UNCONSTRAINED MINIMIZATION IN 1D

David F. Gleich January 20, 2023

Everything will be 1d or univariate until further notice. Let $f(x) : \mathbb{R} \to \mathbb{R}$, for instance.

The material here is from Chapter 2 in Nocedal and Wright.

1 A BASKET OF DEFINITIONS

DEFINITION 1 (global minimizer) A point x^* is a global minimizer if $f(x^*) \le f(x)$ for all x in the domain of f.

DEFINITION 2 (strict global minimizer) A point x^* is a strict global minimizer if $f(x^*) < f(x)$ for all x in the domain of f except for x^*

DEFINITION 3 (local minimizer) A point x^* is a local minimizer if $f(x^*) \le f(x)$ for all x in an open neighborhood of x^* .

DEFINITION 4 (strict local minimizer) A point x^* is a strict local minimizer if $f(x^*) < f(x)$ for all x in an open neighborhood of x^* except for x^* .

DEFINITION 5 (isolated minimizer) A point x^* is an isolated (local) minimum if its a local minimizer and there is a neighborhood of x^* where x is the only minimizer.

1.1 EQUIVALENCE?

Let f(x) be continuously differentiable. Can a strict minimizer be non-isolated?

Isolated implies Strict

Strict implies Isolated?

2 RECOGNIZING MINIMIZERS

The key idea Taylor's theorem ...

2.1 TAYLOR'S THEOREM (UNIVARIATE) Let $f(x)$ be twice continuously differentiable. $f(x_0 + h) =$
$f(x_0+h)=$
where α
2.2 NECESSARY CONDITIONS FOR A LOCAL MINIMIZER First order
Second order
Conclusion So any local minimizer has:
2.3 SUFFICIENT CONDITIONS FOR A LOCAL MINIMIZER Necessary vs. Sufficient
Necessary can be used to Sufficient can be used to
First order