
Lecture 23

Derivative free optimization
• • Fitting 
• • Nelder-mead method

General nonlinear optimization
• • Nonlinear constraints 
• • Penalty methods
• • Augmented Lagrangian methods

(Useful for Optimization on the Hypersphere)

Project
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A demo
f = x -> (x[1].^2 + x[2] - 11).^2 + 

(x[1] + x[2].^2 - 7).^2
sol = optimize(f, [0.0;0.0], NelderMead())
xs = sol.minimizer



Derivative-free optimization (DFO)
Chapter 9

Question

How would you do optimization 
without derivatives?



Solution 1

Use finite differences



Solution 1

Use finite differences

How to pick gamma? 
How much work?

MaybeScaledby
f(x) .
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Solution 2

Interpolate and update a quadratic model
(Section 9.2)

Then use a trust-region method.

How to fit ?
· last Squares
↳ Sample IL

Parameter .

↳ Min 1Mcye)-flye/l2.
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Solution 2

• How to find c, q, and G?
O(n2) parameters
How to choose the point set yl? 

• How to update c, q, and G?
Details of interpolation methods. See the book, or 
references.
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Solution 2

• How to find c, q, and G? O(n2) parameters

Use interpolation condition to form an n2 by n2 

linear system

O(n6) to solve
O(n4) to update

How to choose the point set yl? 
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Solution 3

Fix a sequence of search directions that span Rn, 
and cycle among them
 “p = ”

brutally slow in general
wickedly fast when applicable

(like a scalpel)
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Solution 4

Pick a stencil around the current point

Move to the best point if “good enough” 
(sufficient decrease)

Otherwise, reduce gamma and revaluate

Example 
stencils in 
R2



Solution 4

We need 

                                        to satisfy Zoutendijk

Example 
stencils in 
R2

This ensures we can always 
get at least a delta 
projection on any gradient.



Solution 5 – Nelder-Mead

Consider a simplex of points

Such a simplex gives us a local 
“linear” model of our function!

A simplex consists of n+1 non-
colinear points

We order the vertices by 
decreasing function value.



Solution 5 – Nelder-Mead

Use the “slope” of the simplex to 
find a good direction



Solution 5 – Nelder-Mead

Use the “slope” of the simplex to 
find a good direction

The line from the 
worst point
through centroid

is a reasonable 
search direction!



Solution 5 – Nelder-Mead

Use the “slope” of the simplex to 
find a good direction

The line from the 
worst point through 
the centroid of the best

is a reasonable search 
direction!



Nelder-Mead

Because we need a simplex at the next step too!

Can’t be too big.
Can’t be too small.



Solution 5 – Nelder-Mead

Use the slope of the simplex to 
find a good direction.

Reflecting the worst point in the simplex around 
the centroid of what’s left to find a better point

Or shrink to 
the best point



Solution 5 – Nelder-Mead

Use the slope of the simplex to 
find a good direction.

Reflecting the worst point in the simplex around 
the centroid of what’s left to find a better point

Or shrink to 
the best point
if no point is 
better

1st

2nd?
2nd?

2nd?



Quiz

Why is this better than pattern-search?

We get to reuse
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Problems
minimize f (x)
subject to c(x) = 0

minimize f (x)
subject to c(x) = 0

d(x) � 0

minimize f (x)
subject to d(x) � 0

Equality constrained

Inequality constrained

General optimization



Overarching idea

Approximate these problems by something
 easier, or
 more simple
And then solve a sequence of optimization 
problems.



Inception



Inception

Iterations sequence 
for the linear system

Iterations sequence of 
Newton, Quasi-newton

Sequence of 
Unconstrained, Quadratic, Linear

Non-linear
Optimization 
Via



The equality constrained problem 
minimize f (x)
subject to c(x) = 0

Chapter 17, Nocedal & Wright

Penalty Methods and 
Augmented Lagrangians



A penalty method
minimize f (x)
subject to c(x) = 0

minimize f (x) + µ
P

i ci (x)2 $ minimize f (x) + µc(x)T c(x)



A penalty method
minimize f (x)
subject to c(x) = 0

minimize f (x) + µ
P

i ci (x)2 $ minimize f (x) + µc(x)T c(x)x+y+(x2+y2−1.0)2 (1.0/2.0)
x+y+(x2+y2−1.0)2 5.0e1

µ = 1/2 µ = 50

minimize x + y
subject to x2 + y2 � 1 = 0



A penalty method
minimize f (x)
subject to c(x) = 0

minimize f (x) + µ
P

i ci (x)2 $ minimize f (x) + µc(x)T c(x)

Let {⌧k} ! 0, {µk} ! 1.
While kc(xk )k � tol

Solve minimize f (x) + µk/2c(x)T c(x) to tolerance ⌧k

Set x(k+1) to be the solution.

Gradient norm



Convergence of the penalty method
If we’ll be able to prove this convergences, we’ll need a 
strong condition.

Why?



Convergence of the penalty method
If we’ll be able to prove this convergences, we’ll need a 
strong condition.

c(x)T c(x) vs. c(x) = 0



Convergence of the penalty method
If we’ll be able to prove this convergences, we’ll need a 
strong condition.

Theorem 17.1 (Paraphrased)

If we use the global minimizer of each subproblem, then we 
solve the problem in the µk → ∞ limit 

c(x)T c(x) vs. c(x) = 0



Convergence of the penalty method
Theorem 17.2 (Paraphrased)

If we approximately minimize each problem to a point where

Then either a limit point of the sequence is either (infeasible)
and a stationary point of 

Or

It’s a KKT point of the original problem

kg(xk )k  ⌧k

kc(x)k2



Weaknesses

Highly “ill-conditioned” as µk → ∞

Convergence only about limit pointsx+y+(x2+y2−1.0)2 (1.0/2.0)
x+y+(x2+y2−1.0)2 5.0e1

µ = 1/2 µ = 50



Problems with penalty methods
The hanging net problem

fixed
fixed

fixed

fixed

minimize the energy in the system
subject to using “steel” links



Problems with penalty methods
The hanging net problem

fixed fixed

minimize the energy in the system
subject to using “steel” links

These links would stretch!
(Small constraint violation 
gives a large change in 
the energy objective)
As µk → ∞ we’d violate 
these constraints “more”
than others.



Problems with penalty methods
All constraints are not equal!



Augmented Lagrangian Methods
minimize f (x)
subject to c(x) = 0

L(x;�,µ) = f (x) � �T c(x) + µ/2kc(x)k2.



Augmented Lagrangian Methods
minimize f (x)
subject to c(x) = 0

L(x;�,µ) = f (x) � �T c(x) + µ/2kc(x)k2.

If we minimize in x alone

One of the KKT conditions of the non-linear program is 

gf (x
⇤) � Jc(x⇤)T�⇤ = 0

rL(x) = gf (x) � Jc(x)T (�� µc(x)) = 0



Augmented Lagrangian Methods

gf (x
⇤) � Jc(x⇤)T�⇤ = 0

rL(x) = gf (x) � Jc(x)T (�� µc(x)) = 0

�k+1 = �k � µk c(x)

So in an algorithm, we use

minimize
x

L(x;�k ,µk ) to tolerance ⌧k starting from xk

if kc(x)k is small, stop!
else set �k+1 = �k � µk c(xk )

set µk+1 � µk



Convergence of AL methods
See theorem 17.5 and 17.6 

See Alg 17.4 for the method used in 
LANCELOT with bound-constraints.



Barrier methods
minimize f (x)
subject to d(x) � 0

minimize f (x) � µeT log(d(x))

Chapter 16, Griva, Sofer & Nash



The inequality constrained problem
minimize f (x)
subject to c(x) = 0

d(x) � 0

minimize f (x)
subject to c(x) = 0

d(x) � s = 0
l  x  u, s � 0

can be transformed into

So handling equality, and bounds suffices!



The bound constrained problem
minimize f (x)
subject to c(x) = 0

l  x  u

See algorithms in 
Algorithm 17.4, Chapter 18

Nocedal & Wright

LANCELOT
Sequential quadratic programming

Gradient projection


