Lecture 23

•

- Derivative free optimization

 Fitting h. Models
 Nelder-mead method

Project S you reports should be indepent of Cock.

General nonlinear optimization

- Nonlinear constraints •
- Penalty methods
- Augmented Lagrangian methods

(Useful for Optimization on the Hypersphere)

Derivative Free Optimization Computational Methods in Optimization CS 520, Purdue

David F. Gleich Purdue University 2025-04-08

A demo

Derivative-free optimization (DFO) Chapter 9

Question

How would you do optimization without derivatives?

Use finite differences

 $f'(\mathbf{x}) \approx \frac{1}{\gamma}(f(\mathbf{x}+\gamma)-f(\mathbf{x}))$

Then use a trust-region method.

- How to find *c*, *q*, and *G*?
 O(n²) parameters
 How to choose the point set y_i?
- How to update *c*, *q*, and *G*?
 Details of interpolation methods. See the book, or references.

• How to find *c*, *q*, and *G*? O(n²) parameters

Use interpolation condition to form an n² by n² linear system

O(n⁶) to solve \checkmark O(n⁴) to update \checkmark

How to choose the point set y_i ?

Fix a sequence of search directions that span \mathbb{R}^n , and cycle among them

"
$$p = " e_1, -e_1, ..., e_n, -e_n, e_1, -e_1 ..., e_n, ...$$
 $\pm e_1, ..., \pm e_n, \pm e_{n-1}, ..., \pm e_1, ...$

brutally slow in general wickedly fast when applicable (like a scalpel)

Pick a stencil around the current point

Move to the best point if "good enough" (sufficient decrease)

Otherwise, reduce gamma and revaluate

Consider a simplex of points

A simplex consists of n+1 noncolinear points

 $f(\mathbf{x}_1) \leq f(\mathbf{x}_2) \leq \ldots \leq f(\mathbf{x}_{n+1})$

We order the vertices by decreasing function value.

Such a simplex gives us a local "linear" model of our function!

Use the "slope" of the simplex to find a good direction

 $f(\mathbf{x}_1) \leq f(\mathbf{x}_2) \leq \ldots \leq f(\mathbf{x}_{n+1})$

Use the "slope" of the simplex to find a good direction

 $f(\mathbf{x}_1) \leq f(\mathbf{x}_2) \leq \ldots \leq f(\mathbf{x}_{n+1})$

Use the "slope" of the simplex to find a good direction

 $f(\mathbf{x}_1) \leq f(\mathbf{x}_2) \leq \ldots \leq f(\mathbf{x}_{n+1})$

The line from the worst point through the centroid of the best is a reasonable search direction! Why can't we just use this direction and be done?

Nelder-Mead

Because we need a simplex at the next step too!

Can't be too big. Can't be too small.

Use the slope of the simplex to find a good direction.

Reflecting the *worst point* in the simplex around the centroid of what's left to find a better point

Use the slope of the simplex to find a good direction.

Reflecting the *worst point* in the simplex around the centroid of what's left to find a better point

Quiz

Why is this better than pattern-search?

We get to reuse

Nonlinear programming

Computational Methods in Optimization CS 520, Purdue

> David F. Gleich Purdue University 2025-04-08

Problems

Equality constrained

minimize $f(\mathbf{x})$ subject to $\mathbf{c}(\mathbf{x}) = 0$

Inequality constrained

 $\begin{array}{ll} \text{minimize} & f(\mathbf{x}) \\ \text{subject to} & \mathbf{d}(\mathbf{x}) \geq 0 \end{array}$

General optimization

 $\begin{array}{ll} \text{minimize} & f(\mathbf{x}) \\ \text{subject to} & \mathbf{C}(\mathbf{x}) = 0 \\ & \mathbf{d}(\mathbf{x}) \geq 0 \end{array}$

Overarching idea

Approximate these problems by something easier, or more simple And then solve a sequence of optimization problems.

Inception

Inception

Non-linear Optimization Via INCEPTION THE ARCHITECTURE

DESIGN BY RICK SLUSHER

Sequence of Unconstrained, Quadratic, Linear

Iterations sequence of Newton, Quasi-newton

Iterations sequence for the linear system

The equality constrained problem

minimize $f(\mathbf{x})$ subject to $\mathbf{c}(\mathbf{x}) = 0$

Chapter 17, Nocedal & Wright

Penalty Methods and Augmented Lagrangians

A penalty method

minimize $f(\mathbf{x})$ subject to $\mathbf{c}(\mathbf{x}) = 0$

minimize $f(\mathbf{x}) + \mu \sum_{i} c_{i}(\mathbf{x})^{2} \leftrightarrow \text{minimize} f(\mathbf{x}) + \mu \mathbf{c}(\mathbf{x})^{T} \mathbf{c}(\mathbf{x})$

A penalty method

minimize $f(\mathbf{x})$ subject to $\mathbf{c}(\mathbf{x}) = 0$

A penalty method

minimize $f(\mathbf{x})$ subject to $\mathbf{c}(\mathbf{x}) = 0$

minimize $f(\mathbf{x}) + \mu \sum_{i} c_{i}(\mathbf{x})^{2} \leftrightarrow \text{minimize} f(\mathbf{x}) + \mu \mathbf{c}(\mathbf{x})^{T} \mathbf{c}(\mathbf{x})$

Let $\{\tau_k\} \to 0$, $\{\mu_k\} \to \infty$. While $\|\mathbf{c}(\mathbf{x}_k)\| \ge \text{tol}$ Solve minimize $f(\mathbf{x}) + \mu_k/2\mathbf{c}(\mathbf{x})^T\mathbf{c}(\mathbf{x})$ to tolerance τ_k Set $\mathbf{x}^{(k+1)}$ to be the solution.

If we'll be able to prove this convergences, we'll need a strong condition.

Why?

If we'll be able to prove this convergences, we'll need a strong condition.

 $\mathbf{c}(\mathbf{x})^{\mathsf{T}}\mathbf{c}(\mathbf{x})$ vs. $\mathbf{c}(\mathbf{x}) = 0$

If we'll be able to prove this convergences, we'll need a strong condition.

 $\mathbf{c}(\mathbf{x})^{\mathsf{T}}\mathbf{c}(\mathbf{x})$ vs. $\mathbf{c}(\mathbf{x}) = 0$

Theorem 17.1 (Paraphrased)

If we use the global minimizer of each subproblem, then we solve the problem in the $\mu_k \rightarrow \infty$ limit

Theorem 17.2 (Paraphrased)

If we approximately minimize each problem to a point where $\|\mathbf{g}(\mathbf{x}_k)\| \leq \tau_k$

Then either a limit point of the sequence is either (infeasible) and a stationary point of $\|\mathbf{c}(\mathbf{x})\|^2$

Or

It's a KKT point of the original problem

Weaknesses

Highly "ill-conditioned" as $\mu_k \rightarrow \infty$

Convergence only about limit points

Problems with penalty methods

The hanging net problem

minimize the energy in the system subject to using "steel" links

Problems with penalty methods

The hanging net problem

These links would stretch! (Small constraint violation gives a large change in the energy objective) As $\mu_k \rightarrow \infty$ we'd violate these constraints "more" than others.

minimize the energy in the system subject to using "steel" links

Problems with penalty methods

All constraints are not equal!

Augmented Lagrangian Methods

minimize $f(\mathbf{x})$ subject to $\mathbf{c}(\mathbf{x}) = 0$

$$\mathcal{L}(\mathbf{x}; \lambda, \mu) = f(\mathbf{x}) - \lambda^T \mathbf{c}(\mathbf{x}) + \mu/2 \|\mathbf{c}(\mathbf{x})\|^2.$$

Augmented Lagrangian Methods

minimize $f(\mathbf{x})$ subject to $\mathbf{c}(\mathbf{x}) = 0$

$$\mathcal{L}(\mathbf{x}; \lambda, \mu) = f(\mathbf{x}) - \lambda^T \mathbf{c}(\mathbf{x}) + \mu/2 \|\mathbf{c}(\mathbf{x})\|^2.$$

If we minimize in x alone

$$\nabla \mathcal{L}(\mathbf{x}) = \mathbf{g}_f(\mathbf{x}) - \mathbf{J}_c(\mathbf{x})^T (\lambda - \mu \mathbf{c}(\mathbf{x})) = 0$$

One of the KKT conditions of the non-linear program is

$$\mathbf{g}_f(\mathbf{x}^*) - \mathbf{J}_c(\mathbf{x}^*)^T \lambda^* = \mathbf{0}$$

Augmented Lagrangian Methods

$$\nabla \mathcal{L}(\mathbf{x}) = \mathbf{g}_f(\mathbf{x}) - \mathbf{J}_c(\mathbf{x})^T (\lambda - \mu \mathbf{c}(\mathbf{x})) = 0$$
$$\mathbf{g}_f(\mathbf{x}^*) - \mathbf{J}_c(\mathbf{x}^*)^T \lambda^* = 0$$

So in an algorithm, we use

$$\lambda_{k+1} = \lambda_k - \mu_k \mathbf{C}(\mathbf{x})$$

minimize $\mathcal{L}(\mathbf{x}; \lambda_k, \mu_k)$ to tolerance τ_k starting from \mathbf{x}_k if $\|\mathbf{c}(\mathbf{x})\|$ is small, stop! else set $\lambda_{k+1} = \lambda_k - \mu_k \mathbf{c}(\mathbf{x}_k)$ set $\mu_{k+1} \ge \mu_k$

Convergence of AL methods

See theorem 17.5 and 17.6

See Alg 17.4 for the method used in LANCELOT with bound-constraints.

Barrier methods

 $\begin{array}{ll} \text{minimize} & f(\mathbf{x}) \\ \text{subject to} & \mathbf{d}(\mathbf{x}) \geq 0 \end{array}$

minimize $f(\mathbf{x}) - \mu \mathbf{e}^T \log(\mathbf{d}(\mathbf{x}))$

Chapter 16, Griva, Sofer & Nash

The inequality constrained problem

 $\begin{array}{ll} \text{minimize} & f(\mathbf{x}) \\ \text{subject to} & \mathbf{C}(\mathbf{x}) = 0 \\ & \mathbf{d}(\mathbf{x}) \geq 0 \end{array}$

can be transformed into

$$\begin{array}{ll} \text{minimize} & f(\mathbf{x}) \\ \text{subject to} & \mathbf{C}(\mathbf{x}) = 0 \\ & \mathbf{d}(\mathbf{x}) - \mathbf{s} = 0 \\ & \mathbf{l} \leq \mathbf{x} \leq \mathbf{u}, \mathbf{s} \geq 0 \end{array}$$

So handling equality, and bounds suffices!

The bound constrained problem

 $\begin{array}{ll} \text{minimize} & f(\mathbf{x}) \\ \text{subject to} & \mathbf{C}(\mathbf{x}) = 0 \\ \mathbf{I} \leq \mathbf{x} \leq \mathbf{u} \end{array}$

See algorithms in Algorithm 17.4, Chapter 18 Nocedal & Wright

LANCELOT

Sequential quadratic programming Gradient projection