CS 59000-N · Networks & Matrix Computations

Lecture 16

Amr Ebaid

The goals for this lecture are:

- Understand that PageRank is an analytic function of α and what this means.
- Work through the result that PageRank has a unique limit as $\alpha \to 1$.
- Understand how the strong component structure of the web impacts computing PageRank and the choice of α .
- See how to compute Personalized PageRank more efficiently.

The PageRank function

$$(\mathbf{I} - \alpha \mathbf{P})\mathbf{x} = (1 - \alpha)\mathbf{v}$$

Considering the behavior as a function of α

$$(\mathbf{I} - \alpha \mathbf{P})\mathbf{x}(\alpha) = (1 - \alpha)\mathbf{v}$$

 $\mathbf{x}(\alpha)$ exists if $\alpha \neq \frac{1}{\lambda(\mathbf{P})}$, where $\lambda(\mathbf{P})$ is any eigen value of \mathbf{P} , except $\alpha = 1$ Otherwise, if $\alpha = \frac{1}{\lambda(\mathbf{P})} = \frac{1}{\lambda^*}$,

then there exists \mathbf{z} where $P\mathbf{z} = \lambda^* \mathbf{z}$

$$(\lambda^* \boldsymbol{I} - \boldsymbol{P}) \mathbf{z} = 0$$

$$(\boldsymbol{I} - \frac{1}{\lambda^*} \boldsymbol{P}) \mathbf{z} = 0$$

L.H.S is singular \rightarrow No unique solution.

Check an example of matlab code on course website.

PageRank is a vector analytic function f of α , $\alpha \in [-1,1]$

$$\mathbf{x}(\alpha) = (1 - \alpha) \sum_{k=0}^{\infty} (\alpha \mathbf{P})^k \mathbf{v}$$

PageRank is also a rational function.

A rational function $x(\alpha) = \frac{g(\alpha)}{h(\alpha)}$, where g, h are polynomial functions of α . For example, $\frac{\alpha^2}{\alpha^3+1}$.

If
$$A\mathbf{x} = \mathbf{b}$$
, then $\mathbf{x}_i = \frac{det(A_i)}{det(A)}$

So, for pagerank,
$$(\mathbf{I} - \alpha \mathbf{P})\mathbf{x} = (1 - \alpha)\mathbf{v}$$
,

$$\frac{det(\mathbf{A}_i)}{det(\mathbf{A})} = \frac{polynomial}{polynomial}$$

For more details and an example, check section 2.6 in [1].

Derivatives

$$\begin{split} f'(x) &= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \\ \mathbf{x}'(\alpha) &= \lim_{h \to 0} \frac{\mathbf{x}(\alpha+h) - \mathbf{x}(\alpha)}{h} \\ e^T \mathbf{x}'(\alpha) &= e^T \lim_{h \to 0} \frac{\mathbf{x}(\alpha+h) - \mathbf{x}(\alpha)}{h} = \lim_{h \to 0} \frac{e^T \mathbf{x}(\alpha+h) - e^T \mathbf{x}(\alpha)}{h} \stackrel{1}{=} 0 \end{split}$$

$$\frac{d}{dx}f(x)g(x) = f'(x)g(x) + f(x)g'(x)$$

$$\frac{d}{d\alpha}[\mathbf{x}(\alpha) = \alpha \mathbf{P}\mathbf{x}(\alpha) + (1 - \alpha)\mathbf{v}]$$

$$\mathbf{x}'(\alpha) = \alpha \mathbf{P} \mathbf{x}'(\alpha) + \mathbf{P} \mathbf{x}(\alpha) - \mathbf{x}$$

$$(I - \alpha P)\mathbf{x}'(\alpha) = \underbrace{P\mathbf{x}(\alpha) - \mathbf{x}}_{\text{sum of R.H.S is 0}}$$

Limits

$$\mathbf{x}(\alpha) = (\mathbf{I} - \alpha \mathbf{P})^{-1} (1 - \alpha) \mathbf{v}$$

Suppose $P = XDX^{-1}$ is a diagonalization of P

If
$$P = P^T$$
, then $P = VDV^T, V^T = V^{-1}, V^TV = I$

$$P = XDX^{-1}$$

From Perron–Frobenius theorem

$$(I - \alpha P)\mathbf{x} = (1 - \alpha)\mathbf{v}$$

$$(I - \alpha X \begin{pmatrix} I \\ D_1 \end{pmatrix} X^{-1})\mathbf{x} = (1 - \alpha)\mathbf{v}$$

$$X^{-1}X(I - \alpha \begin{pmatrix} I \\ D_1 \end{pmatrix})\underbrace{X^{-1}\mathbf{x}}_{\mathbf{y}} = (1 - \alpha)\underbrace{X^{-1}\mathbf{v}}_{\mathbf{w}}$$

$$(I - \alpha \begin{pmatrix} I \\ D_1 \end{pmatrix})\mathbf{y} = (1 - \alpha)\mathbf{w}$$

$$(I - \alpha I)\mathbf{y}_1 = (1 - \alpha)\mathbf{w}_1 \implies \mathbf{y}_1 = \mathbf{w}_1$$

$$(I - \alpha D)\mathbf{y}_2 = (1 - \alpha)\mathbf{w}_2 \implies \mathbf{y}_2 = \frac{(1 - \alpha)\mathbf{w}_2}{(1 - \alpha d_{ii})}$$

$$\alpha \to 1: \mathbf{y}_1 = \mathbf{w}_1, \mathbf{y}_2(\alpha) \to 0$$

References

[1] David F. Gleich. *Models and Algorithms for PageRank Sensitivity*. PhD thesis, Stanford University, September 2009.