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Centrality'

Question: How important is a vertex in a graph?

Definition: A structural index (S.I.) of a graph G : (V, E) is a function
C : V — R such that for isomorphic graphs G, H, Cg(v) = Cg(¢(v)), where
¢(v) is the image of v in H.

Definition (Matrix form): Let f : R"*"™ — R™ be a function on the
adjacency matrix A. f is a structural index if and only if PT f(PAPT) = f(A),
where P is any permutation matrix.

Example of permutation matrices:

€ T2
If we have x = | 2| and need Px = |*!
X3 €3
T4 T4
01 00
. 1 0 0 0
By setting P = 00 1 0
0 0 0 1
01 0 0 T To
|10 0 0| |z2f _ |1
we have Px = 00 1 0| |zs| = |2
0 0 0 1f |xg Ty

We also have PTP =1

Example of P applied to adjacency matrix.
Suppose we have a graph G shown below:
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Its adjacency matrix A is:

01 10 01
101 0 00
1101 1 0
0 01 000
0 01 000
100 0 0 O

Suppose G is relabeled into H:

@

We set the permutation matrix P to be a 6 x 6 matrix with 1 at the index
(label ey, labelyq), such that PX,q = Xpeqw and Prx,0w = Xo1a-

P =
PAPT = (PAPT

1 0 0 0 0 0
01 1001
oo 1000
1110110
001000
1 01000
1 0 0 0 00
01 1001
oo 1000
1110110
001000
1 01000
0 1 0 0 0 0]
10010 1
oo 0100
011011
000100
01 0100

0 00001
10 0 0 0O
0000 1O
0 01 0 0O
0 001 0O
01 0000

PT (flipping rows of A according to P)

(flipping columns according to PT)

— O O O oo
OO O OO
O = OO OO
SO O+ OO
oo~ O OO
OO OO~ O

(this is the adjacency matrix of H)

From now on, we will use a specific graph G to illustrate different kinds of

centralities. G is shown below:



Naming convention: we use C(z) is centrality of vertex x or C,. When we
have C(z) > C(y) (i.e. C; > Cy), we say x is more important than y.

Example 1: out-degree and in-degree d(z).

For G, we have the degree for each vertex marked as below:

To prove d(z) is an S.I.:

e By isomorphism: obviously d(z) is an S.I. because it is label independent.

e By matrix:

f(A) = Ae
PTf(PAPT) = PT(PAP")e
= (PTP)A(P"e)

Example 2: Eccentricity.

Let e(u) = max d(u,v), where d(u,v) denote the distance between u and v.

We have ec(u) = ;7 is an S.I.




Example 3: Closeness / Transmission number.

Let t(u) =Y d(u,v), where d(u,v) denote the distance between u and wv.

We have t.(u) = t(t) is an S.L.

t=1x442x4=12

Example 4: Betweeness.

be(u) = > 0;7(:‘) ost is the number of shortest paths between vertices s
s, t#u .
and t. og(u) is the number of shortest paths between s and ¢ that pass u.

Suppose we have a graph shown below, then vertex 4 is the most important
vertex according to betweeness.

Example 5: Katz Index.

Consider an adjacency matrix A for representing a voting result, where if
A;; =1, we say i voted for j. [A”e] is the number of votes for j. Suppose people
there were a set of people who voted for ¢ and then ¢ voted for j. We wanted to
count the votes from all of these people who voted for i as well. Then the count
of votes becomes:

[ATe] + [(AT)?%e]

Then following this logic, why cannot we count the votes in an infinite order:

[ATe] 4+ [(AT)2%] +-- 4 [(AT)ke] + -

This scheme has a problem that it’ll generate infinite counts. We can modify
the counting scheme a little bit by dampening the weight of vote as the order
becomes higher. This is accomplished by multiplying o to A where 0 < a < 1.
Then we have the count of votes as:

[aATe] + [(«AT)%e] + - + [(aAT)re] +---

Katz index is then defined as:



When A is 1-by-1 matrix (i.e. scalar 1), ky = 1+a+a?+--- = 2 if
|a| < 1. That is, k1 is a geometric series.

If we generalize geometric series to matrices, we have the Neumann series,
which is named after Carl Gottfried Neumann.

Neumann series: > A' — (I — A)~'if p(A) < 1. p(A) is the spectral

radius of A. (recall p(A) = max(|\;])).

Then we can write Katz index as:

k= (I-aA")™t —Ie,if p(aA”) <1

(I—aA k=TI —-(I-aAT))e
(I —aATk=aA"e
We can solve this linear system to get Katz index k. The Richardson method
gives:

(I —aAT)x=aATe

r® =f — (I —aAT)x®

r® = f —x® 4 4 4Tx®

x(D) — x® 4 (@)
=f+aATx®

Let k¥ = Zle(aAT)ie. In the homework, we'll see that x® = k¥ i.e.
the Richardson method produces a truncated sum of the Neumann series.



