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Recall our short-hand notation:

x = x(k)
x+ = x(k+1)
g = g(x(k))

g+ = g(x(k+1))
H = H(x(k))
fk = f (x(k))
f + = f (x(k+1))

fk+1 = f (x(k+1))

Consider the unconstrained optimization problem:

minimize f (x)

where f ∶ Rn
→ R is twice continuously differentiable.

At a point x(k), a line search method proceeds by choosing

a search direction p and a step length α

such that
x(k+1) = x(k) + αp.

Both of these terms are used repeatedly in line-search methods.
Line search methods are a type of optimization algorithm that follows a template. We’ll

see five different methods to choose a search direction:
· gradient descent
· Newton’s method
· quasi-Newton
· conjugate gradients
· limited memory quasi-Newton.

Each of these is called a different algorithm, but there are all instances of the template
algorithm:

Given x1
While not yet at a minimizer

Generate a search direction pk
Find a step-length α

In subsequent lectures, we’ll prove that this template algorithm converges if your
choice of search direction and step length obey the rules.

For instance, search directions used for a line-search method should be “promising.”
We make this precise by requiring the search direction p to be a descent direction.

DEFINITION 1 (descent direction) Consider an optimization problem

minimize f (x)

and a point y. The direction p is called a descent direction at y if pTg(y) < 0.

Descent directions are nice because we can always find an α such that f (x+αp) < f (x)
as the following theorem shows. That is to say, there’s always a sufficiently small step α
such that we reduce the objective function and hopefully get closer to a minimizer.

THEOREM 2 Let f (x) ∶ Rn
→ R be continuously differentiable with gradient g(x). Consider

a point y and a descent direction p. Then there exists α > 0 such that f (y + αp) < f (y).

Proof The proof is just an application of Taylor’s theorem:

f (y + γp) = f (y) + γpTg(y) + O(γ2).

If γ is sufficiently small such that γ ≫ γ2, then

f (y + γp) = f (y) + γpTg(y) + O(γ2) ≤ f (y)

because γpTg(y) is negative by virtue of being a descent direction and γ > 0. The theorem
follows with α as the value of γ that achieves this bound. ∎
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Generating descent directions is also easy.

THEOREM 3 Let B be a symmetric, positive definite matrix. Consider the direction p that
solves the linear system Bp = −g(y). Then p is a descent direction.

Proof It’s an easy one! Give it a try. ∎

Unfortunately, picking a descent direction alone will not allow us to guarantee that
the line search template converges. Let’s see an example of why:

EXAMPLE 4 Consider f (x) = 1
2 x

2 and x1 = 2. The gradient is д(x) = x and so we satisfy
the criteria of a decent direction if p = −1. Suppose we pick α = 5/2 = 2 + 1/2 as our
step length, then x2 = −3/2. At which point, p = 1 is a descent direction, and we can pick
α = 2 + 1/4 = 9/4. We’ve decreased the objective at both steps, however, if we continue
this pattern: αk = 2 + 1

2k , pk = (−1)
k , then we’ll generate a sequence of iterates where

f (xk+1) < f (xk), but where xk converges to ±1, not the minimizer at zero.

This motivates a set of what are called line search conditions.

GRADIENT DESCENT
In gradient descent, we choose p = −g. That is, the search direction is the negative

gradient. Hence the algorithm “descends” the gradient. The choice of the gradient is
optimal in the sense that:

p = −g/∥g∥ solves
minimize f (x + p) ≈ f (x) + pTg + O(1)
subject to ∥p∥ = 1.

That is, it’s the best direction to minimize a first order Taylor expansion of the objective.

NEWTON
We get the Newton search direction by solving:

Hp = −g

This direction solves for the minimizer of a second order Taylor expansion of the objective,
assuming that the Hessian evaluated at x is positive definite:

p = −H−1g solves minimize f (x + p) ≈ f (x) + pTg + 1
2p

THp.

We’ll be able to show that using the Newton search direction results in a quadratically
convergent optimization procedure. This will be really fast!

QUASI -NEWTON
Quasi-Newton methods do not require exact knowledge of the Hessian. Instead, they

build an approximation to the Hessian as the algorithm progresses. They are commonly
used when solving problems where the Hessian is not available – which is usually because
it is difficult or expensive to compute. If B is a semi-definite approximation to the Hessian,
then a Quasi-Newton method will use the search direction Bp = −g.

CONJUGATE GRADIENTS
The conjugate gradients is a non-linear extension of the famous conjugate gradient

algorithm for solving a linear system. We’ll discuss it soon.

LIMITED-MEMORY QUASI -NEWTON
For large scale problems, keeping an approximation of the Hessian matrix in a quasi-

Newton method requires O(n2
) memory because the matrices are usually dense. A

limited-memory Quasi-Newton method stores a low-rank approximation of the Hessian
approximation.
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