
purdue university · cs 59000-nmc
networks & matrix computations

L E C T U R E N O T E S

David F. Gleich

September 6, 2011

CS 59000-NMC, 6 September
Please answer the following questions. You may not use any outside references

or technology. Justify and explain all answers. This quiz is for my own evaluation,
so that I can provide better instruction in the course.

Question

Let A be a binary matrix. Suppose this matrix is composed of mostly ones and
that the zeros are stored with a compressed-sparse row data structure. Write
down an efficient algorithm to compute y = Ax give the compressed sparse row
data structure for A’s zeros in the arrays pointer and columns .

Solution

The key insight is that the zero pattern tells us what to exclude from the matrix-
vector product, rather than what to include. Consider that if A was composed
entirely of ones, then:

[Ax]i =
∑

xi

Consequently, if we set α =
∑
xi, then

Ax = αe

where $e$ is the vector of all ones.
Once we have this property, let O be the matrix of all ones. Now consider A

from the problem

A = O −B

where B is a *sparse matrix*with the *zero pattern* from A and each entry is
a one.

Consequently, we can just compute

Ax = αe−Bx

where Bx is just a standard matrix-vector product.

function sparse_zero_matvec(n,pointers,columns,x)

""" Compute a mat-vec with a mostly one matrix, with a sparse zero pattern.

This function will multiply a binary matrix $A$, which is all

ones except for a sparse pattern of zeros, by a vector $x$.

Here the arrays are zero indexed.

@param n the dimension of the matrix

@param pointers the array of pointers for a CSR pattern of zeros in the matrix

@param columns the array of columns for the CSR pattern of zeros

@param an array with the values of x

@return an array such

"""

alpha = 0

1



for xi in x: # assumes x implements an interable interface

alpha += xi

y = [alpha for _ in xrange(n)] # initialize y

for i in xrange(n):

change = 0

for nzi in xrange(pointers[i],pointers[i+1]):

col = columns[nzi]

change += x[nzi]

y[i] -= change # adjust the value

return y

2


