David F. Gleich
February 20, 2023

Consider the unconstrained optimization problem:

$$
\operatorname{minimize} \quad f(\mathbf{x})
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is twice continuously differentiable.
The second order necessary conditions of a minimizer are:

$$
\mathbf{g}(\mathbf{x})=0, \boldsymbol{H}(\mathbf{x}) \geq 0
$$

where $\mathbf{g}(\mathbf{x})$ and $\boldsymbol{H}(\mathbf{x})$ are the gradient and Hessian, respectively.
The second order sufficient conditions of a minimizer are:

$$
\mathbf{g}(\mathbf{x})=0, \boldsymbol{H}(\mathbf{x})>0
$$

If you don't know the difference between these, take a moment to think about the question: How can a piece of software with access to the gradient and Hessian of a function guarantee to the user that it's at a minimizer?

In this class, we'll study two types of optimization algorithms: ${ }^{1}$
line search methods trust region methods.
Both start from a given point $\mathbf{x}^{(0)}$ and are iterative in nature. That is, they try to find a point $\mathbf{x}^{(k+1)}$ "nearby" $\mathbf{x}^{(k)}$ such that $f\left(\mathbf{x}^{(k+1)}\right)<f\left(\mathbf{x}^{(k)}\right)$. Because writing

$$
f\left(\mathbf{x}^{(k+1)}\right), \mathbf{g}\left(\mathbf{x}^{(k)}\right), \mathbf{g}\left(\mathbf{x}^{(k+1)}\right), \text { etc. }
$$

quickly becomes tiring, we use the following shorthand at a point $\mathbf{x}^{(k)}$:

$$
\begin{aligned}
\mathbf{x} & =\mathbf{x}^{(k)} \\
\mathbf{x}^{+} & =\mathbf{x}^{(k+1)} \\
\mathbf{g} & =\mathbf{g}\left(\mathbf{x}^{(k)}\right) \\
\mathbf{g}^{+} & =\mathbf{g}\left(\mathbf{x}^{(k+1)}\right) \\
\boldsymbol{H} & =\boldsymbol{H}\left(\mathbf{x}^{(k)}\right) \\
f_{k} & =f\left(\mathbf{x}^{(k)}\right) \\
f^{+} & =f\left(\mathbf{x}^{(k+1)}\right) \\
f_{k+1} & =f\left(\mathbf{x}^{(k+1)}\right)
\end{aligned}
$$

Line search At a point \mathbf{x}, a line search method finds a direction \mathbf{p} that ought to improve the value of the objective function f, it then considers the "line" of points:

$$
\mathbf{x}^{+}=\mathbf{x}+\alpha \mathbf{p}
$$

The key question with a line search method is how to pick \mathbf{p} and α.

Trust region At a point \mathbf{x}, a trust region method fits a quadratic model around \mathbf{x} and then minimizes a quadratic model exactly without moving too far:

$$
f(\mathbf{x}+\mathbf{p}) \approx f(\mathbf{x})+\mathbf{p}^{T} \mathbf{g}+\frac{1}{2} \mathbf{p}^{T} \boldsymbol{H} \mathbf{p}
$$

with $\|\mathbf{p}\|$ not to big.
The key question with a trust region method is how to pick the model and maximum distance $\|\mathbf{p}\|$.

Try thinking about the difference this way: in a line search method, you first pick a direction, and then determine how far to go. In a trust region method, you first pick how far you are willing to go, and then pick the best direction given that distance constraint.
${ }^{1}$ We'll see a third type too while studying these: exact algorithms for simple quadratics!

FIGURE 1 - A line search method starts at a point and picks a direction \mathbf{p}. It then chooses a step length α to determine how far to go along that direction.

FIGURE 2 - A trust region method picks a distance (the two dashed red circles). It then tries to find the best point within the circle. Hopefully, once it gets close to a minimizer, it'll pick it out directly (e.g. the larger circle).

