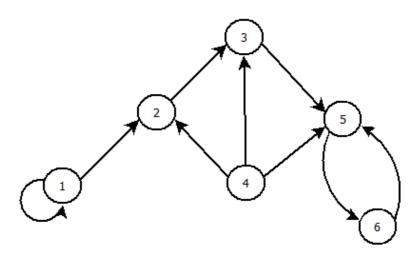
Lecture 14 – Scribed by Xiaoyu Ding PageRank:



Four models to describe PageRank:

- A. Random surfer model;
- B. Random walk with restart;
- C. Mean playing time of a pinball game on the reverse web;
- D. Important page link to other important pages.

All these descriptions are equivalent!

A. Random surfer model (inspired by web surfer):

When we at a page we can choose to

- 1. pick a random link and go there with the probability of α . That is randomly pick a neighbor and click on it
- 2. or do something else with the probability of $1-\alpha$.

The transition will go according to the probability distribution v. v is usually uniform over pages. Depend on no history.

As the graph shown above, we can easily get its random walk transition matrix.

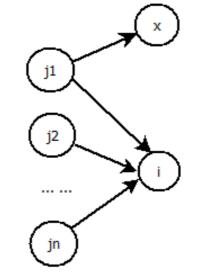
	(1	0	0	0	0	0)
	$\frac{1}{2}$	0	$\frac{1}{2}$	0	0	0
	0	0	0	0	1	0
<i>p</i> =	0	$\frac{1}{3}$	$\frac{2}{0}$ $\frac{1}{3}$ 0	0	$\frac{1}{3}$	0
	0	0	0	0	0	1
	0	0	0	0	1	0)

and then the Markov chain transition matrix will, $P_m = \alpha p + (1 - \alpha)ev^T$; If v = e/n, for example, then P_m is irreducible and it aperiodic. For the graph above, we can easily calculate the P_m as follows:

$$P_{m} = \begin{pmatrix} \alpha\beta/n & \beta/n & \beta/n & \beta/n & \beta/n & \beta/n & \beta/n \\ \frac{\alpha}{2}\beta/n & \beta/n & \frac{\alpha}{2}\beta/n & \beta/n & \beta/n & \beta/n \\ \beta/n & \beta/n & \beta/n & \beta/n & \alpha\beta/n & \beta/n \\ \alpha\beta/n & \frac{\alpha}{3}\beta/n & \frac{\alpha}{3}\beta/n & \alpha\beta/n & \frac{\alpha}{3}\beta/n & \alpha\beta/n \\ \beta/n & \beta/n & \beta/n & \beta/n & \beta/n & \alpha\beta/n \\ \beta/n & \beta/n & \beta/n & \beta/n & \alpha\beta/n & \beta/n \end{pmatrix}$$

It is aperiodic. Thus, it has a unique stationary distribution \mathbf{x}^{T} is a unique stationary distribution. $\mathbf{x}^{T}\mathbf{P}_{m}=\mathbf{x}^{T}$ Exists and is unique when $\mathbf{e}^{T}\mathbf{x} = 1$

D: Important Page link to other important pages.



So, the rank of the page:

$$r_i = \sum_{j \to i} r_j / d_j$$

 $r = \mathbf{P}^T r$, But this may not always exist because we are looking for the stationary distribution of a general Markov chain. Brin and Page's idea was to consider introducing a source of rank. Consider giving each page a rank of $(1-\alpha) v_i$ and letting it use an α fraction of its rank to contribution as above.

We get $\mathbf{r} = \alpha \mathbf{P}^T \mathbf{r} + (1-\alpha)\mathbf{v}$. We give each page an initial Rank. So $(I-\alpha \mathbf{P}^T)\mathbf{r} = (1-\alpha)\mathbf{v}$.

This linear system is non-singular if $\alpha < l$ because $(I - \alpha \mathbf{P}^T)$ is a diagonally dominant. Matrix **A** is diagonally dominant means:

$$|A_{ii}| > \sum_{j \neq i} |A_{ji}| \ \forall i$$

For the example of this lecture, the specific matrix is:

$(1-\alpha)$	$-\alpha/2$	0	0	0	0)
0	1	0	$-\alpha/3$	0	
0	$-\alpha/2$	1	$-\alpha/3$	0	0
0	0	0	1	0	0
0	0	$-\alpha$	$-\alpha/3$	1	$-\alpha$
0	0	0	0	$-\alpha$	1)

Thus, we have a unique PageRank vector for any stochastic matrix P.

Let's go back to the random surfer:

$$P_m^T \mathbf{x} = \mathbf{x}$$

$$(\alpha P^T + (1 - \alpha) \mathbf{v} \mathbf{e}^T) \mathbf{x} = \mathbf{x};$$

$$\mathbf{e}^T \mathbf{x} = \mathbf{1}$$

$$\alpha P^T \mathbf{x} + (1 - \alpha) \mathbf{v} \mathbf{e}^T \mathbf{x} = \mathbf{x}$$

$$\alpha P^T \mathbf{x} + (1 - \alpha) \mathbf{v} = \mathbf{x}$$

$$(1 - \alpha P^T) \mathbf{x} = (1 - \alpha) \mathbf{v};$$
 since we got here, we can see that the equation of the two model describing the Pagerank is the same.

 $e^{T}x = \alpha e^{T}P^{T}$

be definition of PageRank: let **P** be a column-stochastic matrix, then vector a is a

The definition of PageRank: let P be a column-stochastic matrix, then vector a is a pagerank vector when:

 $(1-\alpha \mathbf{P}^T)\mathbf{x} = (1-\alpha)\mathbf{v}$ for $\mathbf{o} < \alpha \leq 1$ and $\mathbf{v} \geq 0, \mathbf{e}^T \mathbf{x} = \mathbf{1};$

quiz:

KATZ Says: $P = D^{-1}A$ and PageRank Says: $(I - \alpha A^T D^{-1})x = (1 - \alpha)v$ The question is in what condition will the two presentation be the same?