
purdue university · cs 59000-nmc
networks & matrix computations

L E C T U R E N O T E S

David F. Gleich

September 29, 2011

Homework 1

Due September 20th, 2011

Problem 1: Norms

a) Show that f(x) = ‖Ax‖p is a vector-norm, where A is a non-singular matrix.
Solution Because A is non-singular, Ax = 0 implies that x = 0. Conse-

quently, by the standard properties of a norm, we know that f(x) ≥ 0, and
f(x) = 0 if and only x = 0. The other two properties follow immediately from
the properties of the vector norms and the properties of matrix multiplication.

b) Show that f(x) = ‖Ax‖p is not a vector-norm if A is singular.
Solution When A is singular, there is a vector x such that Ax = 0. This

vector violates the first property of being a norm.
These norms will arise in our study of spectral graph theorem. In those cases,

the matrix A is usually the diagonal matrix of degrees for each node – commonly
written D.

Problem 2

There are a tremendous number of matrix norms that arise. An interesting class
are called the orthgonally invariant norms. Norms in this class satisfy:

‖A‖ = ‖UAV ‖

for square orthogonal matrices U and V . Recall that a square matrix is orthog-
onal when UTU = I, i.e. U−1 = UT .

a) Show that ‖A‖F is orthogonally invariant. (Hint: use the relationship
between ‖A‖F and trace(ATA).)

Solution For the trace operator, trace(AB) = trace(BA) so, we have

‖UAV ‖2F = trace(V TATUTUAV) = trace(V T (ATAV)) = trace((ATAV)V T) = trace(ATA) = ‖A‖2F .

b) Show that ‖A‖2 is orthogonally invariant. (Hint: first show that ‖Ux‖2 =
‖x‖2 using the relationshp between ‖x‖ and xTx.)

Solution Note that ‖x‖2 =
∑

i xi
2 = xTx. Consequently, ‖Ux‖ =

√
xTUTUx =

‖x‖.
Hence,

‖UAV T ‖2 = max
x

‖UAV Tx‖2
‖x‖2

= max
x

‖AV Tx‖2
‖x‖2

= max
x

‖AV Tx‖2
‖V Tx‖2

= max
y=V Tx

‖Ay‖2
‖y‖2

= ‖A‖2

where the second to last expression follows because y can be any vector because
V is a square orthogonal matrix.

Problem 3

In this problem, we’ll work through the answer to the challenge question on the
introductory survey.

Let A be the adjacency matrix of a simple, undirected graph.

1

a) An upper bound on the largest eigenvalue
Show that λmax(A) is at most, the maximum degree of the graph. Show that
this bound is tight.

Solution λmax ≤ ρ(A) ≤ ‖A‖ where ρ(A) is the spectral radius, the largest
magnitude of any eigenvalue. The bound follows because the 1-norm of the A is
the largest degree.

Any constant degree graph, e.g. a clique, has this as the largest eigenvalue.
b) A lower bound on the largest eigenvalue Show that λmax(A) is at

least, the square-root of the maximum degree of the graph. Show that this bound
is tight. (Hint: try and find a lower-bound on the Rayleigh-Ritz characterization
λmax = maxxTAx/xTx.)

Solution Let AS be the adjacency matrix for a graph with fewer edges than
A. Note that

λmax = max
x

xTAx/(xTx) ≥ max
x

xTASx/(x
Tx) ≥ yTASy/(y

Ty).

for any vector y. Let r be the vertex with maximum degree. Set AS to be the
adjacency matrix only for the edges that constitute the maximum edgree, then
AS is the matrix for a star-graph centered at r. Also set

[y]i =


0 i 6= r, i 6∈ Γ(r)√
dmax i = r

1 i ∈ Γ(r)

.

Equivalently, y = eS− (1−
√
dmax)er (where eS has 1s only on the set of vertices

in the star.
Then $yTASy = eTSASeS︸ ︷︷ ︸

=2dmax

−2(1−
√
dmax) eTr ASeS︸ ︷︷ ︸

=dmax

,andyTy = 2dmax$

by a direct calculation.
Taking these ratios gives the lower-bound of

√
dmax.

Problem 4

In this question, we’ll show how to use these tools to solve a problem that arose
when Amy Langville and I were studying ranking algorithms.

a) the quiz from class Let A be an n× n matrix of all ones:

A =

1 · · · 1
...

...
1 · · · 1

 .
What are the eigenvalues of A? What are the eigenvectors for all non-zero
eigenvalues? Given a vector x, how can you tell if it’s in the nullspace (i.e. it’s
eigenvector with eigenvalue 0) without looking at the matrix?

Solution The eigenvalues are n and 0. A null-vector must have sum 0 because
the eigenvalue n is associated with the vector of all constants, and all other vectors
must be orthogonal, e.g. eTx = 0 for any vector in the nullspace.

b) my problem with Amy Amy and I were studying the n× n matrix:

A =


n −1 · · · −1

−1
. . .

...
...

. . . −1
−1 · · · −1 n



2

that arose when we were looking at ranking problems like we saw in http://www.

cs.purdue.edu/homes/dgleich/nmcomp/lectures/lecture-1-matlab.m What
we noticed was that Krylov methods to solve

Ax = b

worked incredibly fast.
Usually this happens when A only has a few unique eigenvalues. Show that this
is indeed the case. What are the unique eigenvalues of A?

Note There was a typo in this question. It should have been an n×n matrix,
which makes it non-singular. Anyway, we’ll solve the question as written.

Solution The eigenvalues of this matrix are just a shift away. We start with
a single eigenvalue equal to n + 1, and we shift all the eigenvalues in a positive
direction by n+1, e.g. we write A = (n+ 1)I −E where E = eeT is the matrix
of all ones.
Hence, we’ll have n+ 1 eigenvalues equal to n+ 1.

c) solving the system Once we realized that there were only a few unique
eigenvalues and vectors, we wanted to determine if there was a closed form solu-
tion of:

Ax = b.

There is such a form. Find it. (By closed form, I mean, given b, there should be
a simple expression for x.)

Solution If the sum of b is non-zero, then there isn’t a solution. i.e. we need
eTb = 0 to have a solution. Now we just have to determine x where

[(n+ 1)I − eeT]x = b.

Let eTx = γ, then

x = (b− γe)/(n+ 1).

So we already know that x is given by a rescaled b. Note that x is a solution
for any value of γ, so there is an infinite family of solutions. The simplest is just
b/(n+ 1).

Problem 5

In this question, you’ll implement codes to convert between triplet form of a
sparse matrix and compressed sparse row.

You may use any language you’d like.
a) Describe and implement a procedure to turn a set of triplet data this

data into a one-index based set of arrays: pointers, columns, and values

for the compressed sparse form of the matrix. Use as little additional memory as
possible. (Hint: it’s doable using no extra memory.)

function [pointers, columns, values] = sparse_compress(m, n, triplets)

% SPARSE_COMPRESS Convert from triplet form

%

% Given a m-by-n sparse matrix stored as triplets:

% triplets(nzi,:) = (i,j,value)

% Output the the compressed sparse row arrays for the sparse matrix.

% SOLUTION from https://github.com/dgleich/gaimc/blob/master/sparse_to_csr.m

pointers = zeros(m+1,1);

nz = size(triplets,1);

values = zeros(nz,1);

3

http://www.cs.purdue.edu/homes/dgleich/nmcomp/lectures/lecture-1-matlab.m
http://www.cs.purdue.edu/homes/dgleich/nmcomp/lectures/lecture-1-matlab.m

columns = values(nz,1);

% build pointers for the bucket-sort

for i=1:nz

pointers(triplets(i,1)+1)=pointers(triplets(i,1)+1)+1;

end

rp=cumsum(rp);

for i=1:nz

values(pointers(triplets(i,1))+1)=triplets(i,3);

columns(pointers(triplets(i,1))+1)=triplets(i,2);

pointers(triplets(i,1))=pointers(triplets(i,1))+1;

end

for i=n:-1:1

pointers(i+1)=pointers(i);

end

pointers(1)=0;

pointers=pointers+1;

b) Describe and implement a procedure to take in the one-indexed compressed
sparse row form of a matrix: pointers, columns, and values and the di-

mensions m, n and output the compressed sparse row arrays for the transpose
of the matrix:

function [pointers_out, columns_out, values_out] = sparse_transpose(...

m, n, pointers, columns, values)

% SPARSE_TRANSPOSE Compute the CSR form of a matrix transpose.

%

%

triplets = zeros(pointers(end),3);

% SOLUTION

for row=1:m

for nzi=pointers(row):pointers(row+1)-1

triplets(nzi,1) = columns(nzi);

triplets(nzi,2) = row;

triplets(nzi,3) = values(nzi);

end

end

[pointers_out, columns_out, values_out] = sparse_compress(n, m, triplets);

Problem 6: Make it run in Matlab/Octave/Scipy/etc.

In this problem, you’ll just have to run three problems on matlab. The first one
will be to use the Jacobi method to solve a linear system. The second will be to
use a Krylov method to solve a linear system. The third will be to use ARPACK
to compute eigenvalues on Matlab.

For this problem, you’ll need to use the ‘minnesota’ road network.
It’s available on the website: http://www.cs.purdue.edu/homes/dgleich/nmcomp/
matlab/minnesota.mat The file is in Matlab format. If you need another format,
let me know.

a) Use the gplot function in Matlab to draw a picture of the Minnesota

road network.
Solution

load minnesota

gplot(A,xy)

4

http://www.cs.purdue.edu/homes/dgleich/nmcomp/matlab/minnesota.mat
http://www.cs.purdue.edu/homes/dgleich/nmcomp/matlab/minnesota.mat

b) Check that the adjacency matrix A has only non-zero values of 1 and that it
is symmetric. Fix any problems you encouter.

Solution

all((nonzeros(A)) == 1)

A = spones(A);

all((nonzeros(A)) == 1)

nnz(A-A’)

c) We’ll do some work with this graph and the linear system described in class:

I − γL

where L is the combinatorial Laplacian matrix.

% In Matlab code

L = diag(sum(A)) - A;

S = speye(n) - gamma*L;

For the right-hand side, label all the points above latitude line 47 with 1, and all
points below latitude line 44 with -1.

% In Matlab code

b = zeros(n,1);

b(xy(:,2) > 47) = 1;

b(xy(:,2) < 44) = -1;

Write a routine to solve the linear system using the Jacobi method on the com-
pressed sparse row arrays. You should use your code from 5a to get these arrays
by calling

[src,dst,val] = find(S);

T = [src,dst,val];

[pointers,columns,values] = sparse_compress(size(A,1), size(A,2), T);

Show the convergence, in the relative residual metric:

‖b−Ax(k)‖/‖b‖

when gamma = 1/7 (Note that A is the matrix in the linear system, not the

adjacency matrix.)

Show what happens when gamma=1/5

Solution (No plots here)

n = size(A,1);

L = diag(sum(A)) - A;

S = speye(n) - 1/7*L;

b = zeros(n,1);

b(xy(:,2) > 47) = 1;

b(xy(:,2) < 44) = -1;

[i j v] = find(S);

[pointers,columns,values] = sparse_compress(size(S,1), size(S,2),[i,j,v])

[x,resvec]=jacobi(pointers,columns,values,b);

semilogy(resvec);

Jacobi sketch

5

function [x,resvec] = jacobi(pointers,columns,values,b,tol,maxiter)

x = zeros(n,1);

for i=1:maxiter

y = zeros(n,1);

for row=1:length(b)

yi = b(row); di = 0;

for nzi=pointers(row):pointers(row+1)-1

if columns(nzi) ~= row, yi = yi - values(nzi)*x(columns(nzi));

else di=values(nzi);

end

end

y(row) = yi/di;

end

% compute the residual

r = zeros(n,1);

for row=1:length(b)

ri = b(row);

for nzi=pointers(row):pointers(row+1)-1

ri = ri - values(nzi)*y(columns(nzi));

end

end

resvec(i)=norm(ri);

if resvec(i) < tol, break; end

end

resvec = resvec(1:i);

if resvec(end) > tol, warning(’did not converge’); end

d) Try using Conjugate Gradient pcg and minres in Matlab on this same sys-

tem with gamma=1/7 and gamma=1/5 . Show the convergence of the residuals.

Solution Both work for gamma=1/7, neither work for gamma=1/5.

S = speye(n) - 1/5*L;

b = zeros(n,1);

b(xy(:,2) > 47) = 1;

b(xy(:,2) < 44) = -1;

%%

[x,flag,relres,iter,resvec] = pcg(S,b);

semilogy(resvec);

%%

[x,flag,relres,iter,resvec] = minres(S,b,1e-8,500);

semilogy(resvec);

The semilogy was how to show the convergence.

e) Use the eigs routine to find the 18 smallest eigenvalues of the Laplacian

matrix L.

>> [V,D] = eigs(L,18,’SA’); diag(D)

ans =

-0.0000

0.0000

0.0008

0.0021

0.0023

6

0.0031

0.0051

0.0055

0.0068

0.0073

0.0100

0.0116

0.0123

0.0126

0.0134

0.0151

0.0165

0.0167

7

