 σ7

+ 0 4 1 3 2 σ8

4 1 3 2 σ9

+ 1 3 4 1 2 σ10

2 3 4 1 σ10

= 2

MTF (σ24) =
∑

j

MTF (2, 4, 4, 4, 2)

= 0 2 4 σ1

2 4

2 4

+ 1 2 4 σ2

2 4

2 4

+ 0 4 2 σ3

+ 0 4 2 σ4

2 4

+ 1 4 2 σ5

2 4 σ1

= 2

MTF24(σ) = MTF (σ24).

18

Example 4.2 TIMESTAMP is a deterministic algorithm that keeps track of the last two
accesses to each item. Here, we see TIMESTAMP running on a particular request sequence
σ. The first set of numbers represents the RECENT counter for each element, or R(x).
The second set represents the PREV IOUS counter, or P (x). After the first three finds,
only R(x) changes. After the element 5 is requested twice, TIMESTAMP moves 5 to the
front of the list because it was “most previously.” When 3 is eventually requested, 5 had a
more previous access, so 3 moves forward, but not in front of 5.

σ = 3 5 4 5 5 3

4 1 5 3 2
0 0 0 0 0
0 0 0 0 0

↓ FIND(3)
↓ FIND(5)
↓ FIND(4)

4 1 5 3 2
3 0 2 1 0
0 0 0 0 0

↓ FIND(5)

5 4 1 3 2
4 3 0 1 0
2 0 0 0 0

↓ FIND(5)

5 4 1 3 2
5 3 0 1 0
4 0 0 0 0

↓ FIND(3)

5 3 4 1 2
5 6 3 0 0
4 1 0 0 0

19

5 Conclusion

In this tour of list access algorithms, we have come across a number of really interesting
ideas in algorithmic analysis. In the first two proofs, we saw how potential functions can
significantly aid the analysis. In the final proof, we spent a lot of time developing the
pairwise property so that we could restrict our attention to lists of only two elements.
However, there is significantly more research into the list access problem available.
Currently, the best known lower bound on the competitiveness ratio of a randomized
algorithm is 1.50084 due to Ambühl, Gärtner, and von Stengel in 2000 [2]. In fact,
Christoph Ambühl was awarded his doctorate in 2002 for a thesis entitled, On The
List Update Problem. Closing the gap between the best known randomized algorithm
COMB, c = 1.6, and the best known lower bound, c = 1.50084, is an area of active
research.

For more information on this topic, we highly recommend the sources in the refer-
ences. With our introduction to the topic, you should find them fairly accessible.

References

[1] Susanne Albers, Bernhard von Stengel, and Ralph Werchner. A combined BIT
and TIMESTAMP algorithm for the list update problem. Information Processing
Letters, 56(3):135–139, 1995.

[2] C. Ambühl, B. Gärtner, and B. von Stengel. A new lower bound for the list update
problem in the partial cost model. Theor. Comput. Sci., 268(1):3–16, 2001.

[3] Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis.
Cambridge University Press, 1998.

[4] Nick Reingold, Jeffery Westbrook, and Daniel Dominic Sleator. Randomized com-
petitive algorithms for the list update problem. Algorithmica, 11(1):15–32, 1994.

[5] D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28:202–208, 1985.

20

