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1 Ways to Describe a Stochastic Process

We will use the biased coin example to illustrate three ways with which we can
describe a stochastic process, a Markov Chain (MC) in particular.

Probabilistic

Random variable X represents the outcome of the experiment where we toss a
specific coin once. There is 0.55 probability for the result to be heads (H) and
0.45 to be tails (T).

Xi =

{

H with probability 0.55
T with probability 0.45

Random Walk

Figure 1a shows a topological description of a sequence of coin tossings. Figure 1b
illustrates a process which is relatively straight forward to define as a graph, but
rather complicated to describe probabilistically.

(a) Biased Coin. (b) It is not trivial to define the
random variables which describe
this system.

Figure 1: Stochastic Processes described as Random Walks.

Transition Matrix

A matrix description of the random walks 1a and 1b is Pa and Pb respectively.
Variable x in Pb denotes a non-zero value. For example, Pb(2, 2) is the probability
of state 2 to remain in this state and Pb(2, 3) is the probability of moving to state
3.

H T

Pa =

[

0.55 0.45
0.55 0.45

]

H

T
Pb =





0 x 0
0 x x

x 0 0





2 Strongly Connected Components

In the past lecture we mentioned different types of Markov states: absorbing,
transient, recurrent, periodic. We will now introduce them in terms of strongly

1



connected components of the random walk graph. We will use the symbol Ck for
the strongly connected component k of the graph.

In a directed graph G(V,E), where i, j ∈ V , the following property must hold:
if i, j ∈ Ck, then there is a path from node i to node j and there is a path from
node j to node i as well. The left column of Figure 2 highlights in dotted boxes
the strongly connected components of two graphs.

In terms of random walks, if i, j ∈ Ck then there exist n1, n2 ∈ Z
+ such that:

Pr(Xn1
= j | X0 = i) > 0 and Pr(Xn2

= i | X0 = j) > 0

In other words, the probability of visiting state j in n1 steps after visiting
state i is positive, and so is the probability of visiting state i in n2 steps after
state j.

Figure 2: Strongly Connected Components of two Graphs (left) and the corre-
sponding Component Graphs (right).

Component Graph

Let GC(VC , EC) be the component graph of graph G(V,E), where:
VC = {Ci : i = 1..|VC |}, EC = {(Ci, Cj) : u ∈ Ci, v ∈ Cj , (u, v) ∈ E}.
The right part of Figure 2 shows the component graphs of the two examples on

the left. Note that we characterize components in the same way we characterize
states of the original graph, e.g. there can be absorbing or transient components.

An important property of GC is that it is a dag (directed acyclic graph). To
see this, suppose there is a cycle between two components as shown in Figure 3a.
According to the definition of a component, though, Ci and Cj should form a
single component. Therefore, there cannot be a cycle.

(a) The Component Graph can-
not have a Cycle.

(b) Invalid Markov Chain graph.

Figure 3: Two Special Cases of Component Graphs.

A consequence of this property is that GC and G have a set of starting vertices
and a set of terminal ones as illustrated in Figure 4. The terminal nodes of a
Markov Chain are required to have self-loops (if one reaches the terminal state,
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one never leaves it). A graph like Figure 3b is not a valid one for a Markov Chain,
since there needs to be a transition out of each state.

Figure 4: A Markov Chain Graph consists of starting and terminal ver-
tices/components. The terminal nodes need to have self-loops.

3 States

Recurrent

Pr(Xn revisits i | X0 = i) = 1
The terminal components of a Markov Chain belong to some type of recurrent

state. The possible types are: absorbing, periodic, aperiodic.

Absorbing

Pr(Xn+1 = i | Xn = i) = 1. Equivalently:

Pij =

{

1 if i = j
0 otherwise

Periodic

The graph can be partitioned in classes of states Ki as shown in Figure 5. Each
of the classes contains no edges inside it, so the transition matrix has a diagonal
of zeros. The cycles have a period p. Figure 6 shows a simple example. Note
that it still may not be possible to reach the state in p steps. Say that for a
particular state, n can take the values 9, 12, 15, .... Although the period is 3,
there are values of n (like 3 and 6) for which one cannot revisit the state.

Aperiodic

It is a periodic state with period 1. A sufficient condition for a state to be
aperiodic is to have a self-loop.

Transient

Pr(Xn = i | X0 = i) < 1
The non-terminal components of a graph are transient. More formally, we

introduce the event:
Et

i = Pr(Xt = i,X1, ...Xt−1 6= i | X0 = i). Then,
∑

∞

i=1 E
t
i < 1
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Figure 5: Classes of states which form cycles of period p. There are no edges
inside each class Ki.

Figure 6: Example of a Markov Chain with period 2.

3.1 Quiz

We were given a random walk and were asked to identify the components and
their type. The solution is shown in Figure 7. For instance, the only absorbing
component of the graph is a terminal component of size 1! (factorial).

3.2 Stochastic Matrix Permutations

See the discussion in Lecture 8 (last lecture).

4 Λ-Step Transition Probabilities

Pr(Xn = j | X0 = i) =
∑

r Pr(Xn = j | Xn−1 = r) Pr(Xn−1 = r | X0 = r) =
(apply the Markov property that history doesn’t matter)
∑

r Prj Pr(Xn−1 = r | X0 = r) =
(repeat the argument)
∑

r,s PrjPsj Pr(Xn−2 = s | X0 = r) =
∑

s(P
2)sj Pr(Xn−2 = r | X0 = r) ⇒

Pr(Xn = j | X0 = i) = (Pn)ij

For the starting state, we have:

X
(0)
i = Pr(X0 = i)

x(o)TPn =
∑

i X
(0)
i Pn

ij

(Pn)Tx(0) =
∑

i X
(0)
i Pn

ij
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Figure 7: The components and their type.

5 Does x0 matter, if n is “big enough”?

It depends. Sometimes yes, sometimes no. Figure 8 shows two examples. If one
starts at node 3, then one ends up at 4. However, starting at node 1 does not
guarantee arriving at 4. The graph in Figure 8b has a single recurrent state that
is aperiodic. For this reason, the initial state does not matter.

(a) x0 matters. (b) x0 does not matter.

Figure 8: Examples showing the role of x0.

Figure 9: Two classes that do not communicate.
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6 When does P
n converge to “something” sim-

ple?

Pn is the matrix for n state transitions. An example of two classes that don’t
communicate is given in Figure 9. In this case P = I.

We want: Pn → eπT (rank 1 matrix)
PT

π = π (eigenvalue-vector problem)
PT has a unique eigenvalue ⇐⇒ it converges to something simple
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