David F. Gleich
October 4, 2011

Lecture 12 notes

Scribed by Lin Yuan

Centrality ${ }^{1}$

Question: How important is a vertex in a graph?
Definition: A structural index (S.I.) of a graph $G:(V, E)$ is a function $C: V \rightarrow \mathbb{R}$ such that for isomorphic graphs $G, H, C_{G}(v)=C_{H}(\phi(v))$, where $\phi(v)$ is the image of v in H.

Definition (Matrix form): Let $f: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{n}$ be a function on the adjacency matrix $\boldsymbol{A} . f$ is a structural index if and only if $\boldsymbol{P}^{T} f\left(\boldsymbol{P} \boldsymbol{A} \boldsymbol{P}^{T}\right)=f(\boldsymbol{A})$, where \boldsymbol{P} is any permutation matrix.

Example of permutation matrices:

$$
\begin{aligned}
& \text { If we have } \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \text { and need } \boldsymbol{P} \mathbf{x}=\left[\begin{array}{l}
x_{2} \\
x_{1} \\
x_{3} \\
x_{4}
\end{array}\right] \\
& \text { By setting } \boldsymbol{P}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \text { we have } \boldsymbol{P} \mathbf{x}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
x_{2} \\
x_{1} \\
x_{3} \\
x_{4}
\end{array}\right]
\end{aligned}
$$

We also have $\boldsymbol{P}^{T} \boldsymbol{P}=\boldsymbol{I}$
Example of \boldsymbol{P} applied to adjacency matrix.
Suppose we have a graph G shown below:

[^0]Its adjacency matrix \boldsymbol{A} is:

$$
\boldsymbol{A}=\left[\begin{array}{llllll}
0 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Suppose G is relabeled into H :

We set the permutation matrix \boldsymbol{P} to be a 6×6 matrix with 1 at the index $\left(\right.$ label $_{n e w}$, label $\left._{\text {old }}\right)$, such that $\boldsymbol{P} \mathbf{x}_{\text {old }}=\mathbf{x}_{\text {new }}$ and $\boldsymbol{P}^{T} \mathbf{x}_{\text {new }}=\mathbf{x}_{\text {old }}$.

$$
\boldsymbol{P}=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\begin{aligned}
\boldsymbol{P} \boldsymbol{A} \boldsymbol{P}^{T} & =(\boldsymbol{P} \boldsymbol{A}) \boldsymbol{P}^{T} \\
& =\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0
\end{array}\right] \boldsymbol{P}^{T} \text { (flipping rows of } \boldsymbol{A} \text { according to } \boldsymbol{P} \text {) } \\
& =\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \quad \text { (flipping columns according to } \boldsymbol{P}^{T} \text {) } \\
& =\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0
\end{array}\right] \quad \text { (this is the adjacency matrix of } H \text {) }
\end{aligned}
$$

From now on, we will use a specific graph \mathcal{G} to illustrate different kinds of centralities. \mathcal{G} is shown below:

Naming convention: we use $C(x)$ is centrality of vertex x or C_{x}. When we have $C(x) \geq C(y)$ (i.e. $C_{x} \geq C_{y}$), we say x is more important than y.

Example 1: out-degree and in-degree $d(x)$.
For \mathcal{G}, we have the degree for each vertex marked as below:

To prove $d(x)$ is an S.I.:

- By isomorphism: obviously $d(x)$ is an S.I. because it is label independent.
- By matrix:

$$
\begin{aligned}
f(\boldsymbol{A}) & =\boldsymbol{A} \mathbf{e} \\
\boldsymbol{P}^{T} f\left(\boldsymbol{P} \boldsymbol{A} \boldsymbol{P}^{T}\right) & =\boldsymbol{P}^{T}\left(\boldsymbol{P} \boldsymbol{A} \boldsymbol{P}^{T}\right) \mathbf{e} \\
& =\left(\boldsymbol{P}^{T} \boldsymbol{P}\right) \boldsymbol{A}\left(\boldsymbol{P}^{T} \mathbf{e}\right) \\
& =\boldsymbol{I} \boldsymbol{A} \mathbf{e} \\
& =\boldsymbol{A} \mathbf{e} \\
& =f(\boldsymbol{A})
\end{aligned}
$$

Example 2: Eccentricity.
Let $e(u)=\max _{v} d(u, v)$, where $d(u, v)$ denote the distance between u and v. We have $e_{c}(u)=\frac{1}{e(u)}$ is an S.I.

Example 3: Closeness / Transmission number.
Let $t(u)=\sum_{v} d(u, v)$, where $d(u, v)$ denote the distance between u and v.
We have $t_{c}(u)=\frac{1}{t(u)}$ is an S.I.

Example 4: Betweeness.
$b_{c}(u)=\sum_{s, t \neq u} \frac{\sigma_{s t}(u)}{\sigma_{s t}} . \sigma_{s t}$ is the number of shortest paths between vertices s and $t . \sigma_{s t}(u)$ is the number of shortest paths between s and t that pass u. Suppose we have a graph shown below, then vertex 4 is the most important vertex according to betweeness.

Example 5: Katz Index.
Consider an adjacency matrix \boldsymbol{A} for representing a voting result, where if $\boldsymbol{A}_{i j}=1$, we say i voted for j. $\left[\boldsymbol{A}^{T} \mathbf{e}\right]$ is the number of votes for j. Suppose people there were a set of people who voted for i and then i voted for j. We wanted to count the votes from all of these people who voted for i as well. Then the count of votes becomes:

$$
\left[\boldsymbol{A}^{T} \mathbf{e}\right]+\left[\left(\boldsymbol{A}^{T}\right)^{2} \mathbf{e}\right]
$$

Then following this logic, why cannot we count the votes in an infinite order:

$$
\left[\boldsymbol{A}^{T} \mathbf{e}\right]+\left[\left(\boldsymbol{A}^{T}\right)^{2} \mathbf{e}\right]+\cdots+\left[\left(\boldsymbol{A}^{T}\right)^{k} \mathbf{e}\right]+\cdots
$$

This scheme has a problem that it'll generate infinite counts. We can modify the counting scheme a little bit by dampening the weight of vote as the order becomes higher. This is accomplished by multiplying α to \boldsymbol{A} where $0<\alpha<1$. Then we have the count of votes as:

$$
\left[\alpha \boldsymbol{A}^{T} \mathbf{e}\right]+\left[\left(\alpha \boldsymbol{A}^{T}\right)^{2} \mathbf{e}\right]+\cdots+\left[\left(\alpha \boldsymbol{A}^{T}\right)^{k} \mathbf{e}\right]+\cdots
$$

Katz index is then defined as:

$$
\mathbf{k}=\sum_{l=1}^{\infty}\left(\alpha \boldsymbol{A}^{T}\right)^{l} \mathbf{e}
$$

When \boldsymbol{A} is 1 -by- 1 matrix (i.e. scalar 1), $k_{1}=1+\alpha+\alpha^{2}+\cdots=\frac{1}{1-\alpha}$, if $|\alpha|<1$. That is, k_{1} is a geometric series.

If we generalize geometric series to matrices, we have the Neumann series, which is named after Carl Gottfried Neumann.

Neumann series: $\sum_{l=0}^{\infty} \boldsymbol{A}^{l} \rightarrow(\boldsymbol{I}-\boldsymbol{A})^{-1}$ if $\rho(\boldsymbol{A})<1 . \rho(\boldsymbol{A})$ is the spectral radius of \boldsymbol{A}. (recall $\left.\rho(\boldsymbol{A})=\max _{i}\left(\left|\lambda_{i}\right|\right)\right)$.

Then we can write Katz index as:

$$
\begin{aligned}
\mathbf{k}= & \left(\left(\boldsymbol{I}-\alpha \boldsymbol{A}^{T}\right)^{-1}-\boldsymbol{I}\right) \mathbf{e}, \text { if } \rho\left(\alpha \boldsymbol{A}^{T}\right)<1 \\
& \left(\boldsymbol{I}-\alpha \boldsymbol{A}^{T}\right) \mathbf{k}=\left(\boldsymbol{I}-\left(\boldsymbol{I}-\alpha \boldsymbol{A}^{T}\right)\right) \mathbf{e} \\
& \left(\boldsymbol{I}-\alpha \boldsymbol{A}^{T}\right) \mathbf{k}=\alpha \boldsymbol{A}^{T} \mathbf{e}
\end{aligned}
$$

We can solve this linear system to get Katz index \mathbf{k}. The Richardson method gives:

$$
\begin{aligned}
\left(\boldsymbol{I}-\alpha \boldsymbol{A}^{T}\right) \mathbf{x} & =\alpha \boldsymbol{A}^{T} \mathbf{e} \\
\mathbf{r}^{(t)} & =\mathbf{f}-\left(\boldsymbol{I}-\alpha \boldsymbol{A}^{T}\right) \mathbf{x}^{(t)} \\
\mathbf{r}^{(t)} & =\mathbf{f}-\mathbf{x}^{(t)}+\alpha \boldsymbol{A}^{T} \mathbf{x}^{(t)} \\
\mathbf{x}^{(t+1)} & =\mathbf{x}^{(t)}+\mathbf{r}^{(t)} \\
& =\mathbf{f}+\alpha \boldsymbol{A}^{T} \mathbf{x}^{(t)}
\end{aligned}
$$

Let $\mathbf{k}^{(\ell)}=\sum_{i=1}^{\ell}\left(\alpha \boldsymbol{A}^{T}\right)^{i} \mathbf{e}$. In the homework, we'll see that $\mathbf{x}^{(t)}=\mathbf{k}^{(t)}$, i.e. the Richardson method produces a truncated sum of the Neumann series.

[^0]: ${ }^{1}$ Chapter 3-5 of Network Analysis

