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Centrality1

Question: How important is a vertex in a graph?

Definition: A structural index (S.I.) of a graph G : (V,E) is a function
C : V → R such that for isomorphic graphs G,H, CG(v) = CH(φ(v)), where
φ(v) is the image of v in H.

Definition (Matrix form): Let f : Rn×n → Rn be a function on the
adjacency matrix A. f is a structural index if and only if P T f(PAP T ) = f(A),
where P is any permutation matrix.

Example of permutation matrices:

If we have x =


x1
x2
x3
x4

 and need Px =


x2
x1
x3
x4



By setting P =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1



we have Px =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1



x1
x2
x3
x4

 =


x2
x1
x3
x4


We also have P TP = I

Example of P applied to adjacency matrix.
Suppose we have a graph G shown below:
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Its adjacency matrix A is:

A =


0 1 1 0 0 1
1 0 1 0 0 0
1 1 0 1 1 0
0 0 1 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0


Suppose G is relabeled into H:
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We set the permutation matrix P to be a 6 × 6 matrix with 1 at the index
(labelnew, labelold), such that Pxold = xnew and P Txnew = xold.

P =


0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0


PAP T = (PA)P T

=


1 0 0 0 0 0
0 1 1 0 0 1
0 0 1 0 0 0
1 1 0 1 1 0
0 0 1 0 0 0
1 0 1 0 0 0

P T (flipping rows of A according to P )

=


1 0 0 0 0 0
0 1 1 0 0 1
0 0 1 0 0 0
1 1 0 1 1 0
0 0 1 0 0 0
1 0 1 0 0 0




0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
1 0 0 0 0 0

 (flipping columns according to P T )

=


0 1 0 0 0 0
1 0 0 1 0 1
0 0 0 1 0 0
0 1 1 0 1 1
0 0 0 1 0 0
0 1 0 1 0 0

 (this is the adjacency matrix of H)

From now on, we will use a specific graph G to illustrate different kinds of
centralities. G is shown below:

2



Naming convention: we use C(x) is centrality of vertex x or Cx. When we
have C(x) ≥ C(y) (i.e. Cx ≥ Cy), we say x is more important than y.

Example 1: out-degree and in-degree d(x).

For G, we have the degree for each vertex marked as below:

d = 3

d = 4

d = 5

d = 4

d = 1

d = 1

d = 1

d = 2d = 1

To prove d(x) is an S.I.:

• By isomorphism: obviously d(x) is an S.I. because it is label independent.

• By matrix:
f(A) = Ae

P T f(PAP T ) = P T (PAP T )e

= (P TP )A(P Te)

= IAe

= Ae

= f(A)

Example 2: Eccentricity.

Let e(u) = max
v

d(u, v), where d(u, v) denote the distance between u and v.

We have ec(u) = 1
e(u) is an S.I.

e = 3

e = 3

e = 3

e = 2

e = 4

e = 4

e = 4

e = 3e = 4
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Example 3: Closeness / Transmission number.

Let t(u) =
∑
v
d(u, v), where d(u, v) denote the distance between u and v.

We have tc(u) = 1
t(u) is an S.I.

t = 1× 4 + 2× 4 = 12

Example 4: Betweeness.

bc(u) =
∑
s,t6=u

σst(u)
σst

. σst is the number of shortest paths between vertices s

and t. σst(u) is the number of shortest paths between s and t that pass u.
Suppose we have a graph shown below, then vertex 4 is the most important
vertex according to betweeness.
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Example 5: Katz Index.

Consider an adjacency matrix A for representing a voting result, where if
Aij = 1, we say i voted for j. [ATe] is the number of votes for j. Suppose people
there were a set of people who voted for i and then i voted for j. We wanted to
count the votes from all of these people who voted for i as well. Then the count
of votes becomes: [

ATe
]

+
[
(AT )2e

]
Then following this logic, why cannot we count the votes in an infinite order:

[
ATe

]
+
[
(AT )2e

]
+ · · ·+

[
(AT )ke

]
+ · · ·

This scheme has a problem that it’ll generate infinite counts. We can modify
the counting scheme a little bit by dampening the weight of vote as the order
becomes higher. This is accomplished by multiplying α to A where 0 < α < 1.
Then we have the count of votes as:

[
αATe

]
+
[
(αAT )2e

]
+ · · ·+

[
(αAT )ke

]
+ · · ·

Katz index is then defined as:

k =

∞∑
l=1

(αAT )le
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When A is 1-by-1 matrix (i.e. scalar 1), k1 = 1 + α + α2 + · · · = 1
1−α , if

|α| < 1. That is, k1 is a geometric series.
If we generalize geometric series to matrices, we have the Neumann series,

which is named after Carl Gottfried Neumann.

Neumann series:
∞∑
l=0

Al → (I − A)−1 if ρ(A) < 1. ρ(A) is the spectral

radius of A. (recall ρ(A) = max
i

(|λi|)).

Then we can write Katz index as:

k = ((I − αAT )−1 − I)e, if ρ(αAT ) < 1

(I − αAT )k = (I − (I − αAT ))e

(I − αAT )k = αATe

We can solve this linear system to get Katz index k. The Richardson method
gives:

(I − αAT )x = αATe

r(t) = f − (I − αAT )x(t)

r(t) = f − x(t) + αATx(t)

x(t+1) = x(t) + r(t)

= f + αATx(t)

Let k(`) =
∑`
i=1(αAT )ie. In the homework, we’ll see that x(t) = k(t), i.e.

the Richardson method produces a truncated sum of the Neumann series.
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