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ALTERNATING OPTIMIZATION



Non-negative matrix
factorization

minimize  ||A — XY'||

subject to X € R™<K >0,Y € R"™K
X>0,Y>0

Fix X, solve for Y
Fix Y, solve for X

Does it converge?



Block coordinate descent

Gauss-Seidel
Alternating direction

Lots of activity among machine learning,
compressed sensing, sparse 1-norm folks,
foo.



Bertsekas, Nonlinear
programming
Suppose f is continuous, differentiable

f=1(x4, ..., Xy) Where x; is in a convex domain.
“Think of each x; as a block of variables.”

If

minimize f(X1,..., Y, ..., Xn)
veX;

IS uniquely attained, then the sequence of
subproblems converges to a stationary point.



Suppose there are just two
blocks

[Grippo & Sciandrone]

Then we don't need a unigue minimizer any
more and we can treat more general convex
problems.



More general setting

Alternating Direction Method of Multipliers

* More general problem theory,

« Take your problem and break it up into “solvable™ pieces
and then put a Lagrange multiplier on the equality

e.g. min f(x) s.t. Ax=b ->min f(x) s.t. Ay = b, x =y
e.g. min f(x) + [[x|| -=> min f(x) + ||y|| s.t. x =y
solve for x given y given Lagrangian mults on x=y,

solve for y given _new_ x given Lagrangian mults on x=y,
update Lagrangian mults.



An example of ADMM

Overlapping, non exhaustive clustering

Yrt = argminl 4 (Y, £~ gk sk rk.
Y
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Hou, Whang, Gleich, Dhillon. Fast Multiplier Methods for Non-exhaustive Overlapping Clustering



STOCHASTIC GRADIENT
DESCENT



Given f(x) =" fi(x).
i L
Note that  g(x) = » V()

=1

SGD

Consider x*1 = x%® _ oV f,_y(x)

Here, Vfi.y(X) Isjust a random term in the
gradient (“i drawn from uniform U")



Stochastic Gradient Descent
minimize ||Ax — b||°

2
minimize Sj (Sj AjiXj — b,-)
i J

minimize >, £i(X)

X(k+1) — x(k) — Oégﬁ,' (X(
Repeatedly (A4 ]
draw / at AI 1
random. = x\0 _ 042(2 AjiX; — bj)
j _Ai,n




Examples that aren’t separable
harder to think of how SGD would

Work
e max time

s.t. the equations of motion (e.g. raptor)

* min cost
s.t. the object is buildable

* min fuel
s.t. we get to mars

Reformulate to min / max expected quantity over trajectory
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