Lecture 12 notes

Scribed by Lin Yuan

Centrality

Question: How important is a vertex in a graph?

Definition: A structural index (S.I.) of a graph \(G : (V, E) \) is a function \(C : V \to \mathbb{R} \) such that for isomorphic graphs \(G, H, C_G(v) = C_H(\phi(v)) \), where \(\phi(v) \) is the image of \(v \) in \(H \).

Definition (Matrix form): Let \(f : \mathbb{R}^{n \times n} \to \mathbb{R}^n \) be a function on the adjacency matrix \(A \). \(f \) is a structural index if and only if \(P^T f(P A P^T) = f(A) \), where \(P \) is any permutation matrix.

Example of permutation matrices:

If we have \(x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \) and need \(P x = \begin{bmatrix} x_2 \\ x_1 \\ x_3 \\ x_4 \end{bmatrix} \)

By setting \(P = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \)

we have \(P x = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_1 \\ x_3 \\ x_4 \end{bmatrix} \)

We also have \(P^T P = I \)

Example of \(P \) applied to adjacency matrix.

Suppose we have a graph \(G \) shown below:

![Graph Image](image-url)

1Chapter 3-5 of Network Analysis
Its adjacency matrix A is:

$$A = \begin{bmatrix}
0 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

Suppose G is relabeled into H:

We set the permutation matrix P to be a 6×6 matrix with 1 at the index $(\text{label}_{\text{new}}, \text{label}_{\text{old}})$, such that $P \mathbf{x}_{\text{old}} = \mathbf{x}_{\text{new}}$ and $P^T \mathbf{x}_{\text{new}} = \mathbf{x}_{\text{old}}$.

$$P = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0
\end{bmatrix}$$

$$PAP^T = (PA)P^T$$

$$\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0
\end{bmatrix} = P^T \text{ (flipping rows of } A \text{ according to } P)$$

$$\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0
\end{bmatrix} \text{ (flipping columns according to } P^T)$$

$$\begin{bmatrix}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0
\end{bmatrix} \text{ (this is the adjacency matrix of } H)$$

From now on, we will use a specific graph G to illustrate different kinds of centralities. G is shown below:
Naming convention: we use $C(x)$ is centrality of vertex x or C_x. When we have $C(x) \geq C(y)$ (i.e. $C_x \geq C_y$), we say x is more important than y.

Example 1: out-degree and in-degree $d(x)$.

For G, we have the degree for each vertex marked as below:

To prove $d(x)$ is an S.I.:

- By isomorphism: obviously $d(x)$ is an S.I. because it is label independent.
- By matrix:

\[
\begin{align*}
 f(A) &= Ae \\
 P^T f(PAP^T) &= P^T(PAP^T)e \\
 &= (P^T P)A(P^T e) \\
 &= IAe \\
 &= Ae \\
 &= f(A)
\end{align*}
\]

Example 2: Eccentricity.

Let $e(u) = \max_v d(u,v)$, where $d(u,v)$ denote the distance between u and v.

We have $e_c(u) = \frac{1}{e(u)}$ is an S.I.
Example 3: Closeness / Transmission number.

Let \(t(u) = \sum_v d(u, v) \), where \(d(u, v) \) denote the distance between \(u \) and \(v \).

We have \(t_c(u) = \frac{1}{t(u)} \) is an S.I.

\[
t = 1 \times 4 + 2 \times 4 = 12
\]

Example 4: Betweenness.

\[b_c(u) = \sum_{s, t \neq u} \frac{\sigma_{st}(u)}{\sigma_{st}}. \sigma_{st} \text{ is the number of shortest paths between vertices } s \text{ and } t. \sigma_{st}(u) \text{ is the number of shortest paths between } s \text{ and } t \text{ that pass } u. \]

Suppose we have a graph shown below, then vertex 4 is the most important vertex according to betweeness.

Example 5: Katz Index.

Consider an adjacency matrix \(A \) for representing a voting result, where if \(A_{ij} = 1 \), we say \(i \) voted for \(j \). \([A^T e]\) is the number of votes for \(j \). Suppose people there were a set of people who voted for \(i \) and then \(i \) voted for \(j \). We wanted to count the votes from all of these people who voted for \(i \) as well. Then the count of votes becomes:

\[
[A^T e] + [(A^T)^2 e]
\]

Then following this logic, why cannot we count the votes in an infinite order:

\[
[A^T e] + [(A^T)^2 e] + \cdots + [(A^T)^k e] + \cdots
\]

This scheme has a problem that it’ll generate infinite counts. We can modify the counting scheme a little bit by dampening the weight of vote as the order becomes higher. This is accomplished by multiplying \(\alpha \) to \(A \) where \(0 < \alpha < 1 \). Then we have the count of votes as:

\[
[\alpha A^T e] + [\alpha(A^T)^2 e] + \cdots + [\alpha(A^T)^k e] + \cdots
\]

Katz index is then defined as:

\[
k = \sum_{i=1}^{\infty} (\alpha A^T)^i e
\]
When A is 1-by-1 matrix (i.e. scalar 1), $k_1 = 1 + \alpha + \alpha^2 + \cdots = \frac{1}{1-\alpha}$, if $|\alpha| < 1$. That is, k_1 is a geometric series.

If we generalize geometric series to matrices, we have the Neumann series, which is named after Carl Gottfried Neumann.

Neumann series: $\sum_{l=0}^{\infty} A^l \rightarrow (I - A)^{-1}$ if $\rho(A) < 1$. $\rho(A)$ is the spectral radius of A. (recall $\rho(A) = \max_i (|\lambda_i|)$).

Then we can write Katz index as:

$$k = ((I - \alpha A^T)^{-1} - I)e, \text{ if } \rho(\alpha A^T) < 1$$

$$(I - \alpha A^T)k = (I - (I - \alpha A^T))e$$

$$(I - \alpha A^T)k = \alpha A^Te$$

We can solve this linear system to get Katz index k. The Richardson method gives:

$$(I - \alpha A^T)x = \alpha A^Te$$

$$r^{(t)} = f - (I - \alpha A^T)x^{(t)}$$

$$r^{(t)} = f - x^{(t)} + \alpha A^Tx^{(t)}$$

$$x^{(t+1)} = x^{(t)} + r^{(t)}$$

$$x^{(t+1)} = f + \alpha A^Tx^{(t)}$$

Let $k^{(t)} = \sum_{i=1}^{t} (\alpha A^T)^i e$. In the homework, we’ll see that $x^{(t)} = k^{(t)}$, i.e. the Richardson method produces a truncated sum of the Neumann series.