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1 Reversibility in Markov Chains

1.1 Definition

Definition: A process is said to be reversible if (X(n1), X(n2), · · · , X(nk))
has the same distribution as (X(T − n1), X(T − n2), · · · , X(T − nk)) for all
n1, n2, · · · , nk, T ∈ Z, where X(n1), X(n2), · · · , X(nk) make up the state set.

Result: A Markov chain (MC) is reversible iff there exists π such that
πiPij = πjPji, where π is the stable distribution. This equation is also called
“detailed balance criteria”.

Intuitively, πiPij can be viewed as the probability flux from state i to state
j. Thus the detailed balance criteria say that the probability flux from state j
to state i equals that from state i to state j. Equivalently, we have the following
criterion stating the same thing.

A stationary Markov chain is reversible iff its transition probabilities satisfy
Pj1j2Pj2j3 · · ·Pjnj1 = Pj1jnPjnjn−1 · · ·Pj2j1 .

Example 1: The following Markov chain is reversible. This example is from
here 1.
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Figure 1: A reversible Markov chain and its transition probability matrix P

It is easy to see this it is reversible from the equivalent criterion above, since
all the transition probabilities are the same. This Markov chain is periodic, which
means P n does not converge. The fact that transition probability matrix P is
symmetric is a sufficient condition for reversibility. It is not a necessary condition.
From the detailed balance criteria, we have πiPij = πjPji. If Pij = Pji, then
we can get the conclusion that πi = πj , the uniform distribution. It is obviously

that πi =
1

|S|
, where |S| is the size of the state set. The stationary distribution

is π = (
1

4
,

1

4
,

1

4
,

1

4
)T .

1http://www.math.ucsd.edu/~williams/courses/m28908/scullardMath289_

Reversibility.pdf
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This idea of a symmetric transition Markov for a Markov chain underlies the
Markov chain Monte Carlo procedure for sampling complicated objects. We’ll see
how this works in Example 3.

Example 2: A non-reversible Markov chain. This example is from here 1.
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Figure 2: A non-reversible Markov chain

It is easy to see if we walk clockwise, then P13P34P42P21 = (
1

2
)4 =

1

16
. On

the other hand, if we walk counterclockwise, then P12P24P43P31 = (
1

4
)4 =

1

256
.

Since the two probabilities are not the same, the Markov chain is not reversible.
We can also get the stationary distribution π by Matlab to show that it fails the
πiPij = πjPji test.

Given that transition matrix P , P is nonnegative and regular. We can get the
eigenvalues λ and corresponding eigenvectors V of P T . The eigenvalues are λ =
(−0.5, 1, 0.25+0.25i, 0.25−0.25i)T and corresponding eigenvectors are as follows.
Pick the column corresponding to eigenvalue 1 and normalize the eigenvector, π
= (0.25, 0.25, 0.25, 0.25)T . It is obvious that π1P12 = 0.25 × 0.25 = 0.0625 6=
π2P21 = 0.25 × 0.5 = 0.125. This also shows that the Markov chain is not
reversible.

P =


0.25 0.25 0.5 0
0.5 0.25 0 0.25
0.25 0 0.25 0.5

0 0.5 0.25 0.25

 V =


−0.5 0.5 0.5− i 0.5 + i
0.5 0.5 0.5i −0.5i
0.5 0.5 −0.5i 0.5i
−0.5 0.5 −0.5 −0.5


1.2 More examples

Example 3: Permutations.
Consider the Matlab function Randperm. The pseudocode is listed below.

Algorithm 1 Randperm

1: p(i) = i,∀i = 1, 2, · · · , n; /* p is the permutation vector */
2: for k ← 1, 2, · · · do
3: Draw i from RandInt[1, n];
4: Draw j from RandInt[1, n];
5: if i = j then
6: continue;
7: else
8: swap p(i) and p(j);
9: end if

10: end for
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The algorithm does not allow self loop by if test. An alternative to avoid self
loop is to draw (i, j) at the same time with “Draw (i, j) from RandomPair((1, n))”.
We can view this random permutation problem as a graph problem as follows.
The vertex set V is S, where S is the set of permutations on n things. The
edge set is E = {(p, q)| p and q are 1 swap away}. Let us take an example of a
permutation on 4 elements.
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Figure 3: Markov chains on random permutation

If self loop is not allowed in the Markov chain, we can get the figure on the left
in Fig. 3. In this case, each state can go to any of the other

(
n
2

)
states. Thus the

probability on the edge is Pij = 1

(n
2)

. However, if selp loop is allowed (as the case

shown on the right in Fig. 3), then each state can have n2 choices now. Therefore,

each state has a transition probability of
2

n2
to other states and the transition

probability of
n

n2
=

1

n
to go back to itself. The algorithm runs like this. Initially,

the permutation vector p = (1, 2, 3, 4)T . On the first iteration, if (i, j) = (1, 3)
is chosen, then p = (3, 2, 1, 4)T . On the second iteration, if (i, j) = (2, 4) is
chosen, then p = (3, 4, 1, 2)T . On the third iteration, if (i, j) = (3, 2), then
p = (3, 1, 4, 2)T , so on and so forth. This algorithm is actually simulating a
Markov chain.

Example 4: (uniform) Random walk on an undirected connected graph.

1 2

3

4

               1 2 3 4

P =

1
2
3
4

0 1
2

1
2 0

1
2 0 1

2 0
1
3

1
3 0 1

3

0 0 1 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Figure 4: Random walk on an undirected connected graph

Fig. 4 shows the undirected connected graph and its transition probability
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matrix. It is easy to see that the transition matrix P can be represented in the
following way, P = D−1A, where A is the adjacency matrix of the graph and
D a diagonal matrix, whose elements are defined as

Dij =

{
deg(i) if i = j

0 else

D−1 is actually the diagonal matrix with 1
deg(i) on the diagonal. For a

weighted graph, Dii =
∑

j∈N(i)

wj ⇔ Ae. Given that

D =


2

2
3

1

 A =


0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0


We can verify that P = D−1A. The Volume of the graph G is defined as the

sum of all the degrees in G. We can find the stationary distribution that makes

the Markov chain reversible, where πi =
deg(i)

V ol(G)
. The transition matrix P is

not symmetric. However the Markov chain is still reversible.
Quiz problem: Let G be an undirected connected graph such that

P ij =



0 if (i, j) /∈ E

dmax − d(i)

dmax
if i = j

1

dmax
if (i, j) ∈ E

What is the stationary distribution π?
Since transition probabilities are all the same, Pij = Pji, we can get πi =

πj =
1

n
.
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