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General nonlinear optimization
« + Nonlinear constraints
+ Penalty methiods
+ Augmented Lagrangian methods

(Useful for Optimization on the Hypersphere)
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A demo

f=x->(x[1].22 + x[2] - 11).A2 +

(x[1] + x[2].22 - 7).72
sol = optimize(f, [0.0;0.0], NelderMead())
xs = sol.minimizer
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Derivative-free optimization (DFO)
Chapter 9

Question

How would you do optimization
without derivatives?



Solution 1

Use finite differences

f'(x) = S (F(x +7) — f(x))
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Use finite differences e 1 50%

Ak
f'(x) = 2 (f(x +7) = f(x))

How to pick gamma?

How much work? —; H(n) ﬁwéﬂ
il
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Then use a trust-region method.



Solution 2

* How tofind ¢, g, and G?
O(n?) parameters e
How to choose the point se@
 How to update ¢, g, and G: <

Details of interpolation methods. See the book, or
references.
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Solution 2
 How to find ¢, g, and G? O(n?) parameters

Use interpolation condition to form an n? by n?
linear system

O(n®) to solve ~
O(n*) to update «~

How to choose the point se@



Solution 3

Fix a sequence of search directions that span R”,
and cycle among them T

up — 7 e{,—©e4,...,eH, —©e,,61,—©e1...,enh, ...
T—€1,..., =€n, T€n_1, ..., €1, ...

brutally slow in general -~
wickedly fast when applicable

(like a scalpel) /



Solution 4

Pick a stencil around the current point

Example
rL stencils in
&/ 2

X Xk R

= Xk + VkPk> Pk € Dk

Move to the best point if “good enough”
(sufficient decrease)

Otherwise, reduce gamma and revaluate



Solution 4

Example
stencilsin
R2

) §% Xk

= Xk + VkPx> Px € Dk

We need Bmin < P < Bmax

_ va This ensures we can always
mMiNn max = ) get at least a delta
VER" peDy H PH HVH projection on any gradient.

forp € Dy to satisfy Zoutendijk



Solution 5 — Nelder-Mead

Consider a simplex of points

f(X1) < f(X2) < ... < f(Xpe1)

S
d

A simplex consists of n+1 non-
colinear points

We order the vertices by
decreasing function value.

Such a simplex gives us a local
“linear” model of our function!



Solution 5 — Nelder-Mead

Use the “slope” of the simplex to
find a good direction

f(X1) < f(Xg) < ... < f(Xn+1)




Solution 5 — Nelder-Mead

Use the “slope” of the simplex to
find a good direction

f(X1) < f(Xg) < ... < f(Xn+1)

The line from the
worst point
through centroid

Xk is a reasonable /
/ search direction!

) 4%




Solution 5 — Nelder-Mead

Use the “slope” of the simplex to
find a good direction

f(X1) < f(Xg) < ... < f(Xn+1)

The line from the
worst point through
the centroid of the best

Xk is a reasonable search /
/ direction!

) 4%




Nelder-Mead

Because we need a simplex at the next step too!

Can’t be too big.
Can’t be too small.



Solution 5 — Nelder-Mead

Use the slope of the simplex to
find a good direction.

Reflecting the worst point in the simplex around
the centroid of what’s left to find a better point

X(—1) |
X .M X Or shrink to |\\/
/

X(—2) X(—1/2) / the best point
1 — 1 <

X(t) = — Z:X/ +1 <Xn+1 e z;x,)
/1= |=




Solution 5 — Nelder-Mead

Use the slope of the simplex to
find a good direction.

Reflecting the worst point in the simplex around
the centroid of what’s left to find a better point

X(—1)  ondo 2) Or shrink to

: |
@ ® 29> 1 Xni1 the best point |\\/
/

X(—2) X(—1/2) / :e”t‘tjefomt Is
1 o 1 <
X(t) = BZ:XH t <Xn+1 = nz;x,)
I= /=




Why is this better than pattern-search?

Mf_% LO eyse.



Nonlinear programming

Computational Methods in Optimization
CS 520, Purdue



Problems

Equality constrained

Inequality constrained

General optimization

minimize

subject to

minimize

subject to

minimize

subject to



Overarching idea

Approximate these problems by something
easier, or
more simple

And then solve a sequence of optimization
problems.



Inception

INCEPTION

THE ARCHITECTURE



Inception

INCEPTION

THE ARCHITECTURE



The equality constrained problem

minimize  f(X)
subjectto c¢(x)=0

Chapter 17, Nocedal & Wright

Penalty Methods and
Augmented Lagrangians



A penalty method

minimize  f(X)
subjectto c¢(x)=0

minimize f(X) + 1>, ci(X)® « minimize f(X) + uc(x) c(x)



A penalty method

(%) + pe(x) " e(x)

X)
(x) =0

i
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< Mminimize

minimize
subjec

f(X) + 1> ci(X)?

minimize
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A penalty method

minimize  f(X)
subjectto c¢(x)=0

minimize f(X) + 1>, ci(X)® « minimize f(X) + uc(x) c(x)

Let {mx} — O, {1k} — oo.
While ||c(xk)|| > tol Gradient norm

Solve minimize f(x) + 1k /2¢(X)" €(X) to tolerance 7«
Set x**1) to be the solution.



Convergence of the penalty method

If we’ll be able to prove this convergences, we’ll need a
strong condition.

Why?



Convergence of the penalty method

If we’ll be able to prove this convergences, we’ll need a
strong condition.

c(x)"c(x) vs. ¢(x) =0



Convergence of the penalty method

If we’ll be able to prove this convergences, we’ll need a
strong condition.

c(x)"c(x) vs. ¢(x) =0

Theorem 17.1 (Paraphrased)

If we use the global minimizer of each subproblem, then we
solve the problem in the p, — oo limit



Convergence of the penalty method

Theorem 17.2 (Paraphrased)

If we approximately minimize each problem to a point where

la(xx)|| < 7«
Then either a limit point of the sequence is either (infeasible)
and a stationary point of |c(x)]|°

Or

It's a KKT point of the original problem



Weaknesses

hly “illl-conditioned” as p, — oo
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Problems with penalty methods

The hanging net problem

fixed fixed
' fixed

fixed

\ .

/

./"'

minimize the energy in the system
subject to using “steel” links



Problems with penalty methods

The hanging net problem

fixed fixed

\'\._,_.//These links would stretch!

(Small constraint violation
gives a large change in
the energy objective)

As L, — o« we'd violate
these constraints “more”
than others.

minimize the energy in the system
subject to using “steel” links



Problems with penalty methods

All constraints are not equal!



Augmented Lagrangian Methods

minimize  f(X)
subjectto ¢(x) =0

LG, 1) = F(X) — ATeX) + p/2[[e(x)|)°.



Augmented Lagrangian Methods

minimize  f(X)
subjectto c¢(x)=0

LG, 1) = F(X) — ATeX) + p/2[[e(x)|)°.
If we minimize in x alone
VLX) = g/(X) — Jo(¥)T (A — pe(x)) = 0

One of the KKT conditions of the non-linear program is

g.(x*) —Je(x*)TA* =0



Augmented Lagrangian Methods

VLX) = gy(X) — Jo(x)" (A — pe(x)) =0
g;(x*) = Jo(x*)"A* =0
So in an algorithm, we use

Ak+1 = Ak — ,LLkC(X)

minimize  L(X; Ak, kk)  to tolerance 74 starting from x
if ||c(x)|| is small, stop!
else set A\gi1 = Ak — 1xC(Xk)
set Hkst = [k



Convergence of AL methods

See theorem 17.5and 17.6

See Alg 17.4 for the method used in
LANCELOT with bound-constraints.



Barrier methods

minimize  f(X)
subjectto d(x) >0

minimize f(x) — pe’ log(d(x))

Chapter 16, Griva, Sofer & Nash



The inequality constrained problem

minimize  f(X)
subjectto c(x)=0
d(x) >0

can be transformed into

minimize  f(X)
subjectto c(X) =
d(x)
I

—s=0
gsus

>0

So handling equality, and bounds suffices!



The bound constrained problem

subject to

) =0

minimize  f(X)
c(
I<x<u

See algorithms in
Algorithm 17.4, Chapter 18
Nocedal & Wright

LANCELOT
Sequential quadratic programming
Gradient projection



