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Thematerial here is from Section 6.4 in
Nocedal and Wright.In this lecture note, we’ll show that the BFGS method is globally convergent for the

problem:
minimize f (x) .

1 the algorithm

We begin by restarting the BFGS Quasi-Newton method using an approximation of
the inverse Hessian

H(xk)−1 ≈ T k .

1 Given a starting point x0 and tolerance ε,
2 and inverse Hessian T0
3 Let k start at 0.

4 While ∥gk∥ ≥ ε
5 Compute search direction pk = −T kgk
6 Set xk+1 = xk + αpk based

7 on a strong Wolfe line search.

8 Define sk = xk+1 − xk
9 Define yk = gk+1 − gk
10 Define ρk = 1/yTk sk
11 Set T k+1 = (I − ρkskyTk )T k(I − ρkyksk) + ρksksTk

2 the assumptions!

f is twice continuously differentiable.
We need this assumption otherwise the Hessian isn’t defined.

the level set below the function f (x0) is convex, i.e. the set L = {x ∶ f (x) ≤ f (x0)} is
convex.
In the proof, we’ll need to study the behavior of the function along the lines
xk → xk+1. Without this assumption, this step could become complicated.

on the set L, the Hessian H(x) satisfies:

m∥z∥2 ≤ zTH(x)z ≤ M∥z∥2

for all z ∈ R at any x ∈ L.
We need this to be able to control the behavior of the true Hessian and make sure
our approximation is well posed.

Although we did not assume that the minimizer is unique, these assumptions imply
that as well! This is because we are looking at an everywhere positive definite Hessian in a
convex set.

3 the result

THEOREM 1 (Nocedal & Wright 6.5) Let B0 be any symmetric, positive definite approximation
of the Hessian H0 and let x0 be a starting point for which the previous assumptions are
satisfied. Then the sequence xk generated by the BFGS Quasi-Newton method converges to
the minimizer x∗ of f .
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4 the proof

ARCHITECTURE
In this proof, we actually work with the BFGS approximation of the Hessian, instead

of the inverse Hessian. Thus, the search direction is the solution of the linear system:

Bkpk = −gk

and the BFGS update (when stated about the Hessian) is:

Bk+1 = Bk −
BksksTk Bk

sTk Bksk
+
ykyTk
yTk sk

.

Our goal in the proof is to apply Zoutendijk’s conditions to show that the gradient
must converge to zero. As there is only one minimizer in the region, this result implies
that the quasi-Newton method must find it.

Let cos θ j be the angle between the search direction pk and the gradient descent
direction −gk :

cos θ j =
−gTk pk

∥gk∥∥pk∥
.

If cos θ j → 0, then the algorithm may not converge. The proof we present shows this fact
by way of contradiction. That is, we show that if cos θ j goes to zero, we contradict another
fact we know is true.

The first part of this proof is just getting our expressions all lined up so that we can
put the pieces together to get the result. Some of this work will seem out-of-place until
you see how it’s used.

4.1 STEP 1
We first show that:

cos θ j =
sTk Bksk
∥sk∥∥Bksk∥

.

This is important because it translates the problem back into something we have direct
control over: the matrix Bk . In a future step of the proof, we’ll try and translate the upper-
and-lower-bounds on the positive definiteness of the Hessian matrix into a bound on the
properties of Bk .

Proving this step is just algebra. Try and work it out. If not, see the cheat-sheet at the
bottom of this paper.
Note that pT

k /∥pk∥ = sTk /∥sk∥. Also note that −gk = Bkpk = Bk
xk+1−xk

α = α−1Bksk .
Combining these two substitutions provides the result.

4.2 STEP 2
This comes out of the blue, but bear with us for a second. Consider the function

ϕ(A) = trace(A) − log det(A).

This function measures the sum of the eigenvalue and subtracts the log of their product:

ϕ(A) = ∑ λ i −∑ log λ i = ∑(λ i − log λ i).

Note that the scalar function x − log x ≥ 1 for all x > 0, thus:

ϕ(A) ≥ n > 0

for any positive definite matrix A. In particular, ϕ(Bk) > 0 because Bk is positive at each
step (by assumption).

The idea with this function is that we want to get some control over the matrix Bk .
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4.3 STEP 3
In particular, we’ll show shortly that:

ϕ(Bk+1) ≤ ϕ(B0) + c(k + 1) +
k

∑
j=0

log cos2 θ j .

Here c is just some positive constant (it’ll depend on m and M, actually). But before we
show that, let’s see how we’ll be done once we do it.

Suppose that cos θ j → 0 then cos2 θ j → 0 as well.1 We’ll show that, if this is true, then 1 This piece is the key part of the proof by
contradiction.ϕ(Bk+1)must become negative at some point. But this contradicts our construction that

Bk is positive definite at each step (that’s how we chose it!) and hence, that can’t be.
How will this become negative? Look at the expression, we have a log cos2 θ j in the

sum. If cos θ j → 0, then log cos2 θ j will take a value below any negative number. Let t be
the step when log cos2 θ j < −2c.

For k > t,

0 < ϕ(B0) + c(k + 1) +
k

∑
j=0

log cos2 θ j ≤ ϕ(B0) + c(k + 1) +
t

∑
j=0

log cos2 θ j + (−2c)(k − t)

Put another way, we have:

0 < constant + c(k + 1) + constant − 2c(k − t) = constant + 2ct + c − ck.

Once k > t, we are losing a factor of c in this expression for each additional term! Thus,
we can drive this down to something below zero and reach our contradiction.

Hence, we have that cos θ j cannot go to zero. It’s still possible that it visits zero
periodically, but check the Zoutendijk condition on a strongly convex objective. This result
implies that we’ll converge to the minimizer.

4.4 STEP 4
What remains is to show that:

ϕ(Bk+1) ≤ ϕ(B0) + c(k + 1) +
k

∑
j=0

log cos2 θ j .

We’ll do this in a few steps. First, we want to show that

ϕ(Bk+1) = ϕ(Bk) + ck − dk + log cos2 θk ,

where ck is arbitrary and dk is positive term. Then, if we can show that ck < c for all k, we
will have our result:

0 < ϕ(Bk+1) ≤ ϕ(Bk) + c + log cos2 θk
≤ ϕ(Bk−1 + c + log cos2 θk−1 + c + log cos2 θk

≤ ϕ(B0)c(k + 1) +
k

∑
j=0

log cos2 θk
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4.5 STEP 5
Let’s prove the bound on each term:

ϕ(Bk+1) = trace(Bk+1) − log det(Bk+1) = ϕ(Bk) + ck − dk + log cos2 θk ,

where ck is arbitrary and dk is positive term.
Recall

Bk+1 = Bk −
BksksTk Bk

sTk Bksk
+
ykyTk
yTk sk

.

Let’s work on the terms trace(Bk+1) and det(Bk+1) separately:

trace(Bk+1) = trace(Bk)−trace(
BksksTk Bk

sTk Bksk
)+trace(

ykyTk
yTk sk

) = trace(Bk)−
∥Bksk∥2

sTk Bksk
+
∥yk∥

2

yTk sk
.

This derivation holds because the trace of two vectors is their inner-product: trace(fgT) =
fTg, which holds right from the definition of trace as the sum of the diagonal.

The determinant will be harder to handle because det(A+ B) /= det(A) + det(B) as
was true for the trace. What does hold for the determinant is det(AB) = det(A)det(B).
We’ll use this property:

det(Bk+1) = det(Bk (I −
sksTk Bk

sTk Bksk
+
B−1k ykyTk
yTk sk

)) = det(Bk)det(the rest).

To deal with “the rest”, we’ll first need to one small results:2 2 Which is worked out in more detail in
Exercise 6.10 in the book starting with the
simple case: det(I + xyT) = 1 + yTx.det(I + xyT + uvT) = (1 + yTx)(1 + vTu) − xTvyTu.

If we apply this result, then

det(the rest) =
yTk sk

sTk Bksk
.

At this point, we’ll introduce a few terms that will help us simplify these expressions:

mk =
yTk sk
∥sk∥2

Mk =
∥yk∥

2

sTk yk
qk =

sTk Bksk
sTk sk

cos θ j =
sTk Bksk
∥sk∥∥Bksk∥

The last expression was what we worked out in Step 1. We can insert this into the expression
for the determinant:

det(Bk+1) = det(Bk)mk/qk
Using the same expressions for the trace, we have:

trace(Bk+1) = trace(Bk) +Mk − qk/ cos2 θ j .

Hence,

ϕ(Bk+1) = trace(Bk) +Mk −
qk

cos2 θ j
− log det(Bk) − logmk + log qk

= ϕ(Bk) +Mk − logmk−1 + (1 −
qk

cos2 θ j
− log cos2 θk + log qk)+ log cos2 θk

Recall that 1 − t + log(t) < 0 for all t > 0. From this, we conclude that

1 − qk
cos2 θ j

− log cos2 θk + log qk = 1 −
qk

cos2 θ j
+ log(qk/ cos2 θk) < 0.

And we’ve finished this step!

ϕ(Bk+1) = ϕ(Bk) + (Mk − logmk − 1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ck

+(1 − qk
cos2 θ j

+ log(qk/ cos2 θk))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
−dk

+ log cos2 θk .
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4.6 STEP 6
In the final step, we just need to show that ck < c. Each term ck = Mk − logmk − 1. We

now show that the assumptions we have imply that Mk < M and mk > m for the values of
M and m given in the assumptions.3 3 These were “on the set L, the Hessian H(x)

satisfies:

m∥z∥T ≤ zTH(x)z ≤ M∥z∥2

for all z ∈ R at any x ∈ L.”

For this task, we first use a nice property of Quasi-Newton methods that relates to the
average Hessian between the time-steps:

yk = gk+1 − gk = g(xk + αpk) − g(xk)

= ∫ 1

0
H(x + ατp)αp dτ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
This is Taylor’s theorem again!

= ∫ 1

0
H(x + ατp)sk dτ = [ ∫ 1

0
H(x + ατp) dτ]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡H̄k

sk

= H̄ksk .

Thus:
yTk sk
sTk sk

=
sTk H̄ksk
sTk sk

≥ m,

yTk yk
yTk sk

=
sTk H̄

2
ksk

skH̄ksk
=
zTk H̄kzk
zTk zk

≤ M

where zk = H̄
1/2
k sk .

Consequently, we have ck ≤ M − logm − 1. If M − logm − 1 happens to be negative,
then we can just increase M until it becomes positive and the rest of the theorem falls into
place!

4.7 STEP 7
Give yourself a pat on the back! That was a lot of work!

4.8 CONVERGENCE RATE
In Theorem 6.6, Nocedal and Wright utilize a characterization of super-linear conver-

gence fromTheorem 3.6. At a high level, the idea is to transform the iterates to look at
them in the space of the Hessian nearby the solution. This involves looking at very similar
quantities, but transformed by H−1/2∗ where H∗ is the Hessian at the solution.

In a nut-shell, Theorem 3.6 states: if the Hessian and the approximate Hessian behave
the same on the step s, then we’ll get super-linear convergence. Formally, the statement we
need to show about Quasi-Newton is that:

lim
k→∞

∥(Bk −H∗)s∥
∥s∥ → 0.

Checkout Theorem 6.6 to see how this is done!
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